2017中考真题轴对称
2017年中考数学试题分项版解析汇编:专题04图形的变换(原卷版)

专题4:图形的变换一、选择题1.(2017北京第5题)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C. D.2.(2017天津第3题)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()3.(2017福建第5题)下列关于图形对称性的命题,正确的是()A.圆既是轴对称性图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形4.(2017福建第10题)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A B′′和点P′,则点P′所在的单位正方形区域是()A .1区B .2区C .3区D .4区5. (2017广东广州第2题)如图2,将正方形ABCD 中的阴影三角形绕点A 顺时针旋转90°后,得到图形为 ( )6. (2017广东广州第8题)如图4,,E F 分别是ABCD ▱的边,AD BC 上的点,06,60EF DEF =∠=,将四边形EFCD 沿EF 翻折,得到EFC D ′′,ED ′交BC 于点G ,则GEF ∆的周长为 ( )A .6B . 12C . 18D .247. (2017湖南长沙第4题)在下列图形中,既是轴对称图形,又是中心对称图形的是( )8. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215− D .随H 点位置的变化而变化9. (2017山东青岛第2题)下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).10. (2017山东青岛第5题)如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A .)2,4(−B .)4,2(−C . )2,4(−D .)4,2(−11. (2017四川泸州第5题)已知点(,1)A a 与点(4,)B b −关于原点对称,则a b +的值为( )A .5B .5−C .3D .3−12. (2017山东日照第2题)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A .B .C .D .13. (2017辽宁沈阳第6题)在平面直角坐标系中,点A ,点B 关于y 轴对称,点A 的坐标是()2,8−,则点B 的坐标是( )A . ()2,8−−B . ()2,8C . ()2,8−D . ()8,2二、填空题1.(2017北京第15题)如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .2.(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=°,AB AC =,1BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .3.(2017湖南长沙第16题)如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .4.(2017山东滨州第15题)在平面直角坐标系中,点C 、D 的坐标分别为C (2,3)、D (1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为_______.5.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.A B C DH Q GFE6.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是.7.(2017江苏苏州第18题)如图,在矩形CD ΑΒ中,将C ∠ΑΒ绕点Α按逆时针方向旋转一定角度后,C Β的对应边C ′′Β交CD 边于点G .连接′ΒΒ、CC ′,若D 7Α=,CG 4=,G ′′ΑΒ=Β,则CC ′=′ΒΒ (结果保留根号).8.(2017浙江舟山第7题)如图,在平面直角坐标系xOy 中,已知点)1,1(),0,2(B A .若平移点A 到点C ,使以点O ,A ,C ,B 为顶点的四边形是菱形,则正确的平移方法是( )A .向左平移1个单位,在向下平移1个单位B .向左平移)122(−1个单位,在向上平移1个单位C . 向右平移2个单位,在向上平移1个单位D .向右平移1个单位,在向上平移1个单位9.(2017浙江舟山第9题)一张矩形纸片ABCD ,已知2,3==AD AB ,小明按下图步骤折叠纸片,则线段DG 长为( )A .2B .22C .1D .210.(2017浙江舟山第16题)一副含030和045的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,cm EF BC 12==(如图1),点G 为边)(EF BC 的中点,边FD 与AB 相交于点H ,现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从00到060的变化过程中,观察点H 的位置变化,点H 相应移动的路径长为 (结果保留根号).三、解答题1.(2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).2.(2017河南第22题)如图1,在Rt ABC ∆中,90A ∠=°,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.3.(2017山东临沂第25题)数学课上,张老师出示了问题:如图1,AC 、BD 是四边形ABCD 的对角线,若ACB ACD ∠=∠=60ABD ADB ∠=∠=°,则线段BC ,CD ,AC 三者之间有何等量关系? 经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE CD =,连接AE ,证得ABE ADC ≌V V ,从而容易证明ACE V 是等边三角形,故AC CE =,所以AC BC CD =+.小亮展示了另一种正确的思路:如图3,将ABC V 绕着点A 逆时针旋转60°,使AB 与AD 重合,从而容易证明ACF V 是等比三角形,故AC CF =,所以AC BC CD =+.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=°”改为“ACB ACD ∠=∠=45ABD ADB ∠=∠=°”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=°”改为“ACB ACD ∠=∠=ABD ADB α∠=∠=”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.4.(2017浙江金华第19题)如图,在平面直角坐标系中,ABC ∆各顶点的坐标分别为()()()2,2,4,1,4,4A B C −−−−−−.(1)作出ABC ∆关于原点O 成中心对称的111A B C ∆.(2)作出点A 关于x 轴的对称点'A .若把点'A 向右平移a 个单位长度后落在111A B C ∆的内部(不包括顶点和边界)求a 的取值范围.5.(2017浙江金华第23题)如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD ▱纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCD AEFG S S =▱矩形 ______.(2)ABCD ▱纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥== .小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.。
2017年全国中考数学真题分类 平移、旋转与轴对称 2017(解答题)

2017年全国中考数学真题分类平移、旋转与轴对称解答题三、解答题1. (2017四川广安,24,8分)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在下图中画出你的4种方案.(每个4×4的方格内限画一种) 要求:(1)5个小正方形必须相连(有公共边或公共顶视为相连)(2)将选中的小正方形方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过翻折、平移、旋转后能够重合,视为一种方案)思路分析:在正方形中先画一条直线作为图案的对称轴,然后围绕该直线进行设计. 解:答案不唯一,如:2. (2017山东枣庄19,8分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请在图1中,画出△ABC 向左平移6个单位长度后得到的△111A B C ; (2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△222A B C ,请在图2中y 轴的右侧画出△222A B C ,并求出∠222A C B 的正弦值.思路分析:(1)将A、B、C三点分别向左平移6个单位即可得到的△A1B1C1;(2)连接OA、OC,分别取OA、OB、OC的中点即可画出△A2B2C2,求出直线AC与OB的交点,求出∠ACB的正弦值即可解决问题.解:(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1,如图1所示,(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在y轴右侧画出△A2B2C2,如图2所示,∵A(2,2),C(4,-4),B(4,0),∴直线AC解析式为y=-3x+8,与x轴交于点D(83,0),∵∠CBD=90°,∴CD =224BC 103BD +=, ∴sin ∠DCB =84101034103BD CD -==. ∵∠A 2C 2B 2=∠ACB , ∴sin ∠A 2C 2B 2=sin ∠DCB =10. 3. (2017浙江金华,19,6分)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (-2,-2),B (-4,-1),C (-4,-4).(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1.(2)作出点A 关于x 轴的对称点A '.若把点A '向右平移a 个单位长度后落在△A 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.思路分析:(1)根据关于原点对应点的坐标特征,对应点的横纵坐标互为相反数,得到A ,B ,C 关于原点的对应点A 1,B 1,C 1,连接对应线段得到所作图形;(2)根据点关于x 轴对称点的特征,横坐标不变,纵坐标变为相反数,即可确定点A ',点A '向右平移4各单位长度与点A 1重合,向右平移6个单位长度,在边B 1C 1上,再根据要求“不包括顶点和边界”,可确定a 的取值范围.解:(1)如图,△A 1B 1C 1就是所求作的图形. (2)A '如图所示. a 的取值范围是4<a <6.4.(2017安徽中考18.·8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l。
中考数学专项训练 图形的轴对称(含解析)(1)(2021年整理)

2017年中考数学专项训练图形的轴对称(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专项训练图形的轴对称(含解析)(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专项训练图形的轴对称(含解析)(1)的全部内容。
图形的轴对称一、选择题1.下列图案是轴对称图形的是()A.B.C.D.2.下列四个图形中,不是轴对称图形的是()A.B.C.D.3.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形C.菱形D.正方形4.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A.30°B.45°C.60°D.75°5.如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为()A.8B.4C.8 D.6二、填空题6.如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD= .7.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.8.如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆半径r=1,阴影部分的面积记作S2,则S1S2(用“>"、“<"或“=”填空).9.如图,在平面直角坐标系中,点O是原点,点B(0,),点A在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M的坐标是(,).10.如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC 的中点处,直线l与边BC交于点D,那么BD的长为.三、解答题(共50分)11.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)12.作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A、B、C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于直线l:x=﹣1对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.13.如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)(2)折叠后重合部分是什么图形?说明理由.14.如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.15.(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.图形的轴对称参考答案与试题解析一、选择题1.下列图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,结合选项即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、符合轴对称的定义,故本选项正确;故选D.【点评】此题考查了轴对称图形的判断,属于基础题,解答本题的关键是熟练掌握轴对称的定义.2.下列四个图形中,不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.【解答】解:A、B、D都是轴对称图形,C不是轴对称图形,故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义,正确找到对称轴.3.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形C.菱形D.正方形【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案.【解答】解:A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.【点评】本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义.4.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A.30°B.45°C.60°D.75°【考点】生活中的轴对称现象;平行线的性质.【专题】压轴题.【分析】要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.【解答】解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选:C.【点评】本题是考查图形的对称、旋转、分割以及分类的数学思想.5.如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为()A.8B.4C.8 D.6【考点】翻折变换(折叠问题).【专题】数形结合;整体思想.【分析】首先由正方形ABCD的对角线长为2,即可求得其边长为2,然后由折叠的性质,可得A′M=AM,D′N=DN,A′D′=AD,则可得图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD,继而求得答案.【解答】解:∵正方形ABCD的对角线长为2,即BD=2,∠A=90°,AB=AD,∠ABD=45°,∴AB=BD•cos∠ABD=BD•cos45°=2×=2,∴AB=BC=CD=AD=2,由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.故选:C.【点评】此题考查了折叠的性质与正方形的性质.此题难度适中,注意数形结合思想与整体思想的应用.二、填空题6.如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD= .【考点】翻折变换(折叠问题).【专题】压轴题.【分析】连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF中,利用勾股定理可求出BC,即得AD的长度.【解答】解:连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,CF=DF=CD=AB=,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,∵,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=,∴BF=BA′+A′F=AB+DF=1+=,在Rt△BCF中,BC==.∴AD=BC=.故答案为:.【点评】本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,注意掌握勾股定理的表达式.7.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为 5 .【考点】轴对称﹣最短路线问题;正方形的性质.【分析】要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ的值,从而找出其最小值求解.【解答】解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP==5,∴DQ+PQ的最小值是5.故答案为:5.【点评】此题考查了正方形的性质和轴对称及勾股定理等知识的综合应用,得出DQ+PQ的最小值时Q点位置是解题关键.8.如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆半径r=1,阴影部分的面积记作S2,则S1<S2(用“>”、“<”或“="填空).【考点】轴对称的性质;实数大小比较;正方形的性质.【分析】结合图形发现:图1阴影部分的面积等于等于矩形ACDF的面积,首先利用勾股定理算出OD的长,进而得到OA的长,再算出AC的长,即可表示出矩形ACDF的面积;图2每个阴影部分正好是它所在的圆的四分之一,则阴影部分的面积大圆面积的是,计算出结果后再比较S1与S2的大小即可.【解答】解:∵OE=1,∴由勾股定理得OD=,∴AO=OD=,∴AC=AO﹣CO=﹣1,∴S阴影=S矩形=(﹣1)×1=﹣1,∵大圆面积=πr2=π∴阴影部分面积=π.∵﹣1<π,∴S1<S2,故答案为:<.【点评】此题主要考查了轴对称图形的性质以及正方形性质,根据已知得出AC=AO﹣CO=﹣1,进而得出矩形DCAF的面积是解题关键.9.如图,在平面直角坐标系中,点O是原点,点B(0,),点A在第一象限且AB⊥BO,点E 是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M的坐标是( 1 ,).【考点】轴对称的性质;坐标与图形性质;解直角三角形.【专题】压轴题.【分析】根据点B的坐标求出OB的长,再连接ME,根据轴对称的性质可得OB=OE,再求出AO 的长度,然后利用勾股定理列式求出AB的长,利用∠A的余弦值列式求出AM的长度,再求出BM的长,然后写出点M的坐标即可.【解答】解:∵点B(0,),∴OB=,连接ME,∵点B和点E关于直线OM对称,∴OB=OE=,∵点E是线段AO的中点,∴AO=2OE=2,根据勾股定理,AB===3,cosA==,即=,解得AM=2,∴BM=AB﹣AM=3﹣2=1,∴点M的坐标是(1,).故答案为:(1,).【点评】本题考查了轴对称的性质,坐标与图形性质,解直角三角形,熟练掌握轴对称的性质并作出辅助线构造出直角三角形是解题的关键.10.如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC 的中点处,直线l与边BC交于点D,那么BD的长为.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】首先根据已知得出△ABC的高以及B′E的长,利用勾股定理求出BD即可.【解答】解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=8,tanC=,∴=,QC=BQ=4,∴AQ=6,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过B′点作B′E⊥BC于点E,∴B′E=AQ=3,∴=,∴EC=2,设BD=x,则B′D=x,∴DE=8﹣x﹣2=6﹣x,∴x2=(6﹣x)2+32,解得:x=,直线l与边BC交于点D,那么BD的长为:.故答案为:.【点评】此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.三、解答题(共50分)11.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)【考点】利用轴对称设计图案.【专题】作图题.【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:【点评】考查利用轴对称设计图案;选择不同的直线当对称轴是解决本题的突破点.12.(2013•重庆)作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A、B、C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于直线l:x=﹣1对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.【考点】作图﹣轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出点A1、B1、C1的坐标即可.【解答】解:(1)△A1B1C1如图所示;(2)A1(0,1),B1(2,5),C1(3,2).【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.13.如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)(2)折叠后重合部分是什么图形?说明理由.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质,可以作∠BDF=∠BDC,∠EBD=∠CBD,则可求得折叠后的图形.(2)由折叠的性质,易得∠FDB=∠CDB,又由四边形ABCD是矩形,可得AB∥CD,即可证得∠FDB=∠FBD,即可证得△FBD是等腰三角形.【解答】解:(1)做法参考:方法1:作∠BDG=∠BDC,在射线DG上截取DE=DC,连接BE;方法2:作∠DBH=∠DBC,在射线BH上截取BE=BC,连接DE;方法3:作∠BDG=∠BDC,过B点作BH⊥DG,垂足为E方法4:作∠DBH=∠DBC,过,D点作DG⊥BH,垂足为E;方法5:分别以D、B为圆心,DC、BC的长为半径画弧,两弧交于点E,连接DE、BE.∴△DEB为所求做的图形.(2)等腰三角形.证明:∵△BDE是△BDC沿BD折叠而成,∴∠FDB=∠CDB,∵四边形ABCD是矩形,∴AB∥CD,∴∠ABD=∠BDC,∴∠FDB=∠ABD,∴△BDF是等腰三角形.【点评】此题考查了矩形的性质、等腰三角形的判定,折叠的性质以及尺规作图.此题难度不大,注意掌握数形结合思想的应用.14.如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.【考点】翻折变换(折叠问题);全等三角形的判定与性质;菱形的判定.【分析】(1)由矩形ABCD与折叠的性质,易证得△CEF是等腰三角形,即CE=CF,即可证得AF=CF=CE=AE,即可得四边形AFCE为菱形;(2)由折叠的性质,可得CE=AE=a,在Rt△DCE中,利用勾股定理即可求得:a、b、c三者之间的数量关系式为:a2=b2+c2.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFC,由折叠的性质,可得:∠AEF=∠CEF,AE=CE,AF=CF,∴∠EFC=∠CEF,∴CF=CE,∴AF=CF=CE=AE,∴四边形AFCE为菱形;(2)a、b、c三者之间的数量关系式为:a2=b2+c2.理由:由折叠的性质,得:CE=AE,∵四边形ABCD是矩形,∴∠D=90°,∵AE=a,ED=b,DC=c,∴CE=AE=a,在Rt△DCE中,CE2=CD2+DE2,∴a、b、c三者之间的数量关系式为:a2=b2+c2.【点评】此题考查了矩形的性质、折叠的性质、菱形的判定以及勾股定理等知识.此题难度适中,注意掌握数形结合思想的应用,注意折叠中的对应关系.15.(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE 的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.【考点】圆的综合题;轴对称﹣最短路线问题.【专题】压轴题.【分析】(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.【解答】解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为:;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为:;(3)拓展延伸作法:1、作点P关于直线AB的对称点E,2、作点P关于直线BC的对称点F,3、连接EF交AB于M,交BC于N,则PM+PN+MN的值最小;如图(4)【点评】本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.。
江苏省2017年中考数学第七章图形的变化第30课时图形的对称(含图形的折叠)真题精选(含解析)

第七章 图形的变化第30课时 图形的对称(含图形的折叠)江苏近4年中考真题精选命题点1 对称图形的识别(2016年7次,2015年5次,2014年3次,2013年5次)1. (2015常州3题3分)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )2. (2016扬州5题3分)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )3. (2016徐州5题3分)下列图案中,是轴对称图形但不是中心对称图形的是( )4. (2013宿迁7题3分)下列三个函数:①y =x +1;②y =;③y =x 2-x +1.其图象既是轴对称图1x 形,又是中心对称图形的个数有( )A. 0B. 1C. 2D. 3(2013~2016)5. (2013盐城8题3分)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转后能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A. 4种B. 5种C. 6种D. 7种命题点2 (2016年8次,2015年5次,2014年6次,2013年8次)图形的折叠6. (2016镇江17题3分) 如图,在平面直角坐标系中,坐标原点O 是正方形OABC 的一个顶点,已知点B 坐标为(1,7),过点P (a ,0)(a >0)作PE ⊥x 轴,与边OA 交于点E (异于点O 、A ),将四边形ABCE 沿CE 翻折,点A ′、B ′分别是点A 、B 的对应点.若点A ′恰好落在直线PE 上,则a 的值等于( )A. B. C. 2 D. 354437. (2013盐城16题3分)如图,将⊙O 沿弦AB 折叠,使经过圆心O ,则∠OAB =________°.AB ︵8. (2016苏州17题3分)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4.将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为________.9. (2014连云港16题3分)如图①,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图②,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为M,EM交AB于N,则tan∠ANE=________.10. (2016淮安18题3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是________.11. (2013苏州18题3分)如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部,将AF 延长交边BC 于点G .若=,则=________(用含k 的CG GB 1k AD AB 代数式表示).12. (2016盐城18题3分)如图,已知菱形ABCD 的边长为2,∠A =60°,点E ,F 分别在边AB 、AD 上,若将△AEF 沿直线EF 折叠,使得点A 恰好落在CD 边的中点G 处,则EF =________.13. (2015连云港22题10分)如图,将平行四边形ABCD 沿对角线BD 进行折叠,折叠后点C 落在点F 处,DF 交AB 于点E .(1)求证:∠EDB =∠EBD ;(2)判断AF 与DB 是否平行,并说明理由.答案1. B 【解析】根据轴对称图形的定义进行判断,A、C、D的圆中图案不能构成轴对称,故不正确;B图案沿正中竖线对折其两部分能完全重合,是轴对称图形.2. C 【解析】选项逐项分析正误此图形旋转180°后不能与原图形重合,∴此图形不是中心A×对称图形B此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形×C此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形√D此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形×3. B 【解析】选项逐项分析正误A 是轴对称图形,是中心对称图形×B 是轴对称图形,不是中心对称图形√C 不是轴对称图形,不是中心对称图形×D 不是轴对称图形,是中心对称图形×4. C 【解析】① y =x +1的函数图象,既是轴对称图形,又是中心对称图形;② y =的函数图1x 象,既是轴对称图形,又是中心对称图形;③ y =x 2-x +1的函数图象是轴对称图形,不是中心对称图形;所以,函数图象既是轴对称图形,又是中心对称图形的是①②,共2个.5. C 【解析】得到的不同图案如解图所示,共6种.6.C 【解析】当点A ′落在直线PE 上时,如解图,作BD ⊥y 轴,BF ⊥x 轴,连接BO ,过点A 作AG ⊥x 轴,AK ⊥BF ,根据题意可知BD =1,DO =7,∴BO ==,∵四边形AOCB 是正方形,72+1250∴AB =AO =CO ==5.又∵∠AKB =∠CHO =∠AGO =90°,∠ABK =∠COH =∠AOG ,∴△ABK ≌△2BO AOG ≌△OCH ,∴AK =AG =OH ,则四边形AKFG 是正方形,设AK =KF =x ,则BK =7-x ,根据勾股定理,得x 2+(7-x )2=25,解得x =3或x =4,由BK >AK ,∴AK =OH =3,∵A ′B ′=5,∴OP =2,∴a =2.7. 30 【解析】如解图,过点O 作OC ⊥AB 于点D ,交⊙O 于点C ,∵将⊙O 沿弦AB 折叠,使经AB ︵ 过圆心O ,∴OD =OC ,∴OD =OA ,∵OC ⊥AB ,∴∠OAB =30°.12128. 2 【解析】如解图,过点B ′作B ′O ⊥AD 交AD 于点O .∵∠B =60°,BD =BE ,∴△BDE 为7等边三角形,,将等边△BDE 沿DE 折叠后得等边△B ′DE ,那么四边形BDB ′E 是菱形;在Rt△ODB ′中,∠ODB ′=60°,B ′D =4,可求得OD =2,OB ′=2;在Rt△AOB ′中,3AO =AB -OD -BD =10-2-4=4,∴AB ′===2 .22)(B O AO '+42+(23)279. 【解析】如解图,连接CE 与HG 相交于点O .∵∠MEH =90°,∴∠AEN +∠DEH =90°,34∵∠AEN +∠ANE =90°,∴∠DEH =∠ANE ,设DE =a .由题意知,E 为AD 的中点,∴AD =CD =2a ,∴EC =,∵点C 和点E 关于GH 对称,a a a CD DE 5)2(2222=+=+∴OC =OE ==a ,∵∠HCO =∠ECD ,∠HOC =∠EDC =90°,∴△OCH ∽△DCE ,∴=,∴2EC 52OC CD CH EC,∴CH =a ,∴DH =CD -CH =2a -a =a ,∴aCH a a 5225=545434tan∠ANE =tan∠DEH ==DH DE .4343=a a 10. 【解析】如解图,当点E 在BC 上运动时,PF 的长固定不变,即PF =CF =2.∴点P 在以点65F 为圆心,以2为半径的圆上运动.过点F 作FH ⊥AB 交⊙F 于点P ,垂足为H ,此时PH 最短.则△AFH ∽△ABC ,∴=.由已知易得AF =4,AB =10,∴=,即FH =.∴P 到AB 距离的最FH BC FA AB 8FH 410165小值PH =FH -FP =-2=.1656511. 【解析】∵点E 是CD 的中点,∴DE =CE ,∵将△ADE 沿AE 折叠后得到△k +12AFE ,∴DE =EF ,AF =AD ,∠AFE =∠D =90°,∴CE =EF ,如解图,连接EG ,在Rt△ECG 和Rt△EFG 中,∴Rt△ECG ≌Rt△EFG (HL),∴CG =FG ,设,⎩⎨⎧==EFCE EG EC CG =a ,∵=,∴GB =ka ,∴BC =CG +BG =a +ka =a (k +1),在矩形ABCD 中,AD =BC =a (k +1),CG GB k1∴AF =a (k +1),AG =AF +FG =a (k +1)+a =a (k +2),在Rt△ABG 中,AB =,∴[]12)()2(2222+=-+=-k a ka k a BG AG .2112)1(+=++=k k a k a AB AD12. 【解析】如解图,连接AG 交EF 于点M ,过点G 作GH ⊥AD 交AD 的延长线于点72120H ,∵∠CDH =∠A =60°,DG =1,∴DH =,HG =,由折叠可知:1232FA =FG ,EG =AE ,AM =MG ,EF ⊥AG ,设AF =FG =x ,则FH =2.5-x ,在Rt△FGH 中,有(2.5-x )2+()2=x 2,解得x =,在Rt△AHG 中,AG === ,∴AM =327522HG AH +(52)2+(32)27. 连接BD ,得等边△BCD ,连接BG ,则BG ⊥CD ,∴∠GBE =90°,BG =,设723AE =GE =m ,BE =2-m ,在Rt△BEG 中,有BE 2+BG 2=EG 2,即(2-m )2+3=m 2,解得m =,过点F 74作FN ⊥AB 交AB 于点N ,则FN =AF ·sin60°=×=,在△AEF 中,由面积公式,得:S △75327310AEF =EF ×AM =AE ×FN ,∴EF ==.121274×7310727212013. (1)证明:由折叠可知:∠CDB =∠EDB ,...................(1分)∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠CDB =∠EBD ,...................(2分)∴∠EDB =∠EBD ;...................(4分)(2)解:AF ∥DB ....................(5分)理由:∵∠EDB =∠EBD ,∴DE =BE .由折叠可知:DC =DF ,∵四边形ABCD 是平行四边形,∴DC=AB,∴DF=AB,∴AB-BE=DF-DE,∴AE=EF, ......................................(6分)∴∠EAF=∠EFA.在△BED中,∠EDB+∠EBD+∠DEB=180°,即2∠EDB+∠DEB=180°.同理在△AEF中,2∠EFA+∠AEF=180°.∵∠DEB=∠AEF,∴∠EDB=∠EFA.......................................(8分)∴AF∥DB.......................................(10分)。
2017年中考数学真题分类汇编 轴对称与中心对称

轴对称与中心对称一、选择题1.(2017·北京)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.【答案】A.【解析】D.试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误.故选A.考点:轴对称图形和中心对称图形的识别2.(2017·重庆A卷)下列图形中是轴对称图形的是()【答案】C.【解析】考点:轴对称图形.3.(2017·重庆B卷)下列图形中是轴对称图形的是()下列图形中是轴对称图形的是()A.【答案】DB.C.D.考点:轴对称图形.4.(2017·山东青岛)下列四个图形中,是轴对称图形,但不是中心对称图形的是().【答案】A考点:轴对称图形和中心对称图形的定义5.(2017·甘肃)下面四个手机应用图标中,属于中心对称图形的是()A. B. C. D.【考点】中心对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.6.(2017·天津)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()【答案】C.【解析】试题分析:根据轴对称图形的定义可知,只有选项C是轴对称图形,故选C.7.(2017·河北)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①【答案】C.B.②C.③D.④考点:中心对称图形.8.(2017·江苏徐州)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:C.9.(2017·江苏无锡)下列图形中,是中心对称图形的是()A.【答案】C.B. C.D.考点:中心对称图形.10.(2017·山东烟台)下列国旗图案是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:A.11.(2017·四川成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.D.C.【答案】D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;]D即是轴对称图形,也是中心对称图形,故正确.故选:D.考点:轴对称图形和中心对称图形识别二、填空题1.(2017·甘肃)估计“>”、“=”、“<”)【考点】2A:实数大小比较.【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵∵∴答:﹣2>0,>0.>0.5.﹣0.5=﹣=,与0.5的大小关系是:>0.5.(填2.(2017·甘肃)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0.【考点】33:代数式求值.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0。
2017年上海市数学中考真题(含答案)

2017年上海市数学中考真题(含答案)2017年上海市初中毕业统一学业考试数学试卷注意事项:1.本试卷共25题;2.试卷满分150分,考试时间100分钟;3.答题时,考生务必按照答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;4.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一、选择题:(本大题共6题,每题4分,满分24分)1.下列实数中,无理数是A。
√2;B。
2;C。
-2;D。
(2/7)²。
2.下列方程中,没有实数根的是A。
x²-2x=0;B。
x²-2x-1=0;D。
x²-2x+2=0.3.如果一次函数y=kx+b(k、b是常数,k≠0)的图像经过第一、二、四象限,那么k、b应满足的条件是C。
k>0,且b<0.4.数据2、5、6、6、1、8的中位数和众数分别是D。
5和8.5.下列图形中,既是轴对称又是中心对称图形的是D。
等腰梯形。
6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是D。
∠BAC=∠ADB。
二、填空题:(本大题共12题,每题4分,满分48分)7.计算:2a·a²=____▲____。
8.不等式组{2x>6.x-2>0}的解集是____▲____。
9.方程2x-3=1的根是____▲____。
10.如果反比例函数y=k/x(k是常数,k≠0)的图像经过点(2,3),那么在这个函数图像所在的每个象限内,y的x值随x的值增大而___▲___。
(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%。
如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是___▲___微克/立方米。
12.从不透明的布袋中摸出一个红球的概率可以通过红球的数量除以总球数来计算,即3/(2+3+5)=3/10.13.二次函数的标准形式为y=ax^2+bx+c,其中a决定了开口方向和大小,由于题目中开口向上,所以a>0.又因为顶点坐标为(0,-1),所以c=-1.因此二次函数的解析式为y=ax^2-1.14.根据图1可知,第一季度总产值为100万元,二月份产值为72万元,因此其他两个月份的产值之和为100-72=28万元。
2017年重庆市中考数学试卷(B卷)(含答案解析)

2017年重庆市中考数学试卷(B卷)一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)5的相反数是()A.﹣5 B.5 C.﹣ D.2.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4分)计算a5÷a3结果正确的是()A.a B.a2C.a3D.a44.(4分)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查5.(4分)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.(4分)若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.107.(4分)若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=38.(4分)已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:19.(4分)如图,在矩形ABCD中,AB=4,AD=2,分别以A、C为圆心,AD、CB 为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π10.(4分)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.15011.(4分)如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米12.(4分)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为.14.(4分)计算:|﹣3|+(﹣4)0=.15.(4分)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=度.16.(4分)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.17.(4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B 地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.18.(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题(本大题共2个小题,每小题8分,共16分)19.(8分)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.20.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.四、简答题(本大题共4个小题,每小题10分,共40分)21.(10分)计算:(1)(x+y)2﹣x(2y﹣x);(2)(a+2﹣)÷.22.(10分)如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,n)(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.23.(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(10分)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.五、解答题(本大题2个小题,第25小题10分、第26小题12分,共22分)25.(10分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)(2017•重庆)5的相反数是()A.﹣5 B.5 C.﹣ D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2017•重庆)计算a5÷a3结果正确的是()A.a B.a2C.a3D.a4【分析】根据同底数幂的除法法则:同底数幂相除,底数不变,指数相减,求出a5÷a3的计算结果是多少即可.【解答】解:a5÷a3=a2故选:B.【点评】此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4分)(2017•重庆)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、人数不多,容易调查,适合普查.B、对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C、班内的同学人数不多,很容易调查,因而采用普查合适;D、数量较大,适合抽样调查;故选D.【点评】本题考查全面调查与抽样调查,理解全面调查与抽样调查的意义是解题的关键.5.(4分)(2017•重庆)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴4<+1<5,即+1在4和5之间,故选C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.6.(4分)(2017•重庆)若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.10【分析】代入后求出即可.【解答】解:∵x=﹣3,y=1,∴2x﹣3y+1=2×(﹣3)﹣3×1+1=﹣8,故选B.【点评】本题考查了求代数式的值,能正确代入是解此题的关键,注意:代入负数时要有括号.7.(4分)(2017•重庆)若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=3【分析】分式有意义的条件是分母不为0.【解答】解:∵分式有意义,∴x﹣3≠0,∴x≠3;故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.8.(4分)(2017•重庆)已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1【分析】利用相似三角形面积之比等于相似比的平方计算即可.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选A【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键.9.(4分)(2017•重庆)如图,在矩形ABCD中,AB=4,AD=2,分别以A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π【分析】用矩形的面积减去半圆的面积即可求得阴影部分的面积.【解答】解:∵矩形ABCD,∴AD=CB=2,∴S阴影=S矩形﹣S半圆=2×4﹣π×22=8﹣2π,故选C.【点评】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形构成半圆是解答本题的关键,难度不大.10.(4分)(2017•重庆)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【分析】根据题意图形得出小星星的个数变化规律,即可的得出答案.【解答】解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.【点评】此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.11.(4分)(2017•重庆)如图,已知点C与某建筑物底端B相距306米(点C 与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米【分析】根据坡度,勾股定理,可得DE的长,再根据平行线的性质,可得∠1,根据同角三角函数关系,可得∠1的坡度,根据坡度,可得DF的长,根据线段的和差,可得答案.【解答】解:作DE⊥AB于E点,作AF⊥DE于F点,如图,设DE=xm,CE=2.4xm,由勾股定理,得x2+(2.4x)2=1952,解得x≈75m,DE=75m,CE=2.4x=180m,EB=BC﹣CE=306﹣180=126m.∵AF∥DG,∴∠1=∠ADG=20°,tan∠1=tan∠ADG==0.364.AF=EB=126m,tan∠1==0.364,DF=0.364AF=0.364×126=45.9,AB=FE=DE﹣DF=75﹣45.9≈29.1m,故选:A.【点评】本题考查了解直角三角形,利用坡度及勾股定理得出DE,CE的长是解题关键.12.(4分)(2017•重庆)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出﹣4<a≤3,再解分式方程+=2,根据分式方程有非负数解,得到a≥﹣2且a≠2,进而得到满足条件的整数a的值之和.【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤﹣<0,∴﹣4<a≤3,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,且y≠2,即(a+2)≥0,(a+2)≠2,解得a≥﹣2且a≠2,∴﹣2≤a≤3,且a≠2,∴满足条件的整数a的值为﹣2,﹣1,0,1,3,∴满足条件的整数a的值之和是1.故选:B.【点评】本题主要考查了分式方程的解,解题时注意:使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2017•重庆)据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为 1.43×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:14300000=1.43×107,故答案为:1.43×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)(2017•重庆)计算:|﹣3|+(﹣4)0=4.【分析】分别计算﹣3的绝对值和(﹣4)的0次幂,然后把结果求和.【解答】原式=3+1=4.【点评】本题考查了绝对值的意义和零指数幂.a0=1(a≠0).15.(4分)(2017•重庆)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=80度.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠ABC与AOC是同弧所对的圆周角与圆心角,∠ABC=40°,∴∠AOC=2∠ABC=80°.故答案为:80.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.16.(4分)(2017•重庆)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是183个.【分析】把这组数据从小到大排列,处于中间位置的数就是这组数据的中位数.【解答】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案是:183.【点评】此题考查了中位数和折线统计图,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.17.(4分)(2017•重庆)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需78分钟到达终点B.【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【解答】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷=80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故答案为:78.【点评】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.18.(4分)(2017•重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG 沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN 的周长是.【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同.解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF 和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.三、解答题(本大题共2个小题,每小题8分,共16分)19.(8分)(2017•重庆)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.【分析】由平行线的性质求出∠ABD=108°,由三角形的外角性质得出∠ABD=∠ACD+∠BDC,即可求出∠BDC的度数.【解答】解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.【点评】本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质是解决问题的关键.20.(8分)(2017•重庆)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为72度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【分析】(1)由周角乘以“优秀”所对应的扇形的百分数,得出“优秀”所对应的扇形的圆心距度数;求出全年级总人数,得出“良好”的人数,补全统计图即可;(2)画出树状图,由概率公式即可得出答案.【解答】解:(1)360°(1﹣40%﹣25%﹣15%)=72°;故答案为:72;全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人),将条形统计图补充完整,如图所示:(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)==.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.四、简答题(本大题共4个小题,每小题10分,共40分)21.(10分)(2017•重庆)计算:(1)(x+y)2﹣x(2y﹣x);(2)(a+2﹣)÷.【分析】(1)按从左往右的顺序进行运算,先乘方再乘法;(2)把(a+2}看成分母是1的分数,通分后作乘法,最后的结果需化成最简分式.【解答】解:(1)(x+y)2﹣x(2y﹣x)=x2+2xy+y2﹣2xy+x2=2x2+y2;(2)(a+2﹣)÷=()×==.【点评】本题主要考查了分式的混合运算,运算过程中注意运算顺序.分式的运算顺序:先乘方,再乘除,最后加减.有括号的先算括号里面的.注意分式运算的结果需化为最简分式.22.(10分)(2017•重庆)如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B 的坐标为(4,n)(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.【分析】(1)首先利用锐角三角函数关系得出HC的长,再利用勾股定理得出AH 的长,即可得出A点坐标,进而求出反比例函数解析式,再求出B点坐标,即可得出一次函数解析式;(2)利用B点坐标的纵坐标再利用HC的长即可得出△BCH的面积.【解答】解:(1)∵AH⊥x轴于点H,AC=4,cos∠ACH=,∴==,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,∴AH==8,∴A(﹣2,8),∴反比例函数解析式为:y=﹣,∴B(4,﹣4),∴设一次函数解析式为:y=kx+b,则,解得:,∴一次函数解析式为:y=﹣2x+4;(2)由(1)得:△BCH的面积为:×4×4=8.【点评】此题主要考查了反比例函数与一次函数解析式求法以及三角形面积求法,正确得出A点坐标是解题关键.23.(10分)(2017•重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.24.(10分)(2017•重庆)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.【分析】(1)根据等腰直角三角形的性质得到AC=BC=AB=4,根据勾股定理得到CE==3,于是得到结论;(2)根据等腰直角三角形的性质得到∠CAB=45°,由于∠AFB=∠ACB=90°,推出A,F,C,B四点共圆,根据圆周角定理得到∠CFB=∠CAB=45°,求得∠DFC=∠AFC=135°,根据全等三角形的性质即可得到结论.【解答】解:(1)∵∠ACB=90°,AC=BC,∴AC=BC=AB=4,∵BE=5,∴CE==3,∴AE=4﹣3=1;(2)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵AF⊥BD,∴∠AFB=∠ACB=90°,∴A,F,C,B四点共圆,∴∠CFB=∠CAB=45°,∴∠DFC=∠AFC=135°,在△ACF与△DCF中,,∴△ACF≌△DCF,∴CD=AC,∵AC=BC,∴AC=BC.【点评】本题考查了全等三角形的判定和性质,四点共圆,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质是解题的关键.五、解答题(本大题2个小题,第25小题10分、第26小题12分,共22分)25.(10分)(2017•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,。
浙江省2017年中考数学真题分类汇编 图形的对称、平移与旋转

浙江省2017年中考数学真题分类汇编图形的对称、平移与旋转一、单选题1、(2017•湖州)在平面直角坐标系中,点关于原点的对称点的坐标是()A、B、C、D、2、(2017•湖州)在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处.现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是()A、B、C 、D 、3、(2017•绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A、B、C、D、4、(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A、y=x2+8x+14B、y=x2-8x+14C、y=x2+4x+3D、y=x2-4x+35、(2017·嘉兴)一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为()A、B、C、D、6、(2017·嘉兴)如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A、向左平移1个单位,再向下平移1个单位B、向左平移个单位,再向上平移1个单位C、向右平移个单位,再向上平移1个单位D、向右平移1个单位,再向上平移1个单位7、(2017·丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A、向左平移1个单位B、向右平移3个单位C、向上平移3个单位D、向下平移1个单位8、(2017·台州)如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为()A、B、2C、D、49、(2017·衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE 交AD于点F,则DF的长等于()A、B、C、D、二、填空题10、(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y= (k≠0)的图象恰好经过点A′,B,则k的值为________.11、(2017•舟山)一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长为________.(结果保留根号)12、(2017•宁波)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG的值为________.13、(2017•宁波)已知△ABC的三个顶点为A ,B ,C ,将△ABC向右平移m()个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为________.14、(2017·衢州)如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017中考真题轴对称一.选择题(共20小题)1.若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.2.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.4.下列图形中,是轴对称图形的是()A.B.C.D.5.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.6.下列交通指示标识中,不是轴对称图形的是()A.B.C.D.7.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形8.下列图形中不是轴对称图形的是()A.B.C.D.9.以下微信图标不是轴对称图形的是()A.B.C.D.10.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.11.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条12.下列图形中是轴对称图形的是()A.B.C.D.13.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.14.下列图案属于轴对称图形的是()A.B.C.D.15.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.16.如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM17.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上18.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定19.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.320.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC2017中考真题轴对称第13章轴对称参考答案与试题解析一.选择题(共20小题)1.若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.【分析】直接利用轴对称图形的性质分析得出符合题意的答案.【解答】解:A、正三角形有3条对称轴,故此选项错误;B、正方形有4条对称轴,故此选项正确;C、正六边形有6条对称轴,故此选项错误;D、正八边形有8条对称轴,故此选项错误.故选:B.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.2.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是,故选D.【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.4.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:四个汉字中只有“善”字可以看作轴对称图形,故选D.【点评】考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.6.下列交通指示标识中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形【分析】根据轴对称图形的概念,结合选项求解即可.【解答】解:A、直角三角形中只有等腰直角三角形为轴对称图形,本选项错误;B、平行四边形不是轴对称图形,本选项错误;C、直角梯形不是轴对称图形,本选项错误;D、正方形是轴对称图形,本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.12.下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,对称轴有两条,符合题意.故选:D.【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.14.下列图案属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故B不是轴对称图形;D、不能找出对称轴,故B不是轴对称图形.故选A.【点评】本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.15.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.16.如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.【点评】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.17.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上【分析】如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON 即可推出△PMN是等边三角形,由此即可对称结论.【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MP N=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△POM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.18.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定【分析】作出图形,根据等边三角形的性质求出高AH的长,再根据三角形的面积公式求出点P到三边的距离之和等于高线的长度,从而得解.【解答】解:如图,∵等边三角形的边长为3,∴高线AH=3×=,S△A B C=B C•AH=AB•PD+BC•PE+AC•PF,∴×3•AH=×3•PD+×3•PE+×3•PF,∴PD+PE+PF=AH=,即点P到三角形三边距离之和为.故选:B.【点评】本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.19.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.【点评】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.20.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.【点评】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.。