中考数学 1.3.2 平行四边形的性质复习教学案 苏科版
中考数学复习《多边形与平行四边形》

证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.
中考数学专题复习 专题23 平行四边形(教师版含解析)

中考专题23 平行四边形问题1.平行四边形定义有两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,读作“平行四边形ABCD”。
2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。
3.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)两组对角分别相等的四边形是平行四边形。
4.平行四边形的面积:S平行四边形=底边长×高=ah【经典例题1】(2020年•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( )A.40°B.50°C.60°D.70°【标准答案】D【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.【答案剖析】∵在△ABC中,∠A=40°,AB=AC,∴∠C=(180°﹣40°)÷2=70°,∵四边形BCDE是平行四边形,∴∠E=70°.【知识点练习】(2019•山东临沂)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND【标准答案】A【答案剖析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.【经典例题2】(2020年•凉山州)如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于16 .【标准答案】16.【答案剖析】由平行四边形的性质得AB=CD,AD=BC,OB=OD,证OE是△ABD的中位线,则AB=2OE,AD=2AE,求出AE+OE=4,则AB+AD=2AE+2OE=8,即可得出标准答案.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,∵OE∥AB,∴OE是△ABD的中位线,∴AB=2OE,AD=2AE,∵△AOE的周长等于5,∴OA+AE+OE=5,∴AE+OE=5﹣OA=5﹣1=4,∴AB+AD=2AE+2OE=8,∴▱ABCD的周长=2×(AB+AD)=2×8=16;【知识点练习】(2019•湖北武汉)如图所示,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.【标准答案】21°.【答案剖析】设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°。
苏科版八年级下册 9.3 平行四边形 学案设计

平行四边形一、学习目标1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.4. 理解三角形的中位线的概念,掌握三角形的中位线定理.二、要点梳理要点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“Y ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 要点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的1 4.(3)三角形的中位线不同于三角形的中线. 要点五、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.三、例题精析【例题1】【题干】如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为().【答案】∵D,E,F分别为△ABC三边的中点∴DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE∴四边形ADEF、DECF、DFEB分别为平行四边形故答案为3.【解析】根据三角形中位线的性质定理,可以推出DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE,根据平行四边形的判定定理,即可推出有三个平行四边形.【题干】如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.(1)证明:在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形;(2)解:如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=2,DH=2.在▱CEDF中,CE=DF=AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE==.【解析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【题干】如图,平行四边形ABCD中,∠BAD的平分线交BC边于点M,而MD平分∠AMC,若∠MDC=45°,则∠BAD=_____,∠ABC=_____.【答案】平行四边形ABCD,∴BC∥AD,∠C=∠BAD,∴∠AMC+∠MAD=180°,∠B+∠BAD=180°∵∠BAD的平分线AM,MD平分∠AMC,∴∠C=∠BAD=2∠MAD,∠AMD=∠CMD,∵∠C+∠CMD+∠CDM=180°,∠MDC=45°,即:∠MAD+2∠CMD=180°,且∠CMD+2∠MAD=135°,解得:∠MAD=30°,∴∠BAD=60°,∠ABC=120°.故答案为:60°,120°.【解析】由平行四边形推出∠AMC+∠MAD=180°,∠B+∠BAD=180°,由三角形的内角和定理得到∠CMD+2∠MAD=135°,因为∠MAD+2∠CMD=180°,解方程组即可求出∠MAD,进一步求出∠BAD和∠ABC的度数.【例题4】【题干】如图,平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,连接AE、AF、CE、CF.四边形AECF是什么样的四边形,说明你的道理.【答案】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵BE=DF,∴△ABE≌△CDF,∴AE=CF,同理:CE=AF,∴四边形AECF是平行四边形.【解析】由平行四边形的性质可得AB∥CD,AB=CD,已知BE=DF,从而可利用SAS判定△ABE≌△CDF,根据全等三角形的性质可得到AE=CF,同理可得到CE=AF,根据SSS判定△AEF≌△CFE,从而可推出AE∥CF,即可根据有一组对边平行且相等的四边形是平行四边形.【例题5】【题干】杨伯家小院子的四棵小树E、F、G、H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH种上小草,则这块草地的形状是( )A.平行四边形B.矩形C.正方形D.菱形【答案】A【解析】连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.【例题6】【题干】如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【答案】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.【解析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【例题7】【题干】如图,△ABC中∠ACB=90°,点D、E分别是AC, AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.【答案】∵D、E分别是AC,AB的中点,∴DE是△ABC的中位线∴DE=BC,DE∥BC 即DE∥CF∵△ABC中∠ACB=90°,E是AB的中点,∴CE=AB∴CE=AE,∴∠A=∠ECD∵∠CDF=∠A,∴∠CDF=∠ECD,∴CE∥DF∴四边形DECF是平行四边形.【解析】利用对边分别平行的四边形是平行四边形进行判定。
中考数学复习第六单元四边形第课时多边形与平行四边形教案

第六单元四边形第26课时多边形及平行四边形教学目标【考试目标】1.了解多边形的内角及外角与公式,了解正多边形的概念及正多边形与圆的关系;2.掌握平行四边形的概念、性质与一个四边形是平行四边形的条件;了解四边形的不稳定性.【教学重点】1.掌握多边形的有关性质.2.掌握平行四边形的概念及性质.3.学会平行四边形的判定.4.学会两平行线间的距离公式.教学过程一、体系图引入,引发思考二、引入真题、归纳考点【例1】〔2021年陕西〕一个正多边形的一个外角为45°,那么这个正多边形的边数是8 .【解析】由正多边形的每一个外角都是45°,其外角与为360°,可得这个正多边形的边数是360°45°=8.【例2】〔2021年吉林〕图1,图2都是8×8的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.〔1〕请在图1,图2中,以4个标注点为顶点,各画一个平行四边形〔两个平行四边形不全等〕;〔2〕图1中所画的平行四边形的面积为.【解析】〔1〕如图1,如图2;〔2〕图1中所画的平行四边形的面积=2×3=6.故答案为6.此题答案不唯一.【例3】〔2021年江西〕如下图,在□ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,那么∠BEF 的度数为.【解析】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.【例4】如图,在□ABCD中,点E,F在对角线AC上,且AE=CF.求证:〔1〕DE=BF;〔2〕四边形DEBF是平行四边形.【解析】证明:〔1〕∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE与△CBF中,∴△ADE≌△CBF,∴DE=BF.〔2〕由〔1〕,可得∴△ADE≌△CBF,∴∠ADE=∠C BF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.三、师生互动,总结知识先小组内交流收获与感想,而后以小组为单位派代表进展总结.教师作以补充.课后作业布置作业:同步导练教学反思学生对多边形及平行四边形的掌握情况很好,望多加复习稳固,做到熟练会用.。
苏科版八下数学:9.3《平行四边形(3)》教案

OA=OC ,
合
∠AOB= ∠ CO
∴AB=CD.
探
同理 AD=CB
∴四边形 ABCD 是平行四边形 究
(两组对边 分别相等的四边形是平行
四边形) . 定理: 对角线互相平分的四边形
是平行四边形. 几何语言:
∵ OA= OC, OB=OD, ∴四边形 ABCD 是平行四边形.
A D
O
B
C
合作探究
如图,直线 AC、 BD 相交于点 O, OA 通过学生自主探索,
=OC,OB=OD.求证:四边形 ABCD 利 用平形四边形的
是平行四边形.
概念和判定条件证
明了四边形是平行
A D
四边形,从而得到对
O
B
C
角线互相平分的四 边形是平行四边形.
证明 : 在 ΔAOB 和 ΔCOD 中,
使学生能够运用平 行四边形的概念和 定理证明四边形是 平行四边形, 从而加 深学生的理解
新知应用 已知:如图,在 □ABCD 中,点 E、F 在 AC 上,且 AE=CF. 求证:四边形 EBFD 是平行四边形.
A D
E
F
B
C
证明: 连接 BD, BD 交 AC 于点 O. ∵四边形 ABCD 是平行四边形, ∴ OA=OC ,OB=OD(平行四边形的对 角线互相平分 ). ∵ AE=CF , ∴OA-AE=OC-CF , 即 OE=OF. ∴四边形 EBFD 是平行四边形(对角 线互相平分的四边形是平行四边形) . 思考 :你还有其他方法证明吗?
入
合 作 探 究
9.3 平行四边形( 3)
学生自学共研的内容方法 (按环节 设计自学、讨论、训练、
探索、创新等内容) 操作思考
初中数学苏科版八年级上3.4《平行四边形》(1)教案

3.4平行四边形(第1课时)教学目标:1.以中心对称为主线,研究平行四边形的性质2.经历探索平行四边形的概念性质的过程,在活动中发展学生的探究意识和有条理的表达能力3.在对平行四边形性质的探索过程中,理解特殊与一般的关系,领会特殊事物的本质属性与其特殊性质的关系教学重点与难点对中心对称图形的理解;有条理的说理的表达能力,规范书写的格式设计思路本节课的设计思路是以中心对称为主线,展开对平行四边形的性质的探索与研究。
使学生理解平行四边形是由三角形绕其一边的中点旋转180°而成的中心对称图形,向学生展示了平行四边形的形成过程,为研究平行四边形性质提供了新的方法 。
教学过程一、情境创设以课本的两幅图引入,观察,探索:图片中有你熟悉的图形吗?这些图形有什么特征?二、探索活动活动一:探索平行四边形的概念(中心对称)1操作 BO 是的△ABC 边AC 上的中线,画出△ABC 关于点O 的对称的图形。
△CDA 可以看成是△ABC 绕点O 旋转180度得到的,因此四边形ABCD 是中心对称图形,点O 是它的对称中心。
【设计说明:这一过程应充分发挥学生的主体地位,让学生在实际操作中,加深对中心对称图形的理解。
】2讨论:图中的AB 与CD ,AD 与CB 平行吗?为什么?这一过程先让学生思考,展开讨论,鼓励学生大胆的说出自己的理由。
概念:2组对边分别平行的四边形是平行四边形。
3平行四边形是中心对称图形,对角线的交点是它的对称中心 O D B A C【这一概念既是平行四边形的一条性质,又是判别图形的条件。
四边形只要具备“2组对边分别平行”的条件,它就是平行四边形;反过来,如果四边形是平行四边形,那么它必定有“2组对边分别平行”。
】活动二:探索平行四边形的性质(中心对称)因为平行四边形是中心对称图形,对角线的交点是它的对称中心,所以口ABCD 绕点O 旋转180°后,提问:①AB 旋转到什么位置?②∠BAD 旋转到什么位置?③猜想:对角线AC 与BD 有什么性质?得到:AB=CD AD=BC 平行四边形的对边相等∠ABC=∠CDA ∠BCD=∠DAB 平行四边形的对角相等OA=OC OB=OD 平行四边形的对角线互相平分【探索平行四边形的性质从“平行四边形是中心对称图形”出发,另外,2组对边分别平行也是平行四边形的一个性质。
初中数学_二次函数专题复习—平行四边形存在性问题教学设计学情分析教材分析课后反思

《平行四边形存在性问题》教学设计执教者学情分析本节课是在已经进行过一轮复习,也适当做了一些往年的中考试卷,对于基础知识学生掌握的还是不错的,但对于综合性的题目却感觉困难,特别是动点问题。
对于这类问题存在以下几种情况:1、这类问题无论教师做了多大的努力,对学生来说都比较困难,所以一部分学生放弃作答。
2、一部分学生对动点问题从根本上不理解,勉强照猫画虎,写了不少但不得分。
3、学生对动点问题有一定认识,对分类能进行简单尝试, 但不完整。
针对以上情况,我希望通过本节课的学习,一方面帮助学生树立信心,让他们明白所谓的综合题都是由诸多小知识点组成的,所谓的动态问题可以变为“静”来解决,通过代数解决几何问题另一方面通过例题讲解让学生掌握解决这类题目的解题策略。
效果分析针对学生面临的困难:首先,我在教学时注意层次性,讲究循序渐进,由浅入深,由易到难,不要一步到位,逐步过渡。
其次,注意所选例题的典型性,选了最具代表性的两类动点问题产生的平行四边形形存在性问题,一类一个例题,这样就可由一题推及一类,让学生可触类旁通,达到举一反三的效果。
教学时注重这几个方面:1、利用几何画板动态画图,让学生体会点在运动过程中,图形会跟着发生变化。
在变化的过程中抓住某一瞬间,化“动”为“静”,使其构成平行四边形,再利用所学知识解决问题。
2、注重板书。
通过清晰的板书让学生一目明了如何分析平行四边形存在性问题。
3、注重数学思想方法的渗透。
数学思想方法是数学学科的精髓,是数学素养的重要内容之一,在数学教学和探究活动中始终体现这些数学思想方法,动点问题也不例外,因此,在数学教学中应特别注重这些思想方法的渗透,因为只有让学生充分掌握领会这种思维,才能更有效地运用所学知识,形成求解动点问题的能力。
动点问题中主要体现方程思想,数形结合思想,分类讨论思想等。
方程思想,大多数动点问题到最后都转化为方程形式,然后利用方程来求解。
数形结合思想,动点问题中,所研究的量的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
初中数学苏科版八年级上3.4《平行四边形》(2)教案

3.4平行四边形(第2课时)教学目标:经历探索四边形是平行四边形的条件的过程,在活动中发展学生的探究意识和有条理的表达能力教学重点与难点探索四边形是平行四边形的条件,分两个层次:通过操作和合情推理发现结论;说明理由。
运用中心对称的性质得三角形全等。
设计思路本节课的设计思路以学生的动手操作引入,探索四边形是平行四边形的条件,一组对边平行且相等的四边形是平行四边形,由于是首次探索四边形是平行四边形的条件,其说理依据只能是平行四边形的概念,;对于下面几条的探索就可以利用第一个条件。
教学过程㈠情境创设回忆:平行四边形的概念平行四边形有哪些性质?㈡探索活动活动一 操作在方格纸上画2条互相平行并且相等的线段AD ,BC ,连接AB ,DC 。
检验线段AB 与DC 是否互相平行?思考所画的四边形ABCD 是平行四边形吗?说明:1学生会想到连接BD ,证明△ABD ≌△CDB ,得到∠ABD =∠CDB ,从而得到AB ∥DC2课本是运用平移的性质说明线段AB ∥DC在教学中应先复习平移的概念和性质。
【无论用哪种方法,都是依据平行四边形的概念:两组对边平行的四边形是平行四边形。
】 通过活动一,得探索四边形是平行四边形的条件:一组对边平行且相等的四边形是平行四边形。
活动分为2个层次:一引导学生通过操作和合情推理发现结论;二利用平移的性质说理,发展学生有条理地表达能力。
A B DC活动二操作 1、画2条相交直线a ,b ,设交点为O2、在直线a 上截取OA=OC ,在直线b 上截取OB=OD ,连接AB ,BC ,CD ,DA 。
思考所画的四边形ABCD 是平行四边形吗?说明 1.学生会想到用三角形全等的判定定理来证明两个三角形全等2.课本是运用中心对称的性质得三角形全等两条对角线互相平分的四边形是平行四边形。
【对于探索活动一:一组对边平行且相等的四边形是平行四边形,由于是首次探索四边形是平行四边形的条件,其说理依据只能是平行四边形的概念,;对于探索活动二,其说理依据除了平行四边形的概念外,还应有:一组对边平行且相等的四边形是平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2平行四边形的性质
教学目标:
1、会证明矩形的性质定理及直角三角形斜边上中线的有关性质定理.
2、能运用矩形的性质定理或有关定理进行简单的计算与证明.
3、在进行探索、猜想、证明的过程中,能将命题由文字语言转化为图形与符号语言,进一步发展推理论证的能力. 教学重难点:矩形性质定理的综合应用.
教学过程:
一、情境创设
用一个平行四边形活动框架,演示从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.
二、探索活动:
1、在平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(让学生观察对角线的变化),拉动一对不相邻的顶点,改变平行四边形的形状.
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
操作,思考、交流、归纳后得到矩形的性质.
矩形的性质:矩形是一种特殊的平行四边形,具有平行四边形的一切性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质: 矩形的4个角都是直
角;矩形的对角线相等.
2、如图,矩形ABCD,对角线相交于E,图中全等三角形有哪些?图中有哪些相等的线段?
将目光锁定在Rt△ABC中,你能看到并想到它有什么特殊的性质吗?“直角三角形斜边上的中线等于斜边的一半.”
现在我们借助于矩形来证明.
已知:如图,在△ABC中,∠ACB=90°.
求证:边AB上的中线等于AB.
证明:在∠ACB内作∠BCD=∠B,CD交AB于点D
∵∠ACB=90°
∴ACD与BCD互余,∠A与∠B互余
∵∠BCD=∠B
∴∠ACD=∠A
∴DA=DC=DB,即CD是边AB上的中线,且CD=AB
三、例题精讲
例1.如图,矩形ABCD的两条对角线相交于点O ,且AC=2CD,
求证:△OCD为等边三角形.
分析:利用矩形的性质:矩形的对角线相等且互相平分,结合“AC=2AB”即可证得.
本题若将“AC=2AB”改为“∠BOC=120°”,你还能得到以上结论?
例2.如图,在矩形ABCD中,BE平分∠ABC,交CD于点E,点F在边BC上,
①如果FE⊥AE,求证FE=AE.
②如果FE=AE 你能证明FE⊥AE吗?
(有平行、角平分线这两个条件时一般就会有等腰三角形)
例3.如图 BD,CE 是△ABC的两条高,M是BC的中点,求证:ME=MD.
思考:连接DE,N是DE的中点,求证:MN垂直平分DE.
四、课堂小结:
1.矩形的定义、性质;
2.直角三角形斜边上的中线的性质
3.从位置、形状、大小等不同的角度,观察和比较平行四边形、矩形的对角线把它们分成的三角形的异同,发现并应用直角三角形的判定证明矩形的特殊性质;反过来,我们又利用矩形的性质证明“直角三角形中斜边上的中线等于斜边的一半” .
五、课堂检测
1.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,•边BC=•8cm,•则△ABO的周长为________.2.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()
A.16
B.22
C.26
D.22或26
3.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.
4.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=4cm,求AC的长.
六、课后作业
1.如图1,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为().(A)98 (B)196 (C)280 (D)284
(1) (2) (3)
2.如图2,根据实际需要,要在矩形实验田里修一条公路(•小路任何地方水平宽度都相等),则剩余实验田的面积为________.
3.如图3,在矩形ABCD中,M是BC的中点,且MA⊥MD.•若矩形ABCD•的周长为48cm,•则矩形ABCD的面积为_______cm2.
4.已知,在矩形ABCD中,AE⊥BD,E是垂足,∠DAE∶∠EAB=2∶1,求∠CAE的度数.
5. 如图,在矩形ABCD中,已知AB=8cm,BC=10cm,折叠矩形的一边AD,使点D落在BC边的中点F处,折痕为AE,求CE的长.
七、教学反思。