人教版初一数学下册相交线

合集下载

人教版七年级数学下册第五章511相交线课件共35张

人教版七年级数学下册第五章511相交线课件共35张

交点的个数
两条直线相交,最多有 ___1____ 个交点 三条直线相交,最多有 _1__+_2___ 个交点 四条直线相交,最多有1_+__2_+__3_ 个交点 …… n条直线相交,最多有 _1_+__2_+__3_+__·_··_+_(___n_-_1_)_ 个交点
公式: 1+2+3+···+( n-1)= n(n-1)/2
探究
∠1与∠2有怎样的数量关系? 互补
探究
∠1与∠3有怎样的数量关系? 相等
证明
你能说出∠1=∠3的道理吗? 请你用数学的语言写出这个过程.
因为 ∠1与∠2 互补, ∠3与∠2 互补 (邻补角的定义),
所以 ∠1=∠3(同角的补角相等), 同理 ∠2=∠4 .
例题
如图,直线a,b相交于点O,∠1=40°,求∠2 ,∠3 ,∠4 的度数.
∠1与∠3的边所在的位置有什么特点? 两边互为反向延长线
对顶角
对顶角的定义:∠1和∠3有 一个公共顶点O,并且∠1的两边分别 是∠3的两边的反向延长线 ,具有这种位置关系的两个角,互为 对顶角.
图中还有哪些对顶角? ∠2和∠4
例题
下列各图中,∠1和∠2是 邻补角吗?为什么?
例题
下列各图中,∠1和∠2是对顶角吗?为什么?
相交线
教学目标
理解邻补角和对顶角的概念. 掌握“对顶角相等”的性质.
教学重点
对顶角相等的探索过程.
教学难点
学生推理能力和表达能力的培养.
观察这些图片,你能否看到相交线、平行线?
思考
这里有一把剪刀,握紧剪刀的把手,就能剪开物体,你能说出
其中的道理吗?

相交线教学课件-人教版七年级数学下册

相交线教学课件-人教版七年级数学下册

对顶角的概念与性质 练2
领补角和对顶角的综 合应用
测1 测3 例1
理解
练3 测4
掌握
例3 练4 例2 测5
应用 综合 评价 测6
测2 拓1
总结反思 知识内化
收获检验
今天我们学习了哪些知识?
1 什么是邻补角?邻补角与补角有什么区别? 2 什么是对顶角?对顶角有什么性质?
归纳小结
角的名称
特征
性质
相同点
b
1 2O
a
3
4
由对顶角相等,得
∠3 = ∠1 = 40°,∠4 = ∠2 = 140°.
例3.完成下列解题过程.
A
如图,直线 AB ,CD 相交于 O ,
∠AOC = 80°,∠1 = 30°,求
∠2 的度数.
C
D
1E O2
B
解:∵ ∠DOB = ∠ AOC ( 对顶角相等 ), ∠AOC = 80°(已知),
探究 1
∠1 和∠3 之间有怎样的位置关系?
C
A
12 O4 3
B
D
图中还有其 他的对顶角吗?
形如∠1 与∠3 有一个公共顶点 O ,并且∠1 的两边 分别是∠3 的两边的反向延长线,具有这种位置关系的两 个角,互为对顶角.
练一练 1 下列各图中,∠1 和∠2 是邻补角吗?为什么?
12 1
12 2
解:∵ ∠BOD = ∠AOC = 76°, 又∵ OE 平分 ∠BOD ,
F
C
B

∠DOE
=
∠BOE
=
1 2
∠BOD
=
1 2
×
76°=
38°.
A

5.1.1相交线(课件)-2022-2023学年数学七年级下册(人教版)

5.1.1相交线(课件)-2022-2023学年数学七年级下册(人教版)

右图的几何描述为:
直线AB、CD相交于点O.
C
A
O
B D
情境引入
剪刀是我们生活中的常见 工具,剪刀可以抽象成什么几何图形?当我 们使用剪刀时,如何控制剪刀开口大小?
合作探究
思考1:我们将剪刀抽象成如图所示的两条相交 直线,那么∠1 与∠3在数量上有什么关系呢? ∠2 与∠4呢?
思考Байду номын сангаас:∠1 与∠3在位置上又有什么关系呢? ∠2 与∠4在位置上又有什么关系呢
那么这两个角互为邻补角.图中∠1的邻补角有__∠__2_、___∠__4_.
对顶角:如果一个角的两边是另一个角的两边的 反向延长,线那么这两
个角互为对顶角.图中∠1的对顶角是__∠___3_.
性质:对顶角相等,邻补角互补
当堂检测
1、下列各图中, ∠1 、∠2是对顶角吗?
2、下列各图中, ∠1 、∠2是邻补角吗?
观察下列图片,说一说图中直线与直线的位置关系.
情境引入
观察下列图片,说一说直线与直线的位置关系.
归纳:
两条直线的 位置关系
异面 共面
相交 平行
一般的相交
特殊的相交 (垂直)
在同一平面内,两条直线的位置关系有两种:相交和平行。
你能画出两条相交直线吗?如何定义相交?相交可以分为几类?
如果两条直线只有一个公共点,就说这两条直线相交.该公共点叫 做两直线的交点.
合作探究
已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3、
∠2=∠4.
解:∵直线AB与CD相交于O点, ∴∠1+∠2=180° ∠2+∠3=180°, ∴∠1=∠3. 同理可得:∠2=∠4.
应用格式:∵直线AB与CD相交于O点 ∴∠1=∠3

人教版 七年级下册 5. 相交线 (20张)

人教版 七年级下册 5. 相交线 (20张)

二、探究新知
A 2
DA
2
D
1
3 O
B
4
C 邻补角
3 1O
B 4
C
对顶角
如果两个角有一条公共边,它们 如果一个角的两边是另一个角
的另一边互为反向延长线,那么这 的两边的反向延长线,那么这两
两个角互为邻补角.
个角互为对顶角.
∠1与∠2位置有什么特点? ∠1与∠3位置有什么特点?
位置:相邻
位置:相对
有一条公共边 OA
(经典教学PPT)人教版 七年级下册 5.1.1 相交线 (20张PPT)-导学课件(示范)
五、例题讲解
例2、如图所示,直线m,n相交于点O,∠1=60°, 求∠2,∠3,∠4的度数.
解:由邻补角的定义,可得:
∠2=180°-∠1 =180°-60° =120°
由对顶角相等,可得:
2
1 O3
n
4
∠3=∠1=60°,
课堂小结
角的 名称
特征
性 质
相同点
不同点
对 顶 角
①两条直线相 交形成的角; ②有公共顶点;
③没有公共边
对顶 角相 等
①都是两条 直线相交而 成的角;
①有无公共边 ②两直线相
邻 补
①两条直线相 交而成; ②有公共顶点;
②都有一个 公共顶点; 邻补
角互 ③都是成对
交时,对顶 角只有两对 邻补角有四 对
(经典教学PPT)人教版 七年级下册 5.1.1 相交线 (20张PPT)-导学课件(示范)
五、例题讲解
例2、如图所示,直线m,n相交于点O, 变式2:若∠2是∠1的3.5倍,求各个角的度数.
解:设∠1=x,∠2=3.5x

人教版七年级数学下册第5章相交线与平行线(教案)

人教版七年级数学下册第5章相交线与平行线(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的定义、性质和判定方法,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动环节,分组的讨论和实验操作让同学们有了实际操作的机会,这有助于他们更好地消化吸收理论知识。但我观察到,有些小组在讨论时可能会偏离主题,需要在今后的教学中加强对讨论主题的引导。
至于学生小组讨论,我认为这是一个很好的互动和学习的机会。学生们能够在这个过程中相互启发,共同解决问题。不过,我也注意到,一些学生在讨论中较为沉默,可能需要我在以后的教学中更加关注这部分学生,鼓励他们积极参与。
-突破方法:通过动态几何软件或实物模型演示,让学生直观感受两条直线从不平行到平行的过程。
-判定方法的灵活运用:学生可能会在具体应用判定方法时感到困惑,尤其是在复杂的几何图形中。

人教版七年级下册数学《命题、定理、证明》相交线与平行线培优说课教学复习课件

人教版七年级下册数学《命题、定理、证明》相交线与平行线培优说课教学复习课件
命题由提设和结论两部分组成.
题设是已知事项,结论是由已知事项推出的事项.
许多数学命题常可以写成 “如果……,那么……”的形式 .“ 如果”后面连接的部分是题设,“那么”后面连接的部分就 是结论.
例题
下列语句是命题吗?如果是,请将它们改写成 “ 如果……,
那么……” 的形式 . (1)两条直线被第三条直线所截,同旁内角互补;
B
3.下列句子哪些是命题?是命题的,指出是真命题还
是假命题?
(1)一条狗有四只脚;是
(2)内错角相等; 是 (3)画一条直线; 否 (4)四边形是正方形;是
真命题 假命题
假命题
(5)你的黑板报做完了吗?否
(6)内错角相等,两直线平行; 是 真命题
(7)平行于同一直线的两直线平行; 是 (8)过点P画线段MN的垂线; 否 (9)x<3. 否
1、基本事实 数学中有些命题的正确性是人们在长期实践中总结出 来的,并把它们作为判断其他命题真假的原始依据, 这样的真命题叫做基本事实.
直线的基本事实: 两点确定一条直线. 线段的基本事实: 两点间线段最短. 平行线的基本事实:经过直线外的一点有且仅有一条直线
与已知直线平行.
2、定理的概念 有些命题是基本事实,还有些命题它们的正确性是经 过推理证实的,这样得到的真命题叫做定理.定理也 可以作为继续推理的依据.
是假命题 ,可以举出如下反例:
A
如图,OC是∠AOB的平分线, ∠1=∠2,但它们不是对顶角. O
))12
C
B
确定一个命题是假命题的方法:
只要举出一个例子(反例):它符合命题
的题设,但不满足结论即可.
随堂训练
1.下列命题是假命题的是( A ) A.同位角相等 B.对顶角相等 C.钝角三角形有两个锐角 D.两直线平行,内错角相等

人教版七年级数学课件《相交线》

人教版七年级数学课件《相交线》
∠BOC
8.如图(2),直线AC和BD相交于点O,那么∠AOD的对顶角是________,
∠AOD,∠BOC
∠AOB的邻补角是__________________.
148°
32° ∠4=______.
148°
9.如图(3),直线a,b相交,∠1=32°,则∠2=______,∠3=____,
达标检测
解:∠1与∠α,∠3与∠α,∠1与∠2,∠2与∠3是邻补角;
∠1与∠3,∠2与∠α是对顶角.
当∠α=35°时,
∠1=145°,∠2=35°,∠3=145°;
当∠α=90°时,
∠1=90°,∠2=90°,∠3=90°;
当∠α=115°时,
∠1=65°,∠2=115°,∠3=65°;
当∠α=m°时,
∠1=(180-m)°,∠2=m°,∠3=(180-m)°.
针对练习
人教版数学七年级下册
1.如图,直线AB、CD、EF相交,若∠1+∠5=180°,找出图中与
∠1相等的角.
2
解:∵ ∠1= ∠3(对顶角相等)
1
∠5+∠8=180 °且∠1 +∠5=180°
4
∴∠8= ∠1
∵ ∠8= ∠6(对顶角相等)
∴∠6= ∠1.
3
A
C
5
7
6
8
F
针对练习
人教版数学七年级下册
解:由邻补角的定义,得
∠2=180°-∠1=180°-40°=140°
由对顶角相等,得
∠3=∠1=40°
∠4=∠2=140°
针对练习
人教版数学七年级下册
如图,取两根木条a、b,将它们钉在一起,并把它们想象成两条直线,就得

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.1 《相交线》教学设计方案
教材分析:
一、教材所处的地位及作用:“5.1.1相交线”一节,是人教版七年级下册第五章第一节的内容,本节内容是在小学已经掌握了两条直线相交的有关知识的基础上,进一步探究、学习邻补角、对顶角的有关定义、性质及应用。

它是本章中起到承前启后的作用。

二、教学目标
1、情感态度与价值观
(1)通过分组讨论,培养学生合作交流的意识和探索精神;
(2)通过对顶角、邻补角性质的研究,体会它们在解决实际问题中的作用,感受数学的严谨性以及数学结论的确定性.
2、过程与方法
(1)通过学习邻补角、对顶角等概念,进一步发展学生抽象概括能力;
(2)通过对相交线、邻补角、对顶角的研究,•体会它们在解决实际问题中的作用,并能用它们解释生活中的一些现象.
3、知识与技能
(1)理解相交线、邻补角、对顶角的概念;
(2)理解对顶角相等的性质.
三、重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质.
学习方法:采用“观察──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。

教学过程
一、情景导入
1、读一读,看一看
教师在轻松欢快的音乐中演示第五章章首图片为主体的多媒体课件。

学生欣赏图片(多媒体投影汕头大桥的图片、围棋的棋盘),阅读其中的文字。

师生共同总结:同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案;围棋的纵线相互平行,横线相互平行,纵线和横线相交。

这些都给我们以相交线、平行线的形象。

在我们生活的中,蕴涵着大量的相交线和平行线。

那么
两条直线相交形成哪些角?这些角又有什么特征?本节我们一起来学习相交线所成的角及
它们的关系。

教师板书:5.1.1相交线
2、观察剪刀剪纸的过程,引入两条相交直线所成的角
教师出示一块纸片和一把剪刀,表演剪刀剪纸过程,提出问题:剪纸时,用力握紧把手, 把手
引发了什么变化?进而使剪刀刃也发生了什么变化?
3、学生拿出学具观察:两个纸板钉在一起,组成4个角,转动纸板观察4个角的变化情
况及变化规律。

教师点评:如果把剪刀的构造、学具,看作两条相交的直线,以上就关系到两条相交直线所
成的角的问题,本节课就是探讨两条相交线所成的角及它们的内在规律。

[说明:从学生日常生活经验中发现问题、提出问题,引导学生初步地、概括地了解新的学习
任务,为整节课的学习活动提供动力和规划方向。

自然引出本节课题。

]
二、探究新知
1、认识邻补角和对顶角,探索对顶角性质
(1)学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角
的位置关系如何?根据不同的位置怎么将它们分类?
(2)学生思考并在小组内交流,全班交流.
当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:
∠1和∠2有一条公共边OC,它们的另一边互为反向延长线.
∠1和∠3有公共的顶点O,而是∠1的两边分别是∠2两边的反向延长线.
(3)学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有
“相邻”关系的两角互补,“对顶”关系的两角相等.
(4)学生根据观察和度量完成下表:
步步深入,完成从已知状态到目标状态的转化。

]
三、师生交流
概括形成邻补角、对顶角概念
(1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
四、学以致用
(1)练习:
练习1、下列各图中∠1、∠2是对顶角吗?为什么?
通过三个不同类型图形的判断,来加深对对顶角概念的理解。

练习2、下列各图中∠1、∠2是邻补角吗?为什么?
通过三个不同类型图形的判断,来加深对邻补角概念的理解。

练习3、下列各图中∠1的对顶角是
∠1的邻补角是
一个角的对顶角有个,邻补角最多有个。

总结:一个角的对顶角有1个、邻补角最多有2个。

(2)对顶角性质
在图1中,∠1的邻补角是∠2和∠4,所以∠1与∠2互补,∠1与∠4互补,根据“同角的补角相等”,可以得出∠2=∠4,类似地有∠1=∠3.
教师演示对顶角性质:对顶角相等,及推理的过程。

强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
[说明:在几何推理的起步阶段,严格符号语言表达的推理过程是不要求学生掌握的,这里可由学生回答,教师板出推理过程。

]
五、拓展延伸
例题:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后演示出规范的求解过程.
[说明:通过例题引导学生分析题目特征、探索解题思路,这是例题教学的关键,以逐步培养学生形成良好的审题、解题习惯。

]
六、达标检测
幻灯片出示检测题
[说明:对练习的结果教师要引导学生尽量独立地予以评价,对从中暴露出的问题和错误要及时矫正,进行补偿性学习。

]
七、盘点收获
学生小结本课主要知识与收获,在学生互相补充的基础上,教师进一步完善。

[说明:这一环节类似于一般的课堂总结,但它不应是课堂内容的简单重复,应通过引导学生回顾、总结课堂教学过程,使数学知识系统化、数学思想方法明确化,达到深化、提高学生的认识水平、促进学生科学认知结构形成的目的。

]
八、布置作业:
九、教学反思:
本节课还存在诸多的不足之处:
1.在提出问题的时候,学生的思考时间较少,只有程度较好的学生思考出来,大部分学生都还在思考中。

2.欠缺对“学困生”的关注,没能用更好的语言激发他们。

3.没能让每位学生都有足够的时间发表自己的观点。

4.没能进行很好的知识延伸和拓展。

5.合作探究的题目有一定的难度,很多学生还是没能研究出结果。

相关文档
最新文档