徐州市中考数学2019-2010近10年真题及答案解析
2019年江苏省徐州市中考数学试卷(含参考答案与试题解析)

2019年江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)(2019•徐州)2-的倒数是( )A .12-B .12C .2D .2-2.(3分)(2019•徐州)下列计算正确的是( ) A .224a a a +=B .222()a b a b +=+C .339()a a =D .326a a a =3.(3分)(2019•徐州)下列长度的三条线段,能组成三角形的是( ) A .2,2,4B .5,6,12C .5,7,2D .6,8,104.(3分)(2019•徐州)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为() A .500B .800C .1000D .12005.(3分)(2019•徐州)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,386.(3分)(2019•徐州)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是( )A .B .C .D .7.(3分)(2019•徐州)若1(A x ,1)y 、2(B x ,2)y 都在函数2019y x=的图象上,且120x x <<,则( ) A .12y y <B .12y y =C .12y y >D .12y y =-8.(3分)(2019•徐州)如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系、87M 黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .810二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)(2019•徐州)8的立方根是 .10.(3分)(2019•徐州)若使1x +有意义,则x 的取值范围是 . 11.(3分)(2019•徐州)方程240x -=的解是 .12.(3分)(2019•徐州)若2a b =+,则代数式222a ab b -+的值为 .13.(3分)(2019•徐州)如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为 .14.(3分)(2019•徐州)如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠= .15.(3分)(2019•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=︒,则该圆锥的母线长l 为 cm .16.(3分)(2019•徐州)如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45︒,测得该建筑底部C 处的俯角为17︒.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m .(参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31)︒≈17.(3分)(2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为 .18.(3分)(2019•徐州)函数1y x =+的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若ABC ∆为等腰三角形,则满足条件的点C 共有 个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(10分)(2019•徐州)计算: (1)0219()|5|3π---;(2)2162844x x x x--÷+. 20.(10分)(2019•徐州)(1)解方程:22133x x x-+=-- (2)解不等式组:3222155x x x x >-⎧⎨+-⎩21.(7分)(2019•徐州)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘. (1)请将所有可能出现的结果填入下表:乙 积 甲 1 2 3 41 2 3(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)(2019•徐州)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910-月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)(2019•徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)ECB FCG∠=∠;(2)EBC FGC∆≅∆.24.(8分)(2019•徐州)如图,AB为O的直径,C为O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与O有怎样的位置关系?请说明理由.25.(8分)(2019•徐州)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为2200cm?26.(8分)(2019•徐州)【阅读理解】用1020的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为cm cm10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.图案的长度10cm20cm30cm40cm50cm60cm 所有不同图案的个数12327.(9分)(2019•徐州)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin 时,甲、乙两人与点A 的距离分别为1y m 、2y m .已知1y 、2y 与x 之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x 取何值时,甲、乙两人之间的距离最短?28.(11分)(2019•徐州)如图,平面直角坐标系中,O 为原点,点A 、B 分别在y 轴、x 轴的正半轴上.AOB ∆的两条外角平分线交于点P ,P 在反比例函数9y x=的图象上.PA 的延长线交x 轴于点C ,PB 的延长线交y 轴于点D ,连接CD . (1)求P ∠的度数及点P 的坐标; (2)求OCD ∆的面积;(3)AOB ∆的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.2019年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)2-的倒数是( )A .12-B .12C .2D .2-【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:1(2)()12-⨯-=,2∴-的倒数是12-.故选:A .2.(3分)下列计算正确的是( ) A .224a a a +=B .222()a b a b +=+C .339()a a =D .326a a a =【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A 、2222a a a +=,故选项A 不合题意;B .222()2a b a ab b +=++,故选项B 不合题意;C .339()a a =,故选项C 符合题意;D .325a a a =,故选项D 不合题意.故选:C .3.(3分)下列长度的三条线段,能组成三角形的是( ) A .2,2,4B .5,6,12C .5,7,2D .6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:224+=,2∴,2,4不能组成三角形,故选项A 错误, 5612+<,5∴,6,12不能组成三角形,故选项B 错误, 527+=,5∴,7,2不能组成三角形,故选项C 错误,6810+>,6∴,8,10能组成三角形,故选项D 正确,故选:D .4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为( ) A .500B .800C .1000D .1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次, 故选:C .5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40, 所以这组数据的众数为40,中位数为39, 故选:B .6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的概念求解可得. 【解答】解:不是轴对称图形,故选:D .7.(3分)若1(A x ,1)y 、2(B x ,2)y 都在函数2019y x=的图象上,且120x x <<,则( ) A .12y y <B .12y y =C .12y y >D .12y y =-【分析】根据题意和反比例函数的性质可以解答本题. 【解答】解:函数2019y x=, ∴该函数图象在第一、三象限、在每个象限内y 随x 的增大而减小,1(A x ,1)y 、2(B x ,2)y 都在函数2019y x=的图象上,且120x x <<, 12y y ∴<,故选:A .8.(3分)如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系、87M 黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .810【分析】先化简672.5100.2510⨯=⨯,再从选项中分析即可; 【解答】解:672.5100.2510⨯=⨯,77(1010)(0.2510)40⨯÷⨯=, 从数轴看比较接近; 故选:D .二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置) 9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果. 【解答】解:8的立方根为2, 故答案为:2.10.(31x +x 的取值范围是 1x - .【分析】根据二次根式中的被开方数必须是非负数,可得10x +,据此求出x 的取值范围即可. 【解答】解:1x +10x ∴+,x ∴的取值范围是:1x -.故答案为:1x -.11.(3分)方程240x -=的解是 2± .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:240x -=, 移项得:24x =,两边直接开平方得:2x =±, 故答案为:2±.12.(3分)若2a b =+,则代数式222a ab b -+的值为 4 . 【分析】由2a b =+,可得2a b -=,代入所求代数式即可. 【解答】解:2a b =+, 2a b ∴-=,22222()24a ab b a b ∴-+=-==. 故答案为:413.(3分)如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为 16 .【分析】根据中位线的性质求出BO 长度,再依据矩形的性质2AC BD BO ==进行求解问题. 【解答】解:M 、N 分别为BC 、OC 的中点, 28BO MN ∴==.四边形ABCD 是矩形, 216AC BD BO ∴===.故答案为16.14.(3分)如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠= 140︒ .【分析】利用任意凸多边形的外角和均为360︒,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可. 【解答】解:多边形的每个外角相等,且其和为360︒, 据此可得多边形的边数为:360940︒=︒, (92)1801409OAD -⨯︒∴∠==︒.故答案为:140︒15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=︒,则该圆锥的母线长l 为 6 cm .【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长224cm ππ=⨯=, 设圆锥的母线长为R ,则:1204180Rππ⨯=, 解得6R =. 故答案为:6.16.(3分)如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45︒,测得该建筑底部C 处的俯角为17︒.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为 262 m . (参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31)︒≈【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【解答】解:作AE BC ⊥于E ,则四边形ADCE 为矩形, 62EC AD ∴==,在Rt AEC ∆中,tan ECEAC AE∠=, 则62200tan 0.31EC AE EAC =≈=∠,在Rt AEB ∆中,45BAE ∠=︒, 200BE AE ∴==,20062262()BC m ∴=+=,则该建筑的高度BC 为262m , 故答案为:262.17.(3分)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为 21(4)2y x =- .【分析】设原来的抛物线解析式为:2y ax =.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P 的坐标代入即可. 【解答】解:设原来的抛物线解析式为:2(0)y ax a =≠. 把(2,2)P 代入,得24a =, 解得12a =. 故原来的抛物线解析式是:212y x =. 设平移后的抛物线解析式为:21()2y x b =-.把(2,2)P 代入,得212(2)2b =-.解得0b =(舍去)或4b =.所以平移后抛物线的解析式是:21(4)2y x =-.故答案是:21(4)2y x =-.18.(3分)函数1y x =+的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若ABC ∆为等腰三角形,则满足条件的点C 共有 3 个.【分析】三角形ABC 的找法如下:①以点A 为圆心,AB 为半径作圆,与x 轴交点即为C ;②以点B 为圆心,AB 为半径作圆,与x 轴交点即为C ;③作AB 的中垂线与x 轴的交点即为C ;【解答】解:以点A 为圆心,AB 为半径作圆,与x 轴交点即为C ; 以点B 为圆心,AB 为半径作圆,与x 轴交点即为C ; 作AB 的中垂线与x 轴的交点即为C ; 故答案为3;三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(10分)计算: (1)0219()|5|3π---;(2)2162844x x x x--÷+. 【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得; (2)先化简各分式,再将除法转化为乘法,继而约分即可得. 【解答】解:(1)原式13952=-+-=;(2)原式(4)(4)2(4)44x x x x x+--=÷+2(4)4xx x =-- 2x =.20.(10分)(1)解方程:22133x x x-+=-- (2)解不等式组:3222155x x x x >-⎧⎨+-⎩【分析】(1)两边同时乘以3x -,整理后可得32x =; (2)不等式组的每个不等式解集为22x x >-⎧⎨⎩;【解答】解:(1)22133x x x-+=--, 两边同时乘以3x -,得 232x x -+-=-, 32x ∴=; 经检验32x =是原方程的根; (2)由3222155x x x x >-⎧⎨+-⎩可得22x x >-⎧⎨⎩,∴不等式的解为22x -<;21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘. (1)请将所有可能出现的结果填入下表:(2)积为9的概率为 ;积为偶数的概率为 ;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为 .【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:12341 123 42 2 4 6 83 3 6 9 12 (2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为112;积为偶数的概率为82123=,故答案为:112,23.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为21 126=,故答案为:16.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910-月”对应扇形的圆心角度数; (2)补全条形统计图.【分析】(1)从条形统计图中可得34-月份电费240元,从扇形统计图中可知34-月份电费占全年的10%,可求全年的电费,进而求出910-月份电费所占的百分比,然后就能求出910-月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出78-月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:24010%2400÷=元 910-月份所占比:7280240060÷=, ∴扇形统计图中“910-月”对应扇形的圆心角度数为:73604260︒⨯=︒ 答:扇形统计图中“910-月”对应扇形的圆心角度数是42︒(2)78-月份的电费为:2400300240350280330900-----=元, 补全的统计图如图:23.(8分)如图,将平行四边形纸片ABCD 沿一条直线折叠,使点A 与点C 重合,点D 落在点G 处,折痕为EF .求证: (1)ECB FCG ∠=∠; (2)EBC FGC ∆≅∆.【分析】(1)依据平行四边形的性质,即可得到A BCD∠=∠,∠=∠,由折叠可得,A ECG即可得到ECB FCG∠=∠;(2)依据平行四边形的性质,即可得出D B∠=∠,AD BC∠=∠,=,由折叠可得,D G∆≅∆.=,进而得出EBC FGC=,即可得到B G∠=∠,BC CGAD CG【解答】证明:(1)四边形ABCD是平行四边形,∴∠=∠,A BCD由折叠可得,A ECG∠=∠,BCD ECG∴∠=∠,∴∠-∠=∠-∠,BCD ECF ECG ECFECB FCG∴∠=∠;(2)四边形ABCD是平行四边形,∴∠=∠,AD BCD B=,由折叠可得,D G∠=∠,AD CG=,=,∴∠=∠,BC CGB G又ECB FCG∠=∠,∴∆≅∆.EBC FGC ASA()24.(8分)如图,AB为O的直径,C为O上一点,D为BC的中点.过点D作直线AC 的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE 与O 有怎样的位置关系?请说明理由.【分析】(1)连接OC ,由D 为BC 的中点,得到CD BD =,根据圆周角定理即可得到结论; (2)根据平行线的判定定理得到//AE OD ,根据平行线的性质得到OD DE ⊥,于是得到结论.【解答】(1)证明:连接OC ,D 为BC 的中点,∴CD BD =,12BCD BOC ∴∠=∠,12BAC BOC ∠=∠,A DOB ∴∠=∠;(2)解:DE 与O 相切, 理由:A DOB ∠=∠, //AE OD ∴,DE AE ⊥,OD DE ∴⊥,DE ∴与O 相切.25.(8分)如图,有一块矩形硬纸板,长30cm ,宽20cm .在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为2200cm【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(302)x cm-,宽为(202)x cm-,高为xcm,根据长方体盒子的侧面积为2200cm,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(302)x cm-,宽为(202)x cm-,高为xcm,依题意,得:2[(302)(202)]200x x x⨯-+-=,整理,得:2225500x x-+=,解得:15 2x=,210x=.当10x=时,2020x-=,不合题意,舍去.答:当剪去正方形的边长为52cm时,所得长方体盒子的侧面积为2200cm.26.(8分)【阅读理解】用1020cm cm⨯的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.图案的长度 10cm 20cm 30cm 40cm 50cm 60cm所有不同图案的个数1 2 3 4【分析】根据已知条件作图可知40cm 时,所有图案个数4个;猜想得到结论; 【解答】解:如图:根据作图可知40cm 时,所有图案个数4个; 50cm 时,所有图案个数5个; 60cm 时,所有图案个数6个;故答案为4,5,6;27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A .甲从中山路上点B 出发,骑车向北匀速直行;与此同时,乙从点A 出发,沿北京路步行向东匀速直行.设出发xmin 时,甲、乙两人与点A 的距离分别为1y m 、2y m .已知1y 、2y 与x 之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x 取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得22229(1200240)(80)64000()1440002d x x x =-+=-+,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为/am min ,/bm min ,则:11200(05)1200(5)ax x y ax x -⎧=⎨->⎩2y bx =由图②知: 3.75x =或7.5时,12y y =,∴1200 3.75 3.757.512007.5a b a b -=⎧⎨-=⎩,解得:24080a b =⎧⎨=⎩答:甲的速度为240/m min ,乙的速度为80/m min .(2)设甲、乙之间距离为d ,则222(1200240)(80)d x x =-+ 2964000()1440002x =-+, ∴当92x =时,2d 的最小值为144000,即d 的最小值为12010; 答:当92x =时,甲、乙两人之间的距离最短. 28.(11分)如图,平面直角坐标系中,O 为原点,点A 、B 分别在y 轴、x 轴的正半轴上.AOB ∆的两条外角平分线交于点P ,P 在反比例函数9y x=的图象上.PA 的延长线交x 轴于点C ,PB 的延长线交y 轴于点D ,连接CD .(1)求P ∠的度数及点P 的坐标;(2)求OCD ∆的面积;(3)AOB ∆的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM OAY ⊥M ,PN OB ⊥于N ,PH AB ⊥于H .利用全等三角形的性质解决问题即可.(2)设OA a =,OB b =,则3AM AH a ==-,3BN BH b ==-,利用勾股定理求出a ,b 之间的关系,求出OC ,OD 即可解决问题.(3)设OA a =,OB b =,则3AM AH a ==-,3BN BH b ==-,可得6AB a b =--,推出6OA OB AB ++=,可得6a b ++,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM OAY ⊥M ,PN OB ⊥于N ,PH AB ⊥于H . 90PMA PHA ∴∠=∠=︒,PAM PAH ∠=∠,PA PA =,()PAM PAH AAS ∴∆≅∆,PM PH ∴=,APM APH ∠=∠,同理可证:BPN BPH ∆≅∆,PH PN ∴=,BPN BPH ∠=∠,PM PN ∴=,90PMO MON PNO ∠=∠=∠=︒,∴四边形PMON 是矩形,90MPN ∴∠=︒,1()452APB APH BPH MPH NPH ∴∠=∠+∠=∠+∠=︒, PM PN =,∴可以假设(,)P m m ,(,)P m m 在9y x=上, 29m ∴=,0m >,3m ∴=, (3,3)P ∴.(2)设OA a =,OB b =,则3AM AH a ==-,3BN BH b ==-, 6AB a b ∴=--,222AB OA OB =+,222(6)a b a b ∴+=--,可得1866ab a b =--,19332a b ab ∴--=,//PM OC , ∴CO OA PM AM =, ∴33OC a a =-, 33a OC a ∴=-,同法可得33b OD b =-, 1999632(3)(3)9332COD ab ab ab S OC DO a b a b ab ab ∆∴=====----+.(3)设OA a =,OB b =,则3AM AH a ==-,3BN BH b ==-, 6AB a b ∴=--,6OA OB AB ∴++=,226a b a b ∴+++=,226ab ab ∴+,(22)6ab ∴+,∴3(22)ab -,54362ab ∴-,1271822AOB S ab ∆∴=-, AOB ∴∆的面积的最大值为27182-.。
人教版2019年江苏徐州中考数学试题(解析版)

{来源}2019年江苏徐州中考数学试卷{适用范围:3. 九年级}{标题}2019年江苏省徐州市中考数学试卷 考试时间:分钟 满分:分{题型:1-选择题}一、选择题:本大题共 小题,每小题 分,合计分. {题目}1.(2019年江苏徐州T1)﹣2的倒数是 A .﹣12B .12C .2D .﹣2{答案}A{解析}本题考查倒数的概念,-2的倒数是12- ,故本题选A.{分值}3{章节:[1-1-4-2]有理数的除法} {考点:倒数} {类别:常考题} {难度:1-最简单}{题目}2.(2019年江苏徐州T2)下列计算,正确的是 A .a 2+a 2=a 4 B .(a +b) 2=a 2+b 2 C .(a 3)3=a 9D .a 3·a 2=a 6 {答案}C{解析}本题考查了整式的有关计算,∵22242a a a a +=≠;22222()2a b a ab b a b +=++≠+;339()a a =;2356a a a a ⋅=≠,故本题选C.{分值}3{章节:[1-15-2-3]整数指数幂} {考点:合并同类项} {考点:平方差公式} {考点:同底数幂的乘法}{考点:幂的乘方}{类别:常考题}{难度:1-最简单}{题目}3.(2019年江苏徐州T3)下列长度的三条线段,能组成三角形的是A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10 {答案}D{解析}本题考查三角形三边之间的关系,∵2+2=4,5+6=11<12,2+5=7,6+8=14>10,故本题选D.{分值}3{章节:[1-11-1]与三角形有关的线段}{考点:三角形三边关系}{类别:常考题}{难度:1-最简单}{题目}4.(2019年江苏徐州T4)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为A.500 B.800 C.5,7,2 D.1200 {答案}C{解析}本题了概率的计算,由于抛掷一枚质地均匀的硬币,正面向上的概,所以由于抛掷一枚质地均匀的硬币2000次,正面向上的次数最有率为12可能为2000×1=1000,故本题选C.2{分值}3{章节:[1-25-3]用频率估计概率}{考点:利用频率估计概率}{难度:1-最简单}{题目}5.(2019年江苏徐州T5)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40.该组数据的众数、中位数分别为A.40,37 B.40,39 C.39,40 D.40,38{答案}B{解析}本题考查了数据的众数和中位数,把数据重新排列为:37,37,38,39,40,40,40,所以它的众数和中位数分别为40,39,故本题选B.{分值}3{章节: }{考点:倒数}{类别:常考题}{难度:1-最简单}{题目}6.(2019年江苏徐州T6)下图均由正六边形与两条对角线所组成,其中不是..轴对称图形的是A B C D{答案}D{解析}本题考查了轴对称图形的判别,A、B、C选项的三个图都是轴对称,D选项的图不是轴对称,故本题选D.{分值}3{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{难度:2-简单}{题目}7.(2019年江苏徐州T7)若A (x 1,y 1)、B (x 2,y 2)都在函数y =2019x的图象上,且x 1<0<x 2,则A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 2{答案}A{解析}本题考查了反比例函数的增减性质,由于x 1<0,则y 1=120190x <,x 2>0,则y 2=220190x >,∴y 2>y 1,故本题选A.{分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的性质} {类别:常考题} {难度:2-简单}{题目}8.(2019年江苏徐州T8)如图,数轴上有O ,A ,B 三点,O 为原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是A .6510⨯B .710C .7510⨯D .810{答案}C{解析}本题考查了数轴的应用以及科学记数法,由于点A 表示的数为62.510⨯,靠近B 的整数应该是62.510⨯的20倍,于是B 点最接近的数约为62.510⨯×20=5×107,故本题选C.6BA O{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共小题,每小题分,合计分.{题目}9.(2019年江苏徐州T9)8的立方根是_________.{答案}2{解析}本题考查了立方根的概念,8的立方根是2,故本题的答案为2. {分值}3{章节:[1-6-2]立方根}{考点:立方根}{类别:常考题}{难度:1-最简单}{题目}10.(2019年江苏徐州T10x的取值范围是_________.{答案}x≥-1{解析}本题考查了分式有意义的条件,根据题意有:x+1≥0,∴x≥-1.{分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件}{类别:常考题}{难度:1-最简单}{题目}11.(2019年江苏徐州T11)方程x2-4=0的解为_________.{答案}x1=2,x2=-2{解析}本题考查了一元二次方程解法,∵x2-4=0,∴x2=4,∴x1=2,x2=-2. {分值}3{章节: ××}{考点:××}{类别:常考题}{难度:2-简单}{题目}12.(2019年江苏徐州T12)若a=b+2,则代数式a2-2ab+b2的值为_________.{答案}4{解析}本题考查了代数式的整体代入的求值,∵a=b+2,∴a-b=2,a2-2ab+b2=(a-b)2=22=4.{分值}3{章节:[1-2-1]整式}{考点:代数式求值}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年江苏徐州T13)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为_________.{答案}16{解析}本题考查了矩形的性质和三角形中位线的性质,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵M,N分别为BC,OC的中点,∴OB=2MN=2×4=8,∴AC=2OB=16.{分值}3{章节:[1-18-2-1]矩形} {考点:矩形的性质} {类别:常考题} {难度:3-中等难度}{题目}14.(2019年江苏徐州T14)如图,A 、B 、C 、D 为一个外角为40°的正多边形的顶点.若O 为正多边形的中心,则∠OAD =_________°.{答案}30{解析}本题考查了与正多形有关的计算,正多边形的边数=360940︒=︒,∴正多边形的中心角=360409︒=︒,∴∠AOD=3×40°=120°,∵OA=OD ,∴∠OAD=180120302︒-︒=°. {分值}3{章节:[1-24-3]正多边形和圆} {考点:正多边形和圆} {类别:常考题}{难度:3-中等难度}{题目}15.(2019年江苏徐州T15)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为_________cm .D{答案}6{解析}本题考查了扇形的展开图的面积的计算,12022180l ππ⨯=⨯,∴l=6.{分值}3 {章节: ××} {考点:××} {类别:常考题} {难度:3-中等难度}{题目}16.(2019年江苏徐州T16)如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部的C 处的俯角为17°,若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为_________m .(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31){答案}262{解析}本题考查了解直角三角形的应用,过A 作AE ⊥BC 于E ,则四边形ADCE 为矩形,在Rt △ACD ,∵AD=62,∠ACD=∠EAC=17°,∴AE=CD=tan17AD︒=620.31=200,∵AE ⊥BE ,∠BAE=45°,∴BE=AE=200,∴BC=CE +BE =AD +BE =62+200=262(m )第16题答图 {分值}3{章节:[1-28-1-2]解直角三角形} {考点:解直角三角形的应用-坡度} {考点:解直角三角形的应用-仰角} {类别:常考题} {难度:3-中等难度}{题目}17.(2019年江苏徐州T17) 已知二次函数的图形经过点P (2,2),顶点为O (0,0),将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为_________.{答案}21482x x -+{解析}本题考查了二函数图象的平移,设过点O (0,0)的解析式为y=ax 2,把点(2,2)代入,有2=4a ,∴a=12,∴抛物线的解析式为:212y x =,把这个图形向右平移m 个单位的解析式为:y=21()2x m -,代入(2,2),有2=21(2)2m -,解得m 1=0(舍去),m 2=4,所以所得的抛物线的函数表达式为:2211(4)4822y x x x =-=-+ {分值}3{章节:[1-22-1-3]二次函数y=a(x-h)2+k的图象和性质}{考点:二次函数y=a(x+h)2的图象}{类别:常考题}{难度:3-中等难度}{题目}18.(2019年江苏徐州T18)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上,若△ABC为等腰三角形,则满足条件的点C共有_________个.{答案}4{解析}本题考查了等腰三角形存在性,涉及到一次函数的性质,线段的垂直平分线以及圆等知识,作AB的垂直平分线,交于坐标原点,△OAB为等腰三角形;以B为圆心BA长为半径交x轴于C2,△C2AB为等腰三角形,以A为圆心,AB长为半径,交x轴于C3,C4,则△C3AB,△C4AB为等腰三角形,所以满足条件的C点的有4个.第18题图{分值}3{章节:[1-19-2-2]一次函数}{考点:一次函数与几何图形综合}{难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共 小题,合计分. {题目}19.(2019年江苏徐州T19)(1)0π+21()3--|5|-;{解析}本题考查了实数的运算,先分别求出零次幂,算术平方根,负整数指数幂以及绝对值,然后进行加减运算.{答案}解: 原式=1-3+9-5=2. {分值}5{章节:[1-6-3]实数} {难度:2-简单} {类别:常考题} {考点:简单的实数运算}{题目}19.(2019年江苏徐州T19)(2)2162844x x x x--÷+. {解析}本题考查分式的除法,解题的关键是把分式的除法转化为分式的乘法先把分式的除法转化为分式的除法,再把分式的分子分母进行因式分解,然后约分化成最简分式. {答案}解: 21628(4)(x 4)4244(4)2(4)x x x xx x x x x --+-÷=⨯=++-. {分值}5{章节:[1-15-2-1]分式的乘除} {难度:2-简单}{考点:两个分式的乘除}{题目}20.(2019年江苏徐州T20)(1)解方程:22133x x x-+=--;{解析}本题考查解分式方程,解题的关键是把分式方程转化为整式方程. 先把分式方程两边同时乘以最简公分母,化成整式方程后,解整式方程,得到整式方程的根后,进行验根,最后确定方程的解. {答案}解: 去分母,得:232x x -+-=-,解得x=32,当x=32,x-2≠0,所以原方程的解为:x=32.{分值}5{章节:[1-15-3]分式方程} {难度:2-简单} {类别:常考题}{考点:解含两个分式的分式方程}{题目}20.(2019年江苏徐州T20)(2)解不等式组:322,2155x x x x >-⎧⎨+-⎩≥.{解析}本题考查了.本题考查解不等式组,解题的关键是正确求出不等式组的解集.先分别求出不等式组中两个不等式的解集,然后再求出它们的公共部分. {答案}解: 解不等式3x>2x-2,解得x>-2;解不等式2x+1≥5x -5,解得x≤2,所以不等式组的解为:-2<x ≤2. {分值}5{章节:[1-9-3]一元一次不等式组}{难度:2-简单} {类别:常考题}{考点:解一元一次不等式组}{题目}21.(2019年江苏徐州T21)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别转动这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:1 2 3 4 1 2 3(2)积为9的概率为_________;积为偶数的概率为_________; (3)从1~12这12个整数中,随机选取1个整数,该数不是..(1)中所填数字的概率为_________.{解析}本题考查概念的计算,解题的关键是准确填写(1)中的表格. (1)根据表格填空出两数的积;(2)找出积是9或是偶数的情形,然后根据概率公式进行计算; (3)找出12个数中不是表格所填的数字,然后利用概率公式进行计算. {答案}解: (1)填表如下: 1 2 3 4 112341 231 234 乙甲积2 2 4 6 83 36912(2)12,3; 一共有12种情形,积是9的只有一种情形,所以积为9的概率为:112; 12种情形中偶数有8种情形,所以积为偶数的概率为:82123=. (3)13.1-12这12个数中,不是表格所填的数字有5,7,10,11,所以所求的概率为41123=. {分值}7{章节:[1-25-2]用列举法求概率} {难度:3-中等难度} {类别:常考题} {考点:两步事件放回}{题目}22.(2019年江苏徐州T22)某户居民2018年的电费支出情况(每两个月缴费1次)如图所示:电费支出条形统计图 电费支出分布扇形统计图1~2月 3~4月 5~6月7~8月9~10月11~12月根据以上信息,解答下列问题:(1)求扇形统计图中“9~10月”对应扇形的圆心角度数;(2)补全条形统计图.{解析}本题考查了条形统计图和扇形统计图,解题的关键是从统计图中找出一对相关联的数据求出样本容量.(1)先计算出样本容易,然后再求出对应的圆心角的度数;(2)利用样本容量减去已知各组的频数,得出7-8月的电费,然后补全条形统计图.{答案}解:(1)样本容量=240÷10%=2400,9-10月对应扇形的圆心角=280⨯︒=°;360422400(2)7-8月的电费=2400-300-240-350-280-330=900(元),补全的条形图如下:{分值}7{章节:[1-10-1]统计调查}{难度:3-中等难度}{类别:常考题}{考点:扇形统计图}{考点:条形统计图}{题目}23.(2019年江苏徐州T23)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△ECB≌△FGC.{解析}本题考查了平行四边形的性质,全等三角形的判定以及折叠的性质,解题的关键是综合运算折叠的性质和平行四边形的性质.(1)根据折叠图形中的相等的角和平行四边形中相等的角来证明;(2)根据边角边来证明两三角形全等.{答案}解:(1)连接AC,交EF于点O,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠ACB,由折叠可知:∠DAC=∠ACG,AE=CE,AD=CG=BC,OA=OC,∴∠ACB=∠ACG,∴∠EAC=∠ECA,∵AB∥CD,∴∠ACD=∠CAE,∴∠ACE=∠ACD∴∠ECB=∠FCG;第23题图(2)由折叠可知:∠AEF=∠CEF , ∵AE ∥CD ,∴∠AEF=∠EFC , ∴∠CEF=∠CFE ,∴CE=CF , 又∵BC=CG ,∠BCE=∠DCG , ∴△EBC ≌△FGC. {分值}8{章节:[1-18-1-1]平行四边形的性质} {难度:4-较高难度} {类别:常考题}{考点:平行四边形边的性质} {考点:折叠问题}{题目}24.(2019年江苏徐州T24)如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为BC 的中点,过点D 作直线AC 的垂线,垂足为E ,连接OD . (1)求证:∠A =∠DOB ;(2)DE 与⊙O 有怎样的位置关系?请说明理由.GB{解析}本题考查了圆的基本性质和切线的判定,解题的关键是连接BC 构造垂直定理的基本形.(1)连接BC ,构造垂径定理的基本图形,利用直径所对圆周角是直角等知识来解决问题;(2)利用垂直于半径的外端的直线是圆的切线来进行计算.{答案}解:(1)连接BD ,∵D 是弧BC 的中点, ∴OD ⊥BC ,∵AB 是直径,∴∠ACB=90°, ∴OD ∥AE , ∴∠A=∠DOB.第24题图 (2)DE 是⊙O 的切线.AB∵BC⊥AE,DE⊥AC,∴DE∥BC,∵OD⊥BC,∴DE⊥OD,∴DE是⊙O的切线.{分值}8{章节:[1-24-2-2]直线和圆的位置关系}{难度:4-较高难度}{类别:常考题}{考点:垂径定理}{考点:直径所对的圆周角}{考点:切线的判定}{题目}25.(2019年江苏徐州T25)如图,有一矩形的硬纸板,长为30cm,宽为20cm,在其四个角各剪去一个相同的小正方形,然后把四周的矩形折起,可做成一个无盖的长方体盒子,当剪去的正方形的边长为何值时,所得长方体盒子的底面积为200cm2?{解析}本题考查了一元一次方程的应用,解题的关键是根据题目给定的相等关系,列出一元二次方程.{答案}解:设剪去的小正方形的边长为xcm,则根据题意有:(30-2x)(20-2x)=200,解得x1=5,x2=20,当x=20时,20-2x<0,所以x=5.答:当剪去小正方形的边长为5cm时,长方体盒子的底面积为200cm2.{分值}8{章节:[1-21-4]实际问题与一元二次方程}{难度:4-较高难度}{类别:常考题}{考点:一元二次方程的应用—面积问题}{题目}26.(2019年江苏徐州T26)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:20cm10cm 20cm 20cm 30cm 30cm 30cm【尝试操作】【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.{解析}本题考查与图形有关规律的探究,解题的关键是画出长度是40cm的图案.{答案}解:【尝试操作】按照横放和平放两大类来进行画图;【归纳发现】按1,2,3,5,猜想出从第三个数开始,每一个数都等于前面两个数之和.解:【尝试操作】【归纳发现】{分值}8{章节:[1-2-1]整式}{类别:高度原创}{考点:规律-图形变化类}{题目}27.(2019年江苏徐州T27)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A .甲从中山路上点B 出发,骑车向北匀速直行;与此同时,乙从点A 出发,沿北京路步行向东匀速直行.设出发xmin 时,甲、乙两人与点A 的距离分别为y 1m 、y 2m .已知y 1、y 2与x 的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x 取何值时,甲、乙两人之间的距离最短?{解析}本题考查了一次数函数的应用,涉及到二元一次方程组,勾股定理以及二次函数的知识等.解题的关键是从函数的图象中找出关键的点,利用二次一次方程组来求两人的速度.(1)从图象中找出当时间为3.75min 和7.5min 时 两人距A 点的距离相等,并据此列出二元一次方程组,从而求出两人的速度;/min 2(2)求出两人的距离与x 之间的关系,然后利用二次函数的知识求出两从之间距离何时为最短.{答案}解:(1)设甲的速度为am/min ,乙的速度为bm/min ,根据题意有:151********.512007.5a b a b⎧-=⎪⎨⎪-=⎩ ,解得a=240m/min ,b=80m/min ; 答:甲的速度是240m/min ,乙的速度是80m/min.(2)甲乙两人之间的距离, 当x=-9092102-=⨯(min )时,甲乙两人之间的距离为最短.{分值}9{章节:[1-19-3]一次函数与方程、不等式}{难度:4-较高难度}{类别:常考题}{考点:一次函数与行程问题}{题目}28.(2019年江苏徐州T28)如图,平面直角坐标系中,O 为原点,点A 、B 分别在y 轴、x 轴的正半轴上.△AOB 的两条外角平分线交于点P ,P 在反比例函数y =9x 的图像上.PA 的延长线交x 轴于点C ,PB 的延长线交y 轴于点D ,连接CD .(1)求∠P 的度数及点P 的坐标;(2)求△OCD 的面积;(3)△AOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.{解析}本题考查了反比例函数的性质,角平分线的性质,相似三角形的判定与性质以及分式函数的最大值.解题的关键是构造相似三角形以及利用一元二次方程根的判别式来求分式函数的最大值.(1)利用角平分线的性质和三角形的内角和定理来求∠CPB的度数;(2)连接OP,证明△POC∽△DOP,得出OC×OD的值,然后来求△OCD的面积;(3)利用勾股定理以及面积公式求出△OAB面积关于BN=x 的分式函数,然后利用一元二次方程要的判别式,得到一个一元二次不等式,再利用二次函数图象的性质求出分式函数的最大值.{答案}解:解:(1)∵AP,BP是△AOB两条外角的角平分线,∴∠PAB=12∠PAY,∠PBA=12∠ABX,∵∠OAB+∠OBA=90°,∴∠PAY+∠ABX=270°,∴∠PAB+∠PBA=135°,∴∠APB=45°.第28题答图①过点P 作PH ⊥AB 于H ,∴∠PMA=∠PHA=90°,∵∠MAP=∠HAP ,PH=PH ,∴△PMA ≌△PHA ,∴PM=PH ,同理可证△PHB ≌△PNB ,∴PH=PN ,∴PM=PN ,设P 点的坐标为(a ,9a ),则a=9a ,解得a=3,(取正值)∴P 点的坐标为(3,3);(2)∵PM=PN=3,∴四边形PMON 为正方形,连接OP ,∴∠5=∠6=45°,OP=第28题答图②∵∠CPD=45°,∴∠7+8=45°,∵PM ∥BC ,PN ∥OM ,∴∠3=∠7,∠4=∠8,∴∠3+∠4=45°,∵∠5=∠4+∠2=45°,∴∠2=∠3,同理∠1=∠4,∴△POC ∽△DOP , ∴OP OC OD OP=,∴OP 2=OC×OD,∴OC×OD=18, ∴192COD S OC OD ∆=⨯=. (3) 设BN=x ,AM=y ,∴OA=3-y ,OB=3-x ,由(1)可知:AB=x+y ,∵OA 2+OB 2=AB 2,∴(3-x)2+(3-y)2=(x+y)2,整理得:xy=9-3x-3y , ∴y=933x x -+, 11(3)(3)(933)22OAB S x y x y xy xy ∆=--=---==22933(3)33x x x x x x --=++ , 设233x x k x -=+,整理,得:2(3)30x k x k +-+=∵x 是实数,∴23)120k k ∆=--≥(, 解得k 9≥+k 9≤-∵△OAB 的面积不可能大于9,∴k 9≤- ∴OAB S ∆的最大值为第28题答图③{分值}11{章节:[1-26-1]反比例函数的图像和性质} {难度:5-高难度}{类别:常考题}{考点:相似三角形的应用}{考点:几何综合}{考点:双曲线与几何图形的综合} {考点:几何图形最大面积问题}。
2019江苏省徐州市中考数学解析

2019年江苏省徐州市中考数学试卷一、选择题:本大题共 小题,每小题 分,合计分. 1.(2019年江苏徐州T1)﹣2的倒数是A .﹣12B .12C .2D .﹣2答案:A解析:本题考查倒数的概念,-2的倒数是12- ,故本题选A . 2.(2019年江苏徐州T2)下列计算,正确的是A .a 2+a 2=a 4B .(a +b ) 2=a 2+b 2C .(a 3)3=a 9D .a 3·a 2=a 6答案:C解析:本题考查了整式的有关计算,∵22242a a a a +=≠;22222()2a b a ab b a b +=++≠+;339()a a =;2356a a a a ⋅=≠,故本题选C .3.(2019年江苏徐州T3)下列长度的三条线段,能组成三角形的是A .2,2,4B .5,6,12C .5,7,2D .6,8,10 答案:D解析:本题考查三角形三边之间的关系,∵2+2=4,5+6=11<12,2+5=7,6+8=14>10,故本题选D .4.(2019年江苏徐州T4)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为A .500B .800C .5,7,2D .1200答案:C解析:本题了概率的计算,由于抛掷一枚质地均匀的硬币,正面向上的概率为12,所以由于抛掷一枚质地均匀的硬币2000次,正面向上的次数最有可能为2000×12=1000,故本题选C .5.(2019年江苏徐州T5)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40.该组数据的众数、中位数分别为A .40,37B .40,39C .39,40D .40,38 答案:B解析:本题考查了数据的众数和中位数,把数据重新排列为:37,37,38,39,40,40,40,所以它的众数和中位数分别为40,39,故本题选B .6.(2019年江苏徐州T6)下图均由正六边形与两条对角线所组成,其中不是..轴对称图形的是ABCD答案:D解析:本题考查了轴对称图形的判别,A 、B 、C 选项的三个图都是轴对称,D 选项的图不是轴对称,故本题选D .7.(2019年江苏徐州T7)若A (x 1,y 1)、B (x 2,y 2)都在函数y =2019x的图象上,且x 1<0<x 2,则 A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 2答案:A解析:本题考查了反比例函数的增减性质,由于x 1<0,则y 1=120190x <,x 2>0,则y 2=220190x >,∴y 2>y 1,故本题选A .8.(2019年江苏徐州T8)如图,数轴上有O ,A ,B 三点,O 为原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是6BA OA .6510⨯B .710C .7510⨯D .810答案:C解析:本题考查了数轴的应用以及科学记数法,由于点A 表示的数为62.510⨯,靠近B 的整数应该是62.510⨯的20倍,于是B 点最接近的数约为62.510⨯×20=5×107,故本题选C .二、填空题:本大题共 小题,每小题 分,合计分.9.(2019年江苏徐州T9)8的立方根是_________.答案:2解析:本题考查了立方根的概念,8的立方根是2,故本题的答案为2.10.(2019年江苏徐州T10)x 的取值范围是_________.答案:x ≥-1解析:本题考查了分式有意义的条件,根据题意有:x +1≥0,∴x ≥-1. 11.(2019年江苏徐州T11) 方程x 2-4=0的解为_________.答案:x 1=2,x 2=-2解析:本题考查了一元二次方程解法,∵x 2-4=0,∴x 2=4,∴x 1=2,x 2=-2.12.(2019年江苏徐州T12)若a =b +2,则代数式a 2-2ab +b 2的值为_________.答案:4解析:本题考查了代数式的整体代入的求值,∵a =b +2,∴a -b =2,a 2-2ab +b 2=(a -b )2=22=4.13.(2019年江苏徐州T13)如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN =4,则AC 的长为_________.O NMAB CD答案:16解析:本题考查了矩形的性质和三角形中位线的性质,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵M,N分别为BC,OC的中点,∴OB=2MN=2×4=8,∴AC=2OB=16. 14.(2019年江苏徐州T14)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=_________°.40°DCO答案:30解析:本题考查了与正多形有关的计算,正多边形的边数=360940︒=︒,∴正多边形的中心角=360409︒=︒,∴∠AOD=3×40°=120°,∵OA=OD,∴∠OAD=180120302︒-︒=°.15.(2019年江苏徐州T15)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为_________cm.答案:6解析:本题考查了扇形的展开图的面积的计算,12022180lππ⨯=⨯,∴l=6.16.(2019年江苏徐州T16)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部的C处的俯角为17°,若无人机的飞行高度AD为62m,则该建筑的高度BC为_________m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)答案:262解析:本题考查了解直角三角形的应用,过A 作AE ⊥BC 于E ,则四边形ADCE 为矩形,在Rt △ACD ,∵AD =62,∠ACD =∠EAC =17°,∴AE =CD =tan17AD ︒=620.31=200, ∵AE ⊥BE ,∠BAE =45°,∴BE =AE =200,∴BC =CE +BE =AD +BE =62+200=262(m )17°45°EAB第16题答图17.(2019年江苏徐州T17) 已知二次函数的图形经过点P (2,2),顶点为O (0,0),将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为_________.答案:21482x x -+解析:本题考查了二函数图象的平移,设过点O (0,0)的解析式为y=ax 2,把点(2,2)代入,有2=4a ,∴a=12,∴抛物线的解析式为:212y x =,把这个图形向右平移m 个单位的解析式为:y=21()2x m -,代入(2,2),有2=21(2)2m -,解得m 1=0(舍去),m 2=4,所以所得的抛物线的函数表达式为:2211(4)4822y x x x =-=-+18.(2019年江苏徐州T18)函数y =x +1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上,若△ABC 为等腰三角形,则满足条件的点C 共有_________个.答案:4解析:本题考查了等腰三角形存在性,涉及到一次函数的性质,线段的垂直平分线以及圆等知识,作AB 的垂直平分线,交于坐标原点,△OAB 为等腰三角形;以B 为圆心BA 长为半径交x 轴于C 2,△C 2AB 为等腰三角形,以A 为圆心,AB 长为半径,交x 轴于C 3,C 4,则△C 3AB ,△C 4AB 为等腰三角形,所以满足条件的C 点的有4个.第18题图三、解答题:本大题共 小题,合计分.19.(2019年江苏徐州T19)(1)0π21()3--|5|-;解析:本题考查了实数的运算,先分别求出零次幂,算术平方根,负整数指数幂以及绝对值,然后进行加减运算.答案:解: 原式=1-3+9-5=2.19.(2019年江苏徐州T19)(2)2162844x x x x--÷+. 解析:本题考查分式的除法,解题的关键是把分式的除法转化为分式的乘法先把分式的除法转化为分式的除法,再把分式的分子分母进行因式分解,然后约分化成最简分式.答案:解: 21628(4)(x 4)4244(4)2(4)x x x xx x x x x --+-÷=⨯=++-.20.(2019年江苏徐州T20)(1)解方程:22133x x x-+=--;解析:本题考查解分式方程,解题的关键是把分式方程转化为整式方程.先把分式方程两边同时乘以最简公分母,化成整式方程后,解整式方程,得到整式方程的根后,进行验根,最后确定方程的解.答案:解: 去分母,得:232x x -+-=-,解得x =32,当x =32,x -2≠0,所以原方程的解为:x =32.20.(2019年江苏徐州T20)(2)解不等式组:322,2155x x x x >-⎧⎨+-⎩≥.解析:本题考查了.本题考查解不等式组,解题的关键是正确求出不等式组的解集.先分别求出不等式组中两个不等式的解集,然后再求出它们的公共部分.答案:解: 解不等式3x >2x -2,解得x >-2;解不等式2x +1≥5x -5,解得x ≤2,所以不等式组的解为:-2<x ≤2.21.(2019年江苏徐州T21)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别转动这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:12341 2 3(2)积为9的概率为_________;积为偶数的概率为_________;(3)从1~12这12个整数中,随机选取1个整数,该数不是..(1)中所填数字的概率为_________.解析:本题考查概念的计算,解题的关键是准确填写(1)中的表格.(1)根据表格填空出两数的积;(2)找出积是9或是偶数的情形,然后根据概率公式进行计算; (3)找出12个数中不是表格所填的数字,然后利用概率公式进行计算.答案:解: (1)填表如下: 1 2 3 4 1 1 2 3 4 2 2 4 6 8 336912(2)112,23; 一共有12种情形,积是9的只有一种情形,所以积为9的概率为:112; 1 231 234 乙甲积12种情形中偶数有8种情形,所以积为偶数的概率为:82123=. (3)13.1-12这12个数中,不是表格所填的数字有5,7,10,11,所以所求的概率为41123=. 22.(2019年江苏徐州T22)某户居民2018年的电费支出情况(每两个月缴费1次)如图所示:电费支出条形统计图 电费支出分布扇形统计图根据以上信息,解答下列问题:(1)求扇形统计图中“9~10月”对应扇形的圆心角度数; (2)补全条形统计图.解析:本题考查了条形统计图和扇形统计图,解题的关键是从统计图中找出一对相关联的数据求出样本容量.(1)先计算出样本容易,然后再求出对应的圆心角的度数;(2)利用样本容量减去已知各组的频数,得出7-8月的电费,然后补全条形统计图.答案:解: (1)样本容量=240÷10%=2400,9-10月对应扇形的圆心角=280360422400⨯︒=°; (2)7-8月的电费=2400-300-240-350-280-330=900(元),补全的条形图如下:1~2月 3~4月 5~6月7~8月9~10月11~12月23.(2019年江苏徐州T23)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△ECB≌△FGC.解析:本题考查了平行四边形的性质,全等三角形的判定以及折叠的性质,解题的关键是综合运算折叠的性质和平行四边形的性质.(1)根据折叠图形中的相等的角和平行四边形中相等的角来证明;(2)根据边角边来证明两三角形全等.答案:解:(1)连接AC,交EF于点O,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠ACB,由折叠可知:∠DAC=∠ACG,AE=CE,AD=CG=BC,OA=OC,∴∠ACB=∠ACG,∴∠EAC=∠ECA,∵AB∥CD,∴∠ACD=∠CAE,∴∠ACE=∠ACD∴∠ECB=∠FCG;GFEO ABD第23题图(2)由折叠可知:∠AEF=∠CEF,∵AE∥CD,∴∠AEF=∠EFC,∴∠CEF =∠CFE ,∴CE =CF , 又∵BC =CG ,∠BCE =∠DCG , ∴△EBC ≌△FGC .24.(2019年江苏徐州T24)如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为»BC的中点,过点D 作直线AC 的垂线,垂足为E ,连接OD . (1)求证:∠A =∠DOB ;(2)DE 与⊙O 有怎样的位置关系?请说明理由.解析:本题考查了圆的基本性质和切线的判定,解题的关键是连接BC 构造垂直定理的基本形.(1)连接BC ,构造垂径定理的基本图形,利用直径所对圆周角是直角等知识来解决问题;(2)利用垂直于半径的外端的直线是圆的切线来进行计算.答案:解:(1)连接BD ,∵D 是弧BC 的中点,∴OD ⊥BC ,∵AB 是直径,∴∠ACB =90°, ∴OD ∥AE , ∴∠A =∠DOB .DOABC第24题图(2)DE是⊙O的切线.∵BC⊥AE,DE⊥AC,∴DE∥BC,∵OD⊥BC,∴DE⊥OD,∴DE是⊙O的切线.25.(2019年江苏徐州T25)如图,有一矩形的硬纸板,长为30cm,宽为20cm,在其四个角各剪去一个相同的小正方形,然后把四周的矩形折起,可做成一个无盖的长方体盒子,当剪去的正方形的边长为何值时,所得长方体盒子的底面积为200cm2?解析:本题考查了一元一次方程的应用,解题的关键是根据题目给定的相等关系,列出一元二次方程.答案:解:设剪去的小正方形的边长为xcm,则根据题意有:(30-2x)(20-2x)=200,解得x1=5,x2=20,当x=20时,20-2x<0,所以x=5.答:当剪去小正方形的边长为5cm时,长方体盒子的底面积为200cm2.26.(2019年江苏徐州T26)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:20cm10cm 20cm 20cm 30cm 30cm 30cm【尝试操作】【归纳发现】解析:本题考查与图形有关规律的探究,解题的关键是画出长度是40cm的图案.答案:解:【尝试操作】按照横放和平放两大类来进行画图;【归纳发现】按1,2,3,5,猜想出从第三个数开始,每一个数都等于前面两个数之和. 解:【尝试操作】【归纳发现】27.(2019年江苏徐州T27)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A .甲从中山路上点B 出发,骑车向北匀速直行;与此同时,乙从点A 出发,沿北京路步行向东匀速直行.设出发x min 时,甲、乙两人与点A 的距离分别为y 1m 、y 2m .已知y 1、y 2与x 的函数关系如图②所示.北京路中山路北BAx y /min/m y 1y 27.53.752000O(1)求甲、乙两人的速度;(2)当x 取何值时,甲、乙两人之间的距离最短?解析:本题考查了一次数函数的应用,涉及到二元一次方程组,勾股定理以及二次函数的知识等.解题的关键是从函数的图象中找出关键的点,利用二次一次方程组来求两人的速度. (1)从图象中找出当时间为3.75min 和7.5min 时 两人距A 点的距离相等,并据此列出二元一次方程组,从而求出两人的速度;(2)求出两人的距离与x 之间的关系,然后利用二次函数的知识求出两从之间距离何时为最短.答案:解:(1)设甲的速度为am /min ,乙的速度为bm /min ,根据题意有: 151********.512007.5a ba b⎧-=⎪⎨⎪-=⎩ ,解得a =240m /min ,b =80m /min ; 答:甲的速度是240m /min ,乙的速度是80m /min .(2)甲乙两人之间的距离22(1200240)(80)x x -+21090225x x -+ 当x =-9092102-=⨯(min )时,甲乙两人之间的距离为最短.28.(2019年江苏徐州T28)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=9x的图像上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.解析:本题考查了反比例函数的性质,角平分线的性质,相似三角形的判定与性质以及分式函数的最大值.解题的关键是构造相似三角形以及利用一元二次方程根的判别式来求分式函数的最大值.(1)利用角平分线的性质和三角形的内角和定理来求∠CPB的度数;(2)连接OP,证明△POC∽△DOP,得出OC×OD的值,然后来求△OCD的面积;(3)利用勾股定理以及面积公式求出△OAB面积关于BN=x 的分式函数,然后利用一元二次方程要的判别式,得到一个一元二次不等式,再利用二次函数图象的性质求出分式函数的最大值.答案:解:解:(1)∵AP,BP是△AOB两条外角的角平分线,∴∠PAB=12∠PAY,∠PBA=12∠ABX,∵∠OAB+∠OBA=90°,∴∠PAY+∠ABX=270°,∴∠PAB+∠PBA=135°,∴∠APB=45°.第28题答图①过点P 作PH ⊥AB 于H ,∴∠PMA =∠PHA =90°, ∵∠MAP =∠HAP ,PH =PH , ∴△PMA ≌△PHA , ∴PM =PH ,同理可证△PHB ≌△PNB , ∴PH =PN , ∴PM =PN , 设P 点的坐标为(a ,9a ),则a =9a,解得a =3,(取正值) ∴P 点的坐标为(3,3); (2)∵PM =PN =3,∴四边形PMON 为正方形,连接OP , ∴∠5=∠6=45°,OP =第28题答图②∵∠CPD =45°,∴∠7+8=45°, ∵PM ∥BC ,PN ∥OM ,∴∠3=∠7,∠4=∠8,∴∠3+∠4=45°, ∵∠5=∠4+∠2=45°, ∴∠2=∠3,同理∠1=∠4, ∴△POC ∽△DOP , ∴OP OCOD OP=,∴OP 2=OC ×OD ,∴OC ×OD =18, ∴192COD S OC OD ∆=⨯=.(3) 设BN =x ,AM =y ,∴OA =3-y ,OB =3-x , 由(1)可知:AB =x +y ,∵OA 2+OB 2=AB 2,∴(3-x )2+(3-y )2=(x +y )2,整理得:xy =9-3x -3y , ∴y =933xx -+, 11(3)(3)(933)22OABS x y x y xy xy ∆=--=---==22933(3)33x x x x x x --=++ , 设233x x k x -=+,整理,得:2(3)30x k x k +-+=∵x 是实数,∴23)120kk ∆=--≥(, 解得k 9≥+k 9≤-∵△OAB 的面积不可能大于9,∴k 9≤-∴OAB S 的最大值为第28题答图③。
徐州市2019年中考数学试卷及答案(解析word版)

2019年江苏省徐州市中考数学试卷一、选择题(本大题共有8小题.每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2019年江苏徐州)2﹣1等于()A. 2 B.﹣2 C.D.﹣考点:负整数指数幂.分析:根据a,可得答案.解答:解:2,故选:C.点评:本题考查了负整指数幂,负整数指数为正整数指数的倒数.2.(3分)(2019年江苏徐州)如图使用五个相同的立方体搭成的几何体,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据三视图的知识求解.解答:解:从正面看:上边一层最右边有1个正方形,下边一层有3个正方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(2019年江苏徐州)抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于B.等于C.小于D.不能确定考点:概率的意义.分析:根据概率的意义解答.解答:解:∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是.故选B.点评:本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.4.(3分)(2019年江苏徐州)下列运算中错误的是()A.+=B.×=C.÷=2 D.=3考点:二次根式的乘除法;二次根式的加减法.分析:利用二次根式乘除运算法则以及加减运算法则分别判断得出即可.解答:解:A、+无法计算,故此选项正确;B、×=,正确,不合题意;C、÷=2,正确,不合题意;D、=3,正确,不合题意.故选:A.点评:此题主要考查了二次根式的加减乘除运算,熟练掌握运算法则是解题关键.5.(3分)(2019年江苏徐州)将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2)D.y=﹣3(x﹣2)考点:一次函数图象与几何变换.分析:直接利用一次函数平移规律,“上加下减”进而得出即可.解答:解:∵将函数y=﹣3x的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣3x+2.故选:A.点评:此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.6.(3分)(2019年江苏徐州)顺次连接正六边形的三个不相邻的顶点.得到如图的图形,该图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.解答:解:此图形是轴对称图形但并不是中心对称图形,故选:B.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.7.(3分)(2019年江苏徐州)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形考点:中点四边形.分析:首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.解答:解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=CH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选C.点评:此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(3分)(2019年江苏徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A. 3 B. 2 C.3或5 D. 2或6考点:两点间的距离;数轴.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.(3分)(2019年江苏徐州)函数y=中,自变量x的取值范围为x≠1.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.(3分)(2019年江苏徐州)我国“钓鱼岛”周围海域面积约170 000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:170 000=1.7×105,故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)(2019年江苏徐州)函数y=2x与y=x+1的图象交点坐标为(1,2).考点:两条直线相交或平行问题.专题:计算题.分析:根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组即可得到两直线的交点坐标.解答:解:解方程组得,所以函数y=2x与y=x+1的图象交点坐标为(1,2).故答案为(1,2).点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.12.(3分)(2019年江苏徐州)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.考点:因式分解-提公因式法.分析:首先提取公因式ab,进而将已知代入求出即可.解答:解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.13.(3分)(2019年江苏徐州)半径为4cm,圆心角为60°的扇形的面积为πcm2.考点:扇形面积的计算.分析:直接利用扇形面积公式求出即可.解答:解:半径为4cm,圆心角为60°的扇形的面积为:=π(cm2).故答案为:π.点评:此题主要考查了扇形的面积公式应用,熟练记忆扇形面积公式是解题关键.14.(3分)(2019年江苏徐州)如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了22场.考点:条形统计图;扇形统计图.专题:图表型.分析:用平的场次除以所占的百分比求出全年比赛场次,然后乘以胜场所占的百分比计算即可得解.解答:解:全年比赛场次=10÷25%=40,胜场:40×(1﹣20%﹣25%)=40×55%=22场.故答案为:22.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.15.(3分)(2019年江苏徐州)在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为(﹣2,4).考点:坐标与图形变化-旋转.分析:建立网格平面直角坐标系,然后确定出点A与A′的位置,再写出坐标即可.解答:解:如图A′的坐标为(﹣2,4).故答案为:(﹣2,4).点评:本题考查了坐标与图形变化﹣旋转,作出图形,利用数形结合的思想求解更形象直观.16.(3分)(2019年江苏徐州)如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=15°.考点:等腰三角形的性质;翻折变换(折叠问题).分析:由AB=AC,∠A=50°,根据等边对等角及三角形内角和定理,可求得∠ABC的度数,又由折叠的性质,求得∠ABE的度数,继而求得∠CBE的度数.解答:解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=(180°﹣50°)=65°,∵将△ABC折叠,使点A落在点B处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°,∴∠CBE=∠ABC﹣∠ABE=65°﹣50°=15°.故答案为:15.点评:此题考查了折叠的性质、等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.17.(3分)(2019年江苏徐州)如图,以O为圆心的两个同心圆中,大圆与小圆的半径分别为3cm和1cm,若圆P与这两个圆都相切,则圆P的半径为1或2cm.考点:圆与圆的位置关系.专题:分类讨论.分析:如解答图所示,符合条件的圆P有两种情形,需要分类讨论.解答:解:由题意,圆P与这两个圆都相切若圆P与两圆均外切,如图①所示,此时圆P的半径=(3﹣1)=1cm;若圆P与两圆均内切,如图②所示,此时圆P的半径=(3+1)=2cm.综上所述,圆P的半径为1cm或2cm.故答案为:1或2.点评:本题考查了圆与圆的位置关系,解题的关键是确定如何与两圆都相切,难度中等.18.(3分)(2019年江苏徐州)如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为y=﹣3x+18.考点:动点问题的函数图象.分析:根据从图②可以看出当Q点到B点时的面积为9,求出正方形的边长,再利用三角形的面积公式得出EF所在的直线对应的函数关系式.解答:解:∵点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC 从点A开始向点C以2cm/s的速度移动.∴当P点到AD的中点时,Q到B点,从图②可以看出当Q点到B点时的面积为9,∴9=×(AD)•AB,∵AD=AB,∴AD=6,即正方形的边长为6,当Q点在BC上时,AP=6﹣x,△APQ的高为AB,∴y=(6﹣x)×6,即y=﹣3x+18.故答案为:y=﹣3x+18.点评:本题主要考查了动点函数的图象,解决本题的关键是求出正方形的边长.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2019年江苏徐州)(1)计算:(﹣1)2+sin30°﹣;(2)计算:(a+)÷(1+).考点:实数的运算;分式的混合运算;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用特殊角的三角函数值计算,最后一项利用立方根定义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1+﹣2=﹣;(2)原式=÷=•=a﹣1.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则解本题的关键.20.(10分)(2019年江苏徐州)(1)解方程:x2+4x﹣1=0;(2)解不等式组:.考点:解一元一次不等式组;解一元二次方程-配方法.分析:(1)利用配方法求出x的值即可.(2)分别求出各不等式的解集,再求出其公共解集即可.解答:解:(1)原式可化为(x2+4x+4﹣4)﹣1=0,即(x+2)2=5,两边开方得,x+2=±,解得x1=﹣2+,x2=﹣2﹣;(2),由①得,x≥0,由②得,x<2,故此不等式组的解集为:0≤x<2.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(7分)(2019年江苏徐州)已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.考点:平行四边形的判定与性质.专题:证明题.分析:根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.解答:证明:如图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.点评:本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.(7分)(2019年江苏徐州)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8 88 0.4乙89 9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.(填“变大”、“变小”或“不变”).考点:方差;算术平均数;中位数;众数.专题:计算题.分析:(1)根据众数、平均数和中位数的定义求解;(2)根据方差的意义求解;(3)根据方差公式求解.解答:解:(1)甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为:8,8,9;变小.点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n ﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.23.(8分)(2019年江苏徐州)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为;(2)如果随机抽取2名同学共同展示,求同为男生的概率.考点:列表法与树状图法.专题:计算题.分析:(1)4名学生中女生1名,求出所求概率即可;(2)列表得出所有等可能的情况数,找出同为男生的情况数,即可求出所求概率.解答:解:(1)如果随机抽取1名同学单独展示,那么女生展示的概率为;(2)列表如下:男男男女男﹣﹣﹣(男,男)(男,男)(女,男)男(男,男)﹣﹣﹣(男,男)(女,男)男(男,男)(男,男)﹣﹣﹣(女,男)女(男,女)(男,女)(男,女)﹣﹣﹣所有等可能的情况有12种,其中同为男生的情况有6种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)(2019年江苏徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.考点:分式方程的应用.分析:设票价为x元,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.25.(8分)(2019年江苏徐州)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C 处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-方向角问题.分析:(1)作辅助线,构造直角三角形,解直角三角形即可;(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.解答:解:(1)如右图,过点A作AD⊥BC于点D.由图得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50.∴CD=BC﹣BD=200﹣50=150.在Rt△ACD中,由勾股定理得:AC==100≈173(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2,∴∠BAC=90°,∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.点评:考查了解直角三角形的应用﹣方向角问题,关键是熟练掌握勾股定理,体现了数学应用于实际生活的思想.26.(8分)(2019年江苏徐州)某种上屏每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?考点:二次函数的应用.分析:(1)根据待定系数法,可得二次函数解析式,根据顶点坐标,可得答案;(2)根据函数值大于或等于16,可得不等式的解集,可得答案.解答:解;(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得,y=﹣x2+20x﹣75的顶点坐标是(10,25)当x=10时,y最大=25,答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(2)∵函数y=﹣x2+20x﹣75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=﹣x2+20x﹣75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.点评:本题考查了二次函数的应用,利用待定系数法求解析式,利用顶点坐标求最值,利用对称点求不等式的解集.27.(10分)(2019年江苏徐州)如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3).(1)k=3;(2)试说明AE=BF;(3)当四边形ABCD的面积为时,求点P的坐标.考点:反比例函数综合题.专题:综合题.分析:(1)根据反比例函数图象上点的坐标特征易得k=3;(2)设A点坐标为(a,),易得D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),根据图形与坐标的关系得到PB=3﹣,PC=﹣,PA=1﹣a,PD=1,则可计算出==,加上∠CPD=∠BPA,根据相似的判定得到△PCD∽△PBA,则∠PCD=∠PBA,于是判断CD∥BA,根据平行四边形的判定方法易得四边形BCDE、ADCF 都是平行四边形,所以BE=CD,AF=CD,则BE=AF,于是有AE=BF;(3)利用四边形ABCD的面积=S△PAB﹣S△PCD,和三角形面积公式得到•(3﹣)•(1﹣a)﹣•1•(﹣)=,整理得2a2+3a=0,然后解方程求出a的值,再写出P点坐标.解答:解:(1)把B(1,3)代入y=得k=1×3=3;故答案为3;(2)反比例函数解析式为y=,设A点坐标为(a,),∵PB⊥x于点C,PA⊥y于点D,∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,∴==,=,∴=,而∠CPD=∠BPA,∴△PCD∽△PBA,∴∠PCD=∠PBA,∴CD∥BA,而BC∥DE,AD∥FC,∴四边形BCDE、ADCF都是平行四边形,∴BE=CD,AF=CD,∴BE=AF,∴AF+EF=BE+EF,即AE=BF;(3)∵四边形ABCD的面积=S△PAB﹣S△PCD,∴•(3﹣)•(1﹣a)﹣•1•(﹣)=,整理得2a2+3a=0,解得a1=0(舍去),a2=﹣,∴P点坐标为(1,﹣2).点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、图形与坐标和平行四边形的判定与性质;会利用三角形相似的知识证明角相等,从而证明直线平行.28.(10分)(2019年江苏徐州)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.考点:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.专题:压轴题;存在型.分析:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.解答:解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.点评:本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG=∠ADB及∠FCE=∠ADB是解决本题的关键.。
(真题)江苏省徐州2019年中考数学试题有答案(Word版)

中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.(3.00A.1 B.﹣1C.3 D.﹣3(3.00 分)为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×1093.(3.00分)下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6D.a2+a2=2a44.(3.00分)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°5.(3.00分)多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2(3.00分)如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,AC=2.将Rt△ABC 先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)(3.00分)在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6(3.00分)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°9.(3.00分)一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π10.(3.00分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共15分。
2019年江苏省徐州市中考数学试卷附分析答案

MN=4,则 AC 的长为
.
14.(3 分)如图,A、B、C、D 为一个外角为 40°的正多边形的顶点.若 O 为正多边形的
中心,则∠OAD=
.
15.(3 分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的
半径 r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长 l 为
cm.
24.(8 分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为 的中点.过点 D 作直线 AC 的垂线,垂足为 E,连接 OD. (1)求证:∠A=∠DOB; (2)DE 与⊙O 有怎样的位置关系?请说明理由.
第 4页(共 21页)
25.(8 分)如图,有一块矩形硬纸板,长 30cm,宽 20cm.在其四角各剪去一个同样的正 方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取 何值时,所得长方体盒子的侧面积为 200cm2?
第 6页(共 21页)
2019 年江苏省徐州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分,在每小题所给出的四个选项中, 恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置) 1.(3 分)﹣2 的倒数是( )
A.
B.
C.2
D.﹣2
当它再次经过点 P 时,所得抛物线的函数表达式为
.
18.(3 分)函数 y=x+1 的图象与 x 轴、y 轴分别交于 A、B 两点,点 C 在 x 轴上.若△ABC
为等腰三角形,则满足条件的点 C 共有
个.
三、解答题(本大题共有 10 小题,共 86 分,请在答题卡指定区域内作答,解答时应写出
2019江苏省徐州市中考真题解析-

答案解析A1徐州市2019年初中毕业生学业考试数学试题一、选择题1.A【分析】本题解答时要利用倒数的概念.【解答】-2的倒数是12-,故本题选A.2.C【分析】本题解答时要运用整式相关的法则进行计算.【解答】∵22242a a a a+=≠;22222()2a b a ab b a b+=++≠+;339()a a=;2356a a a a⋅=≠,故本题选C.3.D【分析】本题解答时利用三角形的三边关系.【解答】∵2+2=4,5+6=11<12,2+5=7,6+8=14>10,故本题选D.4.C【分析】本题解答时要利用频率估计概率【解答】由于抛掷一枚质地均匀的硬币,正面向上的概率为12,所以由于抛掷一枚质地均匀的硬币2000次,正面向上的次数最有可能为2000×12=1000,故本题选C.5.B【分析】本题解答时要把数据按由小到大的顺序重新排列.【解答】把数据重新排列为:37,37,38,39,40,40,40,所以它的众数和中位数分别为40,39,故本题选B.6.D【分析】本题解答时要利用轴对称图形的性质进行判别.【解答】A、B、C选项的三个图都是轴对称,D选项的图不是轴对称,故本题选D.7.A【分析】本题解答时要利用反比例函数的增减性.【解答】由于x1<0,则y1= 12019x<,x2>0,则y2=22019x>,∴y2>y1,故本题选A.8.C【分析】本题解答时要利用数形结合的思想以及进行科学记数法的计算.【解答】由于点A表示的数为62.510⨯,靠近B的整数应该是62.510⨯的20倍,于是B点最接近的数约为62.510⨯×20=5×107,故本题选C. 9.2 解析:本题考查了立方根的概念,8的立方根是2,故本题的答案为2.9.2【分析】本题解答时要应用立方根的概念.【解答】8的立方根是2,故本题的答案为2.10.x≥-1【分析】本题解答时要掌握分式有意义的条件【解答】根据题意有:x+1≥0,∴x≥-1.11.x1=2,x2=-2.分析】本题解答时利用直接开平方根进行求解.【解答】∵x2-4=0,∴x2=4,∴x1=2,x2=-2.12.4【分析】本题解答时要运用整体代入的思想.【解答】∵a=b+2,∴a-b=2,a2-2ab+b2=(a-b)2=22=4.13.16【分析】本题解答时要运用矩形的性质和三角形中位线的性质.【解答】∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵M,N分别为BC,OC的中点,∴OB=2MN=2×4=8,∴AC=2OB=16.14.30【分析】本题解答时要运用正多形与圆的关系来进行计算.【解答】正多边形的边数=360940︒=︒,∴正多边形的中心角=360409︒=︒,∴∠AOD =3×40°=120°,∵OA =OD ,∴∠OAD =180120302︒-︒=°. 15.6 【分析】 本题解答时要注意圆锥的侧面展开图扇形的弧长就是圆锥底面圆的周长.【解答】 12022180l ππ⨯=⨯,∴l =6.16.262【分析】 本题解答时要通过作垂线构造矩形和直角三角形.【解答】过A 作AE ⊥BC 于E ,则四边形ADCE 为矩形,在Rt △ACD ,∵AD =62,∠ACD =∠EAC =17°,∴AE =CD =tan17AD ︒=620.31=200, ∵AE ⊥BE ,∠BAE =45°,∴BE =AE =200,∴BC =CE +BE =AD +BE =62+200=262(m )第16题答图17.21482x x -+【分析】 本题解答时要掌握二次函数平移的规律.【解答】设过点O (0,0)的解析式为y =ax 2,把点(2,2)代入,有2=4a ,∴a =12,∴抛物线的解析式为:212y x =,把这个图形向右平移m 个单位的解析式为:y =21()2x m -,代入(2,2),有2=21(2)2m -,解得m 1=0(舍去),m 2=4,所以所得的抛物线的函数表达式为:2211(4)4822y x x x =-=-+ 18.4【分析】 本题解答时要分类讨论.【解答】 作AB 的垂直平分线,交于坐标原点,△OAB 为等腰三角形;以B 为圆心BA 长为半径交x 轴于C 2,△C 2AB 为等腰三角形,以A 为圆心,AB 长为半径,交x 轴于C 3,C 4,则△C 3AB ,△C 4AB 为等腰三角形,所以满足条件的C 点的有4个.第18题图19.【分析】(1)先分别求出零次幂,算术平方根,负整数指数幂以及绝对值,然后进行加减运算.(2)先把分式的除法转化为分式的除法,再把分式的分子分母进行因式分解,然后约分化成最简分式.【解答】 解:(1)原式=1-3+9-5=2. (2)21628(4)(x 4)4244(4)2(4)x x x xx x x x x --+-÷=⨯=++-. 20.【分析】(1)先把分式方程两边同时乘以最简公分母,化成整式方程后,解整式方程,得到整式方程的根后,进行验根,最后确定方程的解.(2)先分别求出不等式组中两个不等式的解集,然后再求出它们的公共部分.【解答】解:(1)去分母,得:232x x-+-=-,解得x=32,当x=32,x-2≠0,所以原方程的解为:x=32.(2)解不等式3x>2x-2,解得x>-2;解不等式2x+1≥5x-5,解得x≤2,所以不等式组的解为:-2<x≤2.21.【分析】(1)根据表格填空出两数的积;(2)找出积是9或是偶数的情形,然后根据概率公式进行计算;(3)找出12个数中不是表格所填的数字,然后利用概率公式进行计算.【解答】(1)填表如下:(2)112,23;一共有12种情形,积是9的只有一种情形,所以积为9的概率为:112;12种情形中偶数有8种情形,所以积为偶数的概率为:82 123=.(3)13.1-12这12个数中,不是表格所填的数字有5,7,10,11,所以所求的概率为41123=.22.【分析】(1)先计算出样本容易,然后再求出对应的圆心角的度数;(2)利用样本容量减去已知各组的频数,得出7-8月的电费,然后补全条形统计图.【解答】解:(1)样本容量=240÷10%=2400,9-10月对应扇形的圆心角=280360422400⨯︒=°;(2)7-8月的电费=2400-300-240-350-280-330=900(元),补全的条形图如下:23.【分析】(1)根据折叠图形中的相等的角和平行四边形中相等的角来证明;(2)根据边角边来证明两三角形全等.【解答】解:(1)连接AC,交EF于点O,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠ACB,由折叠可知:∠DAC=∠ACG,AE=CE,AD=CG=BC,OA=OC,∴∠ACB=∠ACG,∴∠EAC=∠ECA,∵AB∥CD,∴∠ACD=∠CAE,∴∠ACE=∠ACD∴∠ECB=∠FCG;第23题图(2)由折叠可知:∠AEF=∠CEF,∵AE∥CD,∴∠AEF=∠EFC,∴∠CEF=∠CFE,∴CE=CF,又∵BC=CG,∠BCE=∠DCG,∴△EBC≌△FGC.24.【分析】(1)连接BC,构造垂径定理的基本图形,利用直径所对圆周角是直角等知识来解决问题;(2)利用垂直于半径的外端的直线是圆的切线来进行计算.【解答】解:(1)连接BD,∵D是弧BC的中点,∴OD⊥BC,∵AB是直径,∴∠ACB=90°,∴OD∥AE,∴∠A=∠DOB.第24题图(2)DE是⊙O的切线.∵BC⊥AE,DE⊥AC,∴DE∥BC,∵OD⊥BC,∴DE⊥OD,∴DE是⊙O的切线.25.【分析】根据题目给定的相等关系,列出一元二次方程,解这个方程取舍后得出实际问题的解.【解答】解:设剪去的小正方形的边长为xcm,则根据题意有:(30-2x)(20-2x)=200,解得x1=5,x2=20,当x=20时,20-2x<0,所以x=5.答:当剪去小正方形的边长为5cm时,长方体盒子的底面积为200cm2.26.【分析】【尝试操作】按照横放和平放两大类来进行画图;【归纳发现】按1,2,3,5,猜想出从第三个数开始,每一个数都等于前面两个数之和.【解答】解:【尝试操作】GBA B【归纳发现】附:长度是50cm时,有8种不同的图案:27.【分析】(1)从图象中找出当时间为3.75min和7.5min时两人距A点的距离相等,并据此列出二元一次方程组,从而求出两人的速度;(2)求出两人的距离与x之间的关系,然后利用二次函数的知识求出两从之间距离何时为最短.【解答】解:(1)设甲的速度为am/min,乙的速度为bm/min,根据题意有:15151200447.512007.5a ba b⎧-=⎪⎨⎪-=⎩,解得a=240m/min,b=80m/min;答:甲的速度是240m/min,乙的速度是80m/min.(2)甲乙两人之间的距离==80当x=-9092102-=⨯(min)时,甲乙两人之间的距离为最短.28.【分析】(1)利用角平分线的性质和三角形的内角和定理来求∠CPB的度数;(2)连接OP,证明△POC∽△DOP,得出OC×OD的值,然后来求△OCD的面积;(3)利用勾股定理以及面积公式求出△OAB 面积关于BN=x的分式函数,然后利用一元二次方程要的判别式,得到一个一元二次不等式,再利用二次函数图象的性质求出分式函数的最大值.【解答】解:(1)∵AP,BP是△AOB两条外角的角平分线,∴∠P AB=12∠P AY,∠PBA=12∠ABX,∵∠OAB+∠OBA=90°,∴∠P AY+∠ABX=270°,∴∠P AB+∠PBA=135°,∴∠APB=45°.设233x x k x -=+,整理,得:2(3)30x k x k +-+= ∵x 是实数,∴23)120k k ∆=--≥(, 解得k 9≥+或k 9≤-∵△OAB 的面积不可能大于9,∴k 9≤- ∴OAB S ∆的最大值为第28题答图③。
(最新)2019年江苏省徐州市中考数学试卷及答案(解析版)

江苏省徐州市2019年中考数学试卷数 学(满分:140分 考试时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的) 1.2-的的倒数是( )A .12-B .12C .2D .2-2.下列计算正确的是( ) A .224a a a += B .222()a b a b ++= C .339()a a =D .326a a a =g 3.下列长度的三条线段,能组成三角形的是 ( ) A .2,2,4 B .5,6,12 C .5,7,2D .6,8,104.抛掷一枚质地均匀的硬币2 000次,正面朝上的次数最有可能为( ) A .500 B .800 C .1 000 D .1 2005.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为 ( ) A .40,37 B .40,39 C .39,40 D .40,386.下图均由正六边形与两条对角线所组成,其中不是..轴对称图形的是 ( )ABCD7.若11(),A x y 、22(,)B x y 都在函数2019y x =的图象上,且120x x <<,则 ( )A .12y y <B .12y y =C .12y y >D .12y y =-8.如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是 ( )A .6510⨯B .710C .7510⨯D .810二、填空题(本大题共有10小题,每小题3分,共30分) 9.8的立方根是 .10.x 的取值范围是 . 11.方程240x -=的解为 .12.若2a b +=,则代数式222a ab b +-的值为 .13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为 .(第13题)(第14题)14.如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠= .15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2cm r =,扇形的圆心角120θ=︒,则该圆锥的母线长l 为 cm .(第15题)(第14题)16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45︒,测得该建筑底部C 处的俯角为17︒.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为 m .(参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈) 17.已知二次函数的图形经过点()2,2P ,顶点为()0,0O ,将该图像向右平移,当它再次经过点P 时,所得抛物线的函数表达式为 .18.函数1y x +=的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若ABC △为等腰三角形,则满足条件的点C 共有 个. 三、解答题(本大题共有10小题,共86分) 19.(本题10分)计算: (1)021π()5|3|---;(2)2162844x x x x--÷+.20.(本题10分)(1)解方程:22133xx x-+=--(2)解不等式组:322,21)5 5.x xx x-⎧⎨+-⎩>≥21.(本题7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是..(1)中所填数字的概率为.22.(本题7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9~10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(本题8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)ECB FCG∠=∠;(2)EBC FGC△≌△.24.(本题8分)如图,AB为Oe的直径,C为Oe上一点,D为»BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠∠=;(2)DE与Oe有怎样的位置关系?请说明理由.____________________________ _25.(本题8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为2200cm?26.(本题8分)【阅读理解】用10cm20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】27.(本题9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A .甲从中山路上点B 出发,骑车向北匀速直行;与此同时,乙从点A 出发,沿北京路步行向东匀速直行.设出发min x 时,甲、乙两人与点A 的距离分别为1m y 、2m y .已知1y 、2y 与x 之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x 取何值时,甲、乙两人之间的距离最短?28.(本题11分)如图,平面直角坐标系中,O 为原点,点A 、B 分别在y 轴、x 轴的正半轴上.AOB △的两条外角平分线交于点P ,P 在反比例函数9y x=的图象上.PA 的延长线交x 轴于点C ,PB 的延长线交y 轴于点D ,连接CD .(1)求P 的度数及点P 的坐标; (2)求OCD △的面积;(3)AOB △的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.备用图【解析】由于点A表示的数为6⨯的20倍,于是B2.5102.510⨯,靠近B的整数应该是6点最接近的数约为67⨯⨯=⨯.故选C.2.51020510的有4个.19.【答案】解:(1)原式13952=-+-=.(2)21628(4)(4)42 44(4)2(4)x x x x xx x x x x--+-÷=⨯=++-&.【解析】(1)先计算零次幂、算术平方根、负整数指数幂以及绝对值,然后进行加减运算.(2)先把分式的除法转化为分式的除法,再进行约分化简即可.21.【答案】(1)填表如下:12【解析】解题的关键是从统计图中获得必要的信息.(1)先计算出样本容量,再求出对应的圆心角的度数;(2)利用样本容量减去已知各组的频数,得出7~8月的电费,然后补全条形统计图.【考点】条形统计图和扇形统计图的综合运用.23.【答案】解:(1)连接AC,交EF于点O,Q四边形ABCD是平行四边形,∴AD BC=,AD BC∥,∴DAC ACB∠=∠,由折叠可知:DAC ACG∠=∠,AE CE=,AD CG BC==,OA OC=,∴ACB ACG∠=∠,∴EAC ECA∠=∠,Q AB CD∥,∴ACD CAE∠=∠,∴ACE ACD∠=∠,∴ECB FCG∠=∠;(2)由折叠可知:AEF CEF∠=∠,Q AE CD∥,∴AEF EFC∠=∠,∴CEF CFE∠=∠.∴CE CF=,又Q BC CG=,BCE DCG∠=∠,∴EBC FGC△≌△.【解析】解题的关键是综合运用折叠的性质和平行四边形的性质.(1)根据折叠图形中的相等的角和平行四边形中相等的角来证明;(2)根据边角边来证明两三角形全等.【考点】平行四边形的性质,全等三角形的判定以及折叠的性质.24.【答案】解:(1)连接BC,Q D是弧BC的中点,∴OD BC⊥,Q AB是直径,∴90ACB∠=︒,∴OD AE∥,∴A DOB∠=∠.(2)DE是Oe的切线.Q BC AE⊥,DE AC⊥,∴DE BC∥,Q OD BC⊥,∴DE OD⊥,∴DE是Oe的切线.【解析】解题的关键是连接BC,利用垂径定理求解.(1)连接BC,由垂径定理得OD BC⊥,再利用直径所对圆周角是直角得到OD AE∥即可;(2)先由垂直得DE BC∥,然后由OD BC⊥得DE OD⊥,利用垂直于半径的外端的直线是圆的切线即可得证.【考点】圆的基本性质和切线的判定.25.【答案】解:设剪去的小正方形的边长为cmx,则根据题意有:(302)(202)200x x--=,解得15x=,220x=,当20x=时,2020x-<,所以5x=.答:当剪去小正方形的边长为5cm时,长方体盒子的底面积为2200cm.【解析】解题的关键是根据题目列出一元二次方程.设小正方形边长为cmx,则长方体底面长为(302)cmx-,宽为(202)cmx-.根据底面积列出方程求解即可.【考点】一元一次方程的应用.26.【答案】解:【尝试操作】再按照全部横放、全部竖放、有横放有竖放三个类别画图.【归纳发现】长度是50cm时,有8种不同的图案:根据1,2,3,5,猜想:从第3个数开始,每一个数都等于前面2个数之和,长度是60cm 时,有13种不同的图案.【解析】解题的关键是画出长度不同的图案.【尝试操作】按照全部横放、全部竖放和有横放有竖放三大类来画图;【归纳发现】先画出前几个长度的图案,填出∴P点的坐标为(33),;(3)如图③,设BN x =,AM y =.∴3OA y =-,3OB x =-,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年江苏省徐州市中考数学试卷数学试题一、选择题(共8小题,每小题2分,满分16分)1.-3的绝对值是()A.3B.-3C.13D.-132.5月31日,参观上海世博会的游客约为505000人.505000用科学记数法表示为()A.505×103B.5.05×103C.5.05×104D.5.05×1053.下列计算正确的是()A.a4+a2=a6B.2a·4a=8aC.a5÷a2=a3D.(a2)3=a54.下列四个图案中,是轴对称图形,但不是中心对称图形的是()5.为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400C.1万D.3万6.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方体C.圆柱D.圆锥第6题图7.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点MB.格点NC.格点PD.格点Q第7题图8.平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位二、填空题(本大题共有10小题,每小题3分,共30分)9.写出1个比-1小的实数________.10.计算(a -3)2的结果为________.11.若∠α=36°,则∠α的余角为________度.12.若正多边形的一个外角是45°,则该正多边形的边数是________.13.函数y =1x -1中自变量x 的取值范围是________.14.x ≤3的解集是________.15.如图,一个圆形转盘被分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P (3),指针指向标有“4”所在区域的概率为P (4),则P (3)________P (4).(填“>”、“=”或“<”)第15题图第16题图16.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆的半径为5cm ,小圆的半径为3cm ,则弦AB 的长为________cm.17.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为________.第17题图18.用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n -1)个图形多________枚棋子.第18题图三、解答题(共10小题,满分74分)19.(本题6分)计算:(1)20100-(12)-1+9;(2)(x 2x +4-16x +4)÷x -4x.20.(本题6分)2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该市今年2月~5月共成交商品住宅________套;(2)请你补全条形统计图;(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是______套.第20题图21.(本题6分)甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、“布”三种手势(如图)中的一种,规定“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,手势相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.第21题图22.(本题6分)在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班人数比九(2)班多5人.问两班各有多少人?23.(本题8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.第23题图24.(本题8分)如图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A距地面的高AD为12m.求旗杆的高度.第24题图25.(本题8分)如图,已知A(n,-2)、B(1,4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b-mx<0的解集.(直接写出答案)第25题图26.(本题8分)如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-AD -DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:(1)梯形上底的长AD=________cm,梯形ABCD的面积=________cm2;(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);(3)当t为何值时,△EBF与梯形ABCD的面积之比为1∶2?第26题图27.(本题8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①△AEM的周长=____cm;②求证:EP =AE +DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.第27题图28.(本题10分)如图,已知二次函数y =-14x 2+32x +4的图象与y 轴交于点A ,与x 轴交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC .(1)点A 的坐标为________,点C 的坐标为________;(2)线段AC 上是否存在点E ,使得△EDC 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有2个?第28题图2010年江苏省徐州市中考数学试卷1.A【解析】|-3|=-(-3)=3.2.D【解析】505000用科学记数法表示为5.05×105.3.C【解析】A 、a 4+a 2,无法计算,故此选项错误;B 、2a ·4a =8a 2,故此选项错误;C 、a 5÷a 2=a 3,正确;D 、(a 2)3=a 6,故此选项错误.4.A 【解析】A 、是轴对称图形,不是中心对称图形,符合题意;B 、不是轴对称图形,也不是中心对称图形,不符合题意;C 、不是轴对称图形,是中心对称图形,不符合题意;D 、是轴对称图形,也是中心对称图形,不符合题意.5.D【解析】∵发放3万份问卷,∴调查中的样本容量是3万.6.C 【解析】根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.7.B 【解析】如解图,连接N 和两个三角形的对应点,发现两个三角形的对应点到点N 的距离相等,因此格点N 就是所求的旋转中心.第7题解图8.B 【解析】二次函数y =(x -2009)(x -2010)+4=[(x -2010)+1](x -2010)+4设t =x -2010,则原二次函数为y =(t +1)t +4=t 2+t +4=(t +12)2-14+4=(t +12)2+154.则原抛物与x 轴没的交点.若原抛物线向下平移4个单位,则新抛物的解析式为:y =(t +12)2+154-4=(t +12)2-14.则新抛物与x 轴的两交点距离为|0-(-1)|=1.【一题多解】二次函数y =(x -2009)(x -2010)+4的图象向下平移4个单位得y =(x -2009)(x -2010),属于交点式,与x 轴交于两点(2009,0)、(2010,0),两点的距离为1,符合题意.9.-2(答案不唯一)【解析】比-1小的实数,如-2、-3等.10.a 2-6a +9【解析】(a -3)2=a 2-6a +9.11.54【解析】根据定义∠α的余角度数是90°-36°=54°.12.8【解析】∵多边形外角和是360°,正多边形的一个外角是45°,∴360°÷45°=8,即该正多边形的边数是8.13.x ≠1【解析】根据题意得:x -1≠0,解得:x ≠1.14.-1≤x <2【解析】由(1)移项得,-x ≤1,化系数为1得,x ≥-1,由(2)去分母得,x <2,在数轴上表示两个解集如解图所示,故原不等式组的解集为:-1≤x <2.第14题解图第16题解图15>【解析】∵一个圆形转盘被等分成八个扇形区域,“3”有三个区域,“4”有两个区域,∴P (3)=38,P (4)=28,所以P (3)>P (4).16.8【解析】如解图连接OA 、OC ,∵AB 是小圆的切线,∴OC ⊥AB ,∵OA =5c m ,OC =3c m ,∴AC =OA 2-OC 2=52-32=4c m ,∵AB 是大圆的弦,OC 过圆心,OC ⊥AB ,∴AB =2AC =2×4=8c m .17.2【解析】扇形的弧长=120π×6180=4π,∴圆锥的底面半径为4π÷2π=2.18.3n -2【解析】设第n 个图形的棋子数为S n .第1个图形,S 1=1;第2个图形,S 2=1+4;第3个图形,S 3=1+4+7;则第n 个图形比第(n -1)个图形多(3n -2)枚棋子.19.解:(1)原式=1-2+3=2;(3分)(2)原式=(x +4)(x -4)x +4×x x -4(4分)=x .(6分)20.解:(1)18000;(2分)【解法提示】2700÷15%=18000(套).(2)补全条形统计图如解图:第20题解图(4分)【解法提示】3月份:18000-2700-6480-4320=4500(套).(3)3780,4410.(6分)【解法提示】极差:6480-2700=3780(套);中位数:(4500+4320)÷2=4410(套).21.解:根据题意,画树状图如解图,第21题解图(4分)分析可得,共9种情况,两人一次性分出胜负的有6种;故其概率为23.答:两人一次性分出胜负的概率是23.(6分)22.解:设九(1)班有x 人,九(2)班有y 人.=51.2×225y ,解得=50=45.(4分)答:九(1)班有50人,九(2)班有45人.(6分)23.证明:(1)∵CE ∥BF ,∴∠ECD =∠FBD ,∠DEC =∠DFB ;又∵D 是BC 的中点,即BD =DC ,∴△BDF ≌△CDE (AA S);(4分)(2)∵AB =AC ,∴△ABC 是等腰三角形;又∵BD =DC ,∴AD ⊥BC (三线合一),由(1)知:△BDF ≌△CDE ,则DE =DF ,DB =DC ,且EF 垂直BC ;∴四边形BFCE 是菱形(对角线互相平分且互相垂直的四边形为菱形).(8分)24.解:如解图,过点A 作AE ⊥BC 于点E,∵AD ∥CE ,∴Rt △ACE 中,CE =AD =12m ,∠CAE =60°,(2分)∴AE =CE ÷t an 60°=4 3.(4分)Rt △AEB 中,AE =43,∠BAE =30°,第24题解图∴BE =AE ·t an 30°=4.BC =BE +CE =4+12=16.故旗杆的高度为16米.(8分)25.解:(1)∵B (1,4)在反比例函数y =mx 上,∴m =4,又∵A (n ,-2)在反比例函数y =mx 的图象上,∴n =-2,又∵A (-2,-2)、B (1,4)是一次函数y =kx +b 的上的点,联立方程组解得:k =2,b =2,∴关系式分别为:y =4x ;y =2x +2;(3分)(2)如解图,过点A 作AD ⊥CD ,易知A 、B 、C 点坐标为:A (-2,-2),B (1,4),C (0,2),∴AD =2,CO =2,第25题解图∴△AOC 的面积为:S =12AD ·CO =12×2×2=2;(6分)(3)0<x <1或x <-2.(8分)【解法提示】由图象知:当0<x <1和-2<x <0时函数y =4x 的图象在一次函数y =kx +b 图象的上方,∴不等式kx +b -mx <0的解集为:0<x <1或x <-2.26.解:(1)2,14;(2分)【解法提示】由图可知:OM 段为抛物线,此时点E 、F 分别在BA 、BC 上运动;当E 、A 重合,F 、C 重合时,t =5,∴AB =BC =5c m ;MN 段是线段,且平行于t 轴,此时F 运动到终点C ,E 点在线段AD 上运动;∴AD =1×2=2c m ,CD =2×S △BEF ÷BC =2×10÷5=4c m ;∴S 梯形ABCD =12(AD +BC )·CD =12×(2+5)×4=14c m 2.(2)当点E 在BA 上运动时,设抛物线的解析式为y =at 2,把M 点的坐标(5,10)代入得a =25,∴y =25t 2,(0<t ≤5);当点E 在DC 上运动时,设直线的解析式为y =kt +b ,把P (11,0),N (7,10)代入,得11k +b =0,7k +b =10,解得k =-52,b =552,所以y =-52t +552,(7≤t <11);(5分)(3)当0<t ≤5时,252=12×14,∴t =702;当7<t ≤11时,-52t +552=12×14,∴t =8.2;∴t =702或8.2时,△BEF 与梯形ABCD 的面积比为1∶2.(8分)27.解:(1)由折叠知BE =EM ,∠B =∠EMP =90°.①6;(2分)【解法提示】△AEM 的周长=AE +EM +AM =AE +EB +AM =AB +AM .∵AB =4,M 是AD 中点,∴△AEM 的周长=4+2=6(c m ).②现证明:EP =AE +PD .如解图,取EP 的中点G ,则在梯形AEPD 中,MG 为中位线,∴MG =12(AE +PD ),在Rt △EMP 中,MG 为斜边EP 的中线,∴MG =12EP ,第27题解图∴EP =AE +PD ;(4分)【一题多解】如解图,延长EM 交CD 延长线于Q 点,∵∠A =∠MDQ =90°,AM =DM ,∠AME =∠DMQ ,∴△AME ≌△DMQ ,∴AE =DQ ,又∵∠EMP =∠B =90°,∴PM 垂直平分EQ ,有EP =PQ .∵PQ =PD +DQ ,∴EP =AE +PD;(4分)(2)△PDM 的周长保持不变.设AM =x ,则MD =4-x .由折叠性质可知,EM =4-AE ,在Rt △AEM 中,AE 2+AM 2=EM 2,即AE 2+x 2=(4-AE )2,整理得:AE 2+x 2=16-8AE +AE 2,∴AE =18(16-x 2),又∵∠EMP =90°,∴∠AME +∠DMP =90°,∵∠AME +∠AEM =90°,∴∠AEM =∠DMP ,又∵∠A =∠MDP ,∴△PDM ∽△MAE ,∴C △PDM C △MAE =MDAE,∴C △PDM =C △MAE ·MDAE =(4+x )·4-x 18(16-x 2)=8.∴△PDM 的周长保持不变.(8分)28.(1)【思维教练】抛物线的解析式中,令x =0即得二次函数与y 轴交点A 的纵坐标,令y =0即得二次函数与x 轴交点的横坐标.解:(0,4),(8,0);(2分)【解法提示】在二次函数中令x =0得y =4,∴点A 的坐标为(0,4),令y =0得:-14x 2+32x +4=0,即:x 2-6x -16=0,解得:x 1=-2和x 2=8,∴点B 的坐标为(-2,0),点C 的坐标为(8,0).(2)【思维教练】根据A 、C 的坐标,易求得直线AC 的解析式,由于等腰△EDC 的腰和底不确定,因此要分成三种情况讨论:①CD =DE ,由于OD =3,OA =4,那么DA =DC =5,此时A 点符合E 点的要求,即此时A 、E 重合;②CE =DE ,根据等腰三角形三线合一的性质知:E 点横坐标为点D 的横坐标加上CD 的一半,然后将其代入直线AC 的解析式中,即可得到点E 的坐标;③CD =CE ,此时CE =5,过E 作EG ⊥x 轴于G ,已求得CE 、CA 的长,即可通过相似三角形(△CEG ∽△CAO )所得比例线段求得EG 、CG 的长,从而得到点E 的坐标.解:易得D (3,0),CD =5,设直线AC 对应的函数关系式为y =kx +b ,则:=4k +b =0=-12=4;∴y =-12x +4,①当DE =DC 时,∵OA =4,OD =3,∴DA =5,∴E 1(0,4);(4分)②当DE =EC 时,过E 2点作E 2G ⊥x 轴于G 点,如解图②,由DG =8-32=52,把x =OD +DG =3+52=112代入到y =-12x +4,求出y =54,可得E 2(112,54);③当DC =EC 时,如解图②,过点E 3作E 3G ⊥CD ,则△CEG ∽△CAO ,∴EG OA =CG OC =CEAC,又OA =4,OC =8,则AC =45,DC =EC =5,∴EG =5,CG =25,∴E 3(8-25,5);综上所述,符合条件的E 点共有三个:E 1(0,4)、E 2(112,54)、E 3(8-25,5).(6分)(3)【思维教练】过P 作x 轴的垂线,交AC 于Q ,交x 轴于H ;设出点P 的横坐标(设为m ),根据抛物线和直线AC 的解析式,即可表示出P 、Q 的纵坐标,从而可得到PQ 的长,然后分两种情况进行讨论:①P 点在第一象限时,即0<m <8时,可根据PQ 的长以及A 、C 的坐标,分别表示出△APQ 、△CPQ 的面积,它们的面积和即为△APC 的面积,由此可得到S 的表达式,通过配方即可得到S 的取值范围;②当P 在第二象限时,即-2<m <0时,同①可求得△APQ 、△CPQ 的面积,此时它们的面积差为△APC 的面积,同理可求得S 的取值范围;根据两个S 的取值范围,即可判断出所求的结论.解:如解图①,过P 作PH ⊥OC ,垂足为H ,交直线AC 于点Q ;设P(m,-14m2+32m+4),则Q(m,-12m+4).①当0<m<8时,PQ=(-14m2+32m+4)-(-12m+4)=-14m2+2m,S=S△APQ+S△CPQ=12×8×(-14m2+2m)=-(m-4)2+16,∴0<S≤16;(8分)②当-2≤m<0时,PQ=(-12m+4)-(-14m2+32m+4)=14m2-2m,S=S△CPQ-S△APQ=12×8×(14m2-2m)=(m-4)2-16,∴0<S<20,∴当0<S<16时,0<m<6中有m两个值,6<m<8、-2<m<0中m有一个值,此时有三个;当16<S<20时,-2<m<0中m只有一个值;当S=16时,m=4或m=4-42这两个.故当S=16时,相应的点P有且只有两个.(10分)第28题解图2011年江苏省徐州市中考数学试卷考试·数学(考试时间:120分钟满分:150分)一、选择题(本大题共有10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.2的相反数是()A.-2B.2C.12D.-122.2010年我国总人口约为1370000000人,该人口数用科学记数法表示为()A.0.137×1011B.1.37×109C.13.7×108D.137×1073.估计11的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间4.下列运算正确的是()A.x·x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x45.若式子x-1在实数范围内有意义,则x的取值范围是()A.x≥1B.x>1C.x<1D.x≤16.若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A.2cmB.3cmC.7cmD.16cm7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()8.下列事件中,属于随机事件的是()A.抛出的篮球会下落B.从装有黑球,白球的袋里摸出红球C.367人中有2人是同月同日出生D.买1张彩票,中500万大奖9.如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A.2B.12C.1D.14第9题图10.平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-1x图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有()A.1个B.2个C.3个D.4个二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程.请把答案直接填写在答题卡相应位置上)11.30-2-1=________.12.如图AB ∥CD ,AB 与DE 交于点F ,∠B =40°,∠D =70°,则∠E =________.第12题图13.若直角三角形的一个锐角为20°,则另一个锐角等于______.14.x +y =3x -y =2的解为________.15.若方程x 2+kx +9=0有两个相等的实数根,则k =________.16.某班40名同学的年龄情况如下表,则这40名同学年龄的中位数是______岁.年龄/岁4151617人数41618217.如图,每个图案都由若干个棋子摆成,依照此规律,第n 个图案中棋子的总个数可用含n 的代数式表示为________.第17题图18.已知⊙O 的半径是5,圆心O 到直线AB 的距离为2,则⊙O 上有且只有______个点到直线AB 的距离为3.三、解答题(本大题共有10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题8分)(1)计算:(a -1a )÷a -1a;(2)-1≥0(x +2)>3x.20.(本题6分)根据第5次、第6次人口普查的结果,2000年,2010年我国每10万人受教育程度的情况如下:第20题图根据图中的信息,完成下列填空:(1)2010年我国具有高中文化程度的人口比重为________;(2)2010年我国具有________文化程度的人口最多;(3)同2000年相比,2010年我国具有________文化程度的人口增幅最大.21.(本题6分)小明骑自行车从家去学校,途经装有红、绿灯的三个路口.假设他在每个路口遇到红灯和绿灯的概率均为12,则小明经过这三个路口时,恰有一次遇到红灯的概率是多少?请用画树状图的方法加以说明.22.(本题6分)徐州至上海的铁路里程为650km.从徐州乘“C”字头列车A,“D”字头列车B都可直达上海,已知A车的平均速度为B车的2倍,且行驶时间比B车少2.5h.(1)设B车的平均速度是x km/h,根据题意,可列分式方程:____________;(2)求A车的平均速度及行驶时间.23.(本题8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.第23题图24.(本题8分)如图,PA,PB是⊙O的两条切线,切点分别为A,B,OP交AB于点C,OP=13,sin∠APC=5 13 .(1)求⊙O的半径;(2)求弦AB的长.第24题图25.(本题8分)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明:单价每上涨1元,该商品每月的销量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?26.(本题6分)如图,将矩形纸片ABCD按如下顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH 上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.第26题图27.(本题8分)如图①,在△ABC中,AB=AC,BC=a cm,∠B=30°.动点P以1cm/s的速度从点B 出发,沿折线B-A-C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x 的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE的形状,并说明理由;(2)当a为何值时,△DOE与△ABC相似?第27题图28.(本题12分)如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,-2).(1)求此函数的关系式;(2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.第28题图2011年江苏省徐州市中考数学试卷1.A【解析】∵2+(-2)=0,∴2的相反数是-2.2.B【解析】用科学记数法表示数1370000000为1.37×109.3.B【解析】9<(11)2=11<16,故3<11<4.4.C 【解析】A 、x ·x 2=x 3同底数幂的乘法,底数不变指数相加,故本选项错误;B 、(xy )2=x 2y 2,幂的乘方,底数不变指数相乘,故本选项错误;C 、(x 2)3=x 6,幂的乘方,底数不变指数相乘,故本选项正确;D 、x 2+x 2=2x 2,故本选项错误.5.A【解析】根据二次根式有意义的条件得:x -1≥0,∴x ≥1.6.C【解析】设第三边长为x cm .由三角形三边关系定理得9-6<x <9+6,解得3<x <15.7.D【解析】选项A 、B 、C 都可以折叠成一个正方体;选项D ,有“田”字格,所以不能折叠成一个正方体.8.D 【解析】A 、抛出的篮球会落下是必然事件,故本选项错误;B 、从装有黑球,白球的袋里摸出红球,是不可能事件,故本选项错误;C 、367人中有2人是同月同日出生,是必然事件,故本选项错误;D 、买一张彩票,中500万大奖是随机事件,故本选正确.9.B 【解析】∵正方形ABCD 的边长为2,∴AC =2,又∵点A ′是线段AC 的中点,∴A ′C =1,∴S 阴影=12×1×1=12.10.D【解析】∵点P 是反比例函数y =-1x 图象上的一个动点,∴设点P (x ,y ),当△PQO ∽△AOB 时,则PQ AO =OQ BO ,又PQ =y ,OQ =-x ,OA =2,OB =1,即y 2=-x 1,即y =-2x ,∵xy =-1,即-2x 2=-1,∴x =±22,∴点P 为(22,-2)或(-22,2);同理,当△PQO ∽△BOA 时,求得P (-2,22)或(2,-22);故相应的点P 共有4个.11.12【解析】原式=1-12=12.12.30°【解析】∵AB ∥CD ,∠D =70°,∴∠AFE =∠D =70°(两直线平行,同位角相等);又∵∠AFE =∠B +∠E (外角定理),∴∠E =70°-40°=30°.13.70°【解析】∵一个直角三角形的一个锐角是20°,∴它的另一个锐角的大小为90°-20°=70°.14.=1=0x +y =3①x -y =2②,①+②得:5x =5,x =1,把x =1代入①得:y =0=1=0.15.±6【解析】∵方程x 2+kx +9=0有两个相等的实数根,∴Δ=0,即k 2-4×1×9=0,解得k =±6.16.15.5【解析】∵一共有40名队员,∴其中位数应是第20名和第21名同学的年龄的平均数,∴中位数为(15+16)÷2=15.5.17.n (n +1)【解析】每个图案的纵队棋子个数是:n ,每个图案的横队棋子个数是:n +1,那么第n 个图案中棋子的总个数可以用含n 的代数式表示为:n (n +1).18.3【解析】过O 点作OC ⊥AB ,交⊙O 于P ,如解图,∴OC =2,而OA =5,∴PC =3,即点P 到到直线AB 的距离为3;在直线的另一边,圆上的点到直线的最远距离为7,而圆为对称图形,∴在直线AB 的这边,还有两个点M ,N 到直线AB 的距离为3.第18题解图19.解:(1)原式=a 2-1a ÷a -1a=(a -1)(a +1)a ×aa -1(2分)=a +1;(4分)-1≥0①(x +2)>3x ②,解①得,x ≥1,(6分)解②得,x <4,(7分)不等式组的解集为:1≤x <4.(8分)20.解:(1)14.0%;(2分)(2)初中;(4分)(3)大学.(6分)【解法提示】读图可知:(1)2010年我国具有高中文化程度的人口比重为14.0%;(2)2010年我国具有初中文化程度的人口最多;(3)同2000年相比,2010年我国具有大学文化程度的人口增幅最大.21.解:树状图如下:第21题解图(3分)∴P (1次红灯,2次绿灯)=38,(5分)答:恰有一次红灯的概率是38.(6分)22.解:(1)650x 2-650x =2.5;(2分)(2)650x 2-650x =2.5,解得x =260,(4分)经检验,x =260是分式方程的根,所以A 车的平均速度为260km /h .650250=2.5小时,答:A 车的平均速度是260km /h ,行驶的时间2.5h .(6分)23.证明:(1)∵BF =DE ,∴BF -EF =DE -EF ,即BE =DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°,∵AB =CD ,∴Rt △ABE ≌Rt △CDF (HL );(4分)(2)连接AC ,交BD 于点O ,∵△ABE ≌△CDF ,∴∠ABE =∠CDF ,第23题解图∴AB ∥CD ,∵AB =CD ,∴四边形ABCD 是平行四边形,∴AO =CO .(8分)24.解:(1)∵PA ,PB 是⊙O 的两条切线,∴∠OAP =90°,∵sin ∠APC =OA OP =513,OP =13,∴OA =5,即所求半径为5;(4分)(2)Rt △OAP 中,AP =OP 2-OA 2=132-52=12,∵PA ,PB 是⊙O 的两条切线,∴PA =PB ,∠APO =∠BPO ,∴PC ⊥A B.由S 四边形OAPB =S △OAP +S △OBP ,得12OP ·AB =OA ·AP ,∴AB =2OA ·AP OP =2×5×1213=12013.(8分)25.解:(1)由题意得y =(80-60+x )(300-10x )=-10x 2+100x +6000(0≤x ≤30);(3分)(2)由(1)知,y =-10x 2+100x +6000=-10(x -5)2+6250,∵a =-10<0,∴当x =5时,y 有最大值,其最大值为6250,(6分)即单价定为85元时,每月销售该商品的利润最大,最大利润为6250元.(8分)26.(1)【思维教练】由折叠的性质知:B ′C =BC ,然后在Rt △B ′FC 中,根据含30°角的直角三角形的性质,即可求得∠BCB ′的度数;解:由折叠的性质知:B ′C =BC ,在Rt △B ′FC 中,∵FC 是斜边B ′C 的一半,∴∠FB ′C =30°,即∠BCB ′=60°;(3分)(2)【思维教练】首先根据题意得:GC 平分∠BCB ′,即可求得∠GCC ′的度数,然后由折叠的性质知:GH 是线段CC ′的对称轴,可得GC ′=GC ,即可得△GCC ′是正三角形.解:图⑥中的△CGC '是正三角形,理由如下:∵GC 平分∠BCB ′,∴∠GCB =12∠GCC ′=12∠BCB ′=30°,∴∠GCC ′=∠BCD -∠BCG =60°,由折叠的性质知:GH 是线段CC ′的对称轴,∴GC ′=GC ,∴△GCC ′是正三角形.(6分)27.(1)【思维教练】首先作DF ⊥OE 于点F ,由AB =AC ,点P 以1cm /s 的速度运动,可得点P 在边AB 和AC 上的运动时间相同,即可得点F 是OE 的中点,即可证得DF 是OE 的垂直平分线,可得△DOE是等腰三角形;解:△DOE 是等腰三角形;理由如下:作DF ⊥OE 于点F ,如解图①第27题解图①∵AB =AC ,点P 以1cm /s 的速度运动,∴点P 在边AB 和AC 上的运动时间相同,∴点F 是OE 的中点,∴DF 是OE 的垂直平分线,∴DO =DE ,∴△DOE 是等腰三角形;(3分)(2)【思维教练】设D (33a ,312a 2),由DO =DE ,AB =AC ,可得当且仅当∠DOE =∠ABC 时,△DOE ∽△ABC ,然后由三角函数的性质,即可求得当a =433时,△DOE ∽△AB C.解:过点A 作AM ⊥BC 于点M ,如解图②,∵AB =AC ,BC =a cm ,∠B =30°,∴AM =33×a 2=36a ,AC =AB =33a ,第27题解图②∴S △ABC =12BC ·AM =312a 2,∴P 在边AB 上时,y =x AB ·S △ABC =14ax ,P 在边AC 上时,y =AB +AC -x AB·S △ABC =36a 2-14ax ,由题意得:∵AB =AC ,BC =a cm ,∠B =30°,∴AM =33×a 2=36a ,∴AB =33a ,∴D (33a ,312a 2),∵DO =DE ,AB =AC ,∴当且仅当∠DOE =∠ABC 时,△DOE ∽△ABC ,在Rt △DOF 中,tan ∠DOF =y D x D =3a 21233a =14a ,由14a =tan 30°=33,解得a =433,∴当a =433时,△DOE ∽△AB C.(8分)28.(1)【思维教练】将顶点坐标C (1,-2)代入y =x 2+bx +c 即可求得此二次函数的关系式;解:∵y =x 2+bx +c 的顶点为(1,-2),∴y =(x -1)2-2=x 2-2x -1;(2分)(2)【思维教练】先求出直线PM 的解析式,然后与二次函数联立即可解得点E 的坐标;解:如解图①设直线PE 对应的函数关系式为y =kx +b ,根据A ,B 关于对称轴对称,可以得出AC =CB ,AD =BD ,点C 关于x 轴的对称点为点D ,故AC =BC =AD =BD ,则四边形ACBD 是菱形,∵直线PE 将四边形ABCD 分成面积相等的两个四边形,故直线PE 必过菱形ACBD 的对称中心M .令x =0,则y =-1,∴点P (0,-1),由二次函数顶点式得点M (1,0).将P (0,-1),M (1,0)代入关系式得,=-1=1,∴y =x -1,设E (x ,x -1),代入y =x 2-2x -1得:x -1=x 2-2x -1,解得:x 1=0,x 2=3,根据题意得点E (3,2);(8分)(3)【思维教练】根据三角形相似的性质先求出GP =GF ,求出F 点的坐标,进而求得△PEF 的面积.解:假设存在这样的点F ,可设F (x ,x 2-2x -1),过点F 做FG ⊥y 轴,垂足为G 点.如解图②,在Rt △POM 和Rt △FGP 中,∵∠OMP +∠OPM =90°,∠FPG +∠OPM =90°,∠OMP =∠FPG ,又∵∠MOP =∠PGF ,∴△POM ∽△FGP ,∴OM OP =GP GF,∵OM =1,OP =1,∴GP =GF ,即-1-(x 2-2x -1)=x ,解得:x 1=0,x 2=1,根据题意得F (1,-2),又∵P (0,-1),E (3,2),PE =32+[-1-(-2)]2=32,∴PF =12+[-1-(-2)]2=2,∴S △PEF =12PE ·PF =12×32×2=3.(12分)图①图②第28题解图2012年江苏省徐州市中考数学·考试(考试时间:120分钟满分:100分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给的四个选项中,只有一项是符合题意的,请将正确选项前的字母代号填涂在答题卡相应的位置上)1.-2的绝对值是()A.-2B.2C.12D.-122.计算x2·x3的结果是()A.x5B.x8C.x6 D.x73.2011年徐州市接待国内外旅游人数约为24800000人次,该数据用科学记数法表示为()A.2.48×107B.2.48×106C.0.248×108D.248×1054.如果等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或125.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A.70°B.50°C.40° D.35°第5题图6.函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为()A.16,16B.10,16C.8,8D.8,168.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=14BC.图中相似三角形共有()A.1对B.2对C.3对D.4对第8题图二、选择题(本大题共有10小题,每小题2分,共20分)9.∠α=80°,则∠α的补角为________°.10.分解因式:a2-4=________.11.四边形的内角和为________.12.如图是某地未来7日最高气温走势图,这组数据的极差为________℃.第12题图13.正比例函数y=k1x的图象与反比例函数y=k2+k2=________.x的图象相交于点(1,2),则k114.若a2+2a=1,则2a2+4a-1=________.15.将一副三角板如图放置.若AE∥BC,则∠AFD=________°.第15题图第16题图第17题图16.如图,菱形ABCD的边长为2cm,∠A=60°.BD︵是以点A为圆心、AB长为半径的弧,CD︵是以点B为圆心、BC长为半径的弧.则阴影部分的面积为________cm2.17.如图,AB是⊙O的直径,CD是弦,且CD⊥AB,AC=8,BC=6.则sin∠ABD=________.18.函数y=x+3x的图象如图所示,关于该函数,下列结论正确的是________(填序号).①函数图象是轴对称图形;②函数图象是中心对称图形;③当x>0时,函数有最小值;④点(1,4)在函数图象上;⑤当x<1或x>3时,y>4.第18题图三、解答题(本大题共有10小题,共76分))0;19.(本题10分)(1)计算:(-3)2-4+(12(2)-2<3 x+1>7.20.(本题6分)抛掷一枚均匀的硬币2次,请用列表或画树状图的方法求出2次抛掷的结果都是反面朝上的概率.21.(本题6分)2011年徐州市全年实现地区生产总值3551.65亿元,按可比价格计算,比上年增长13.5%,经济平稳较快增长.其中,第一产业、第二产业、第三产业增加值与增长率情况如图所示:图①图②第21题图根据图中信息,完成下列填空:(1)第三产业的增加值为________亿元;(2)第三产业的增长率是第一产业增长率的________倍(精确到0.1);(3)三个产业中,第________产业的增长最快.22.(本题6分)某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.23.(本题6分)如图,C为AB的中点,四边形ACDE为平行四边形,BE与CD相交于点F.求证:EF=BF.第23题图24.(本题8分)二次函数y=x2+bx+c的图象经过点(4,3)、(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象.第24题图25.(本题8分)为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用。