平方根(一)。。教学设计

合集下载

平方根 教案(教学设计)

平方根 教案(教学设计)

平方根【第一课时】【教学目标】1.了解算术平方根的概念,会用根号表示一个数的算术平方根。

2.会求一个正数的算术平方根。

3.了解算术平方根的性质。

【教学重难点】1.算术平方根的概念、性质,会用根号表示一个正数的算术平方根。

2.算术平方根的概念、性质。

【教学过程】一、问题引入1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少?学生活动:(1)完成填空:a2=_____;b2=_____;c2=_____;d2=_____;e2=_____;f2=_____。

(2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗?2.师生互动:集体交流后,说明无理数也需要一种表示方法。

二、讲授新课算术平方根的概念:一般地,如果一个正数的平方等于___,那么,这个正数就叫做___的算术平方根。

记为:“”读做根号。

特别地,0的算术平方根是0。

例1:分别写出下列各数的算术平方根。

(要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。

)例2:自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间?学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。

三、小结1.内容总结:算术平方根的定义、表示;2.方法归纳:转化的数学方法:即将陌生的问题转化为熟悉的问题解决。

【第二课时】【教学目标】1.了解平方根的概念,会用根号表示一个数的平方根。

2.会求一个正数的平方根。

3.了解平方根和算术平方根的性质。

4.了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。

【教学重难点】1.了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。

2.平方根和算术平方根的区别。

负数没有平方根,即负数不能进行开平方运算。

【教学过程】一、复习提问1.算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。

平方根教学设计(教案)

平方根教学设计(教案)

平方根教学设计(教案)章节一:平方根的概念引入教学目标:1. 让学生理解平方根的定义。

2. 让学生掌握求一个数的平方根的方法。

教学内容:1. 引入平方根的概念,通过举例让学生感受平方根的实际意义。

2. 讲解平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根不存在。

教学活动:1. 利用实际问题引入平方根的概念,如“一个正方形的边长是a,求它的面积”。

2. 引导学生思考,如何求一个数的平方根,学生可以通过计算、估算等方式尝试求解。

章节二:平方根的运算规则教学目标:1. 让学生掌握平方根的运算规则。

2. 让学生能够熟练地进行平方根的计算。

教学内容:1. 讲解平方根的运算规则,如加减乘除的运算规则。

2. 通过例题让学生理解平方根的运算规则,并进行练习。

教学活动:1. 通过例题讲解平方根的运算规则,如(√a)²= a,(√a)×(√b)= √(ab)等。

2. 让学生进行平方根的计算练习,教师可以提供一些练习题,让学生进行计算和解答。

章节三:平方根的应用教学目标:1. 让学生理解平方根在实际问题中的应用。

2. 让学生能够运用平方根解决实际问题。

教学内容:1. 通过实际问题讲解平方根的应用,如求解方程、求解不等式等。

2. 通过例题让学生理解平方根的应用,并进行练习。

教学活动:1. 通过实际问题引入平方根的应用,如求解方程x²= 9。

2. 引导学生思考,如何运用平方根解决实际问题,学生可以通过计算、估算等方式尝试求解。

章节四:平方根的拓展教学目标:1. 让学生了解平方根的拓展知识。

2. 让学生能够运用平方根的拓展知识解决实际问题。

教学内容:1. 讲解平方根的拓展知识,如平方根的乘积、平方根的倒数等。

2. 通过例题让学生理解平方根的拓展知识,并进行练习。

教学活动:1. 通过例题讲解平方根的拓展知识,如(√a)×(√b)= √(ab),(√a)⁻¹= √a⁻¹等。

平方根(第一课时) 教学设计

平方根(第一课时) 教学设计

平方根(第一课时)教学设计一、教学目标1.理解平方根的概念2.掌握平方根的计算方法3.运用平方根解决实际问题二、教学重点1.平方根的概念和计算方法2.平方根的应用三、教学内容和方法1. 平方根的概念和计算方法1.1 通过定义引入平方根的概念•定义:如果一个数的平方等于另一个数,那么这个数就叫做这个数的平方根。

•举例:如果a² = b,那么a就是b的平方根。

1.2 计算平方根的方法•平方根的符号:√•计算方法:1.列举并观察完全平方数的特点2.借助观察结果计算非完全平方数的近似值2. 平方根的应用2.1 使用平方根解决实际问题•示例:小明要把一个方形园地的面积分成两个等面积的部分,他应该如何划分?–步骤:1.设园地的边长为x,则该园地的面积为x²2.根据题目要求,将x²分成两个等面积的部分3.求解方程x²/2 = x4.解得x = 2的平方根5.将x带回原方程,得到园地的边长四、教学步骤1.引入平方根的概念和计算方法。

通过生活中的例子和学生的实际体验,引导学生理解平方根的含义,并介绍计算平方根的方法。

2.带领学生观察完全平方数的特点,引导学生发现非完全平方数的计算方法。

3.给学生提供一些练习题,让学生进一步熟悉平方根的计算。

4.引入平方根的应用。

通过实际问题的解决过程,让学生理解平方根的实际应用价值。

5.继续给学生提供一些应用题,让学生运用所学知识解决问题。

6.对学生进行巩固练习,检验他们对平方根的理解和应用能力。

五、教学评价1.在引入概念和计算方法环节,观察学生的反应,确保学生理解平方根的概念和计算方法。

2.在应用环节,检查学生对平方根应用的理解和解题能力。

3.给学生一定的巩固练习,检验他们的掌握情况。

六、教学反思1.教学重点和难点:平方根的计算方法和应用,需要通过引导学生观察、思考和实际运用,培养学生的分析解决问题的能力。

2.教学步骤:教学过程设计合理,能够引导学生逐步理解和掌握平方根的概念和应用。

13.1平方根(1) 教学设计 关丽娜

13.1平方根(1) 教学设计  关丽娜

13.1 平方根(1)大连世纪中学关丽娜一、内容和内容解析1.内容算术平方根的概念和求法.2.内容解析《平方根》是人教版八年级上第十三章实数第一节内容,隶属于“数与代数”领域。

本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算.通过本章的学习,学生对数的认识就由有理数扩大到实数范围.本章虽内容不多,篇幅不大,但在中学数学中占有重要的地位,本章的内容不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中的不等式、函数以及解析几何的大部分知识做好准备。

本节重点结合实际问题情景认识算术平方根、平方根的意义,能够对算术平方根进行符号表示,能够利用概念的本质探获求算术平方根、平方根的方法,理解算术平方根、平方根的性质。

本节共三课时,本课为第一课时,从学生熟悉的正方形面积与边长之间的关系入手将问题1概括为“已知一个数的平方,求这个数”的新问题,从而给出算术平方根的概念,并对概念进行辨析理解、巩固和运用,通过探究活动,利用数形结合的思想直观感受2的大小,通过对实际生活中问题的解决,让学生体验新概念的产生是实际生活和科技发展的需要。

通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用符号表示正数的算术平方根,并了解算术平方根的非负性,又可以渗透化归思想(将求算术平方根的运算转化为求幂底数的运算)将为学生以后学习平方根奠定基础;同时这一节也是联系数学与生活的桥梁。

基于以上分析,可以确定本课的教学重点是:弄清算术平方根的概念,初步感受无理数.二、目标和目标解析1.目标(1)了解算术平方根的概念,并了解算术平方根的双重非负性;(2)会用符号表示任意非负数的算术平方根,建立初步的数感和符号感(3)通过几个类似问题,能抽象出数学问题,发展抽象思维.2.目标解析达成目标(1)的标志是:会用平方运算求某些非负数的算术平方根,并能对概念进行准确的辨析.达成目标(2)的标志是学生会求用文字和符号两种语言描述的算术平方根,并会用符号表示。

北师大版数学八年级上册2.2平方根(第一课时)教学设计

北师大版数学八年级上册2.2平方根(第一课时)教学设计
8.教学评价,促进教学相长
教师应及时对学生的学习情况进行评价,关注他们在知识掌握、思维能力和情感态度等方面的表现。根据评价结果,调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课,500字
1.复习导入:让学生回顾乘方的概念及性质,提出问题:“乘方是解决什么问题的运算?乘方的逆运算是什么?”引导学生思考乘方与平方根的关系。
针对不同学生的学习能力,设计不同难度的题目,使每个学生都能在课堂上得到锻炼和提升。关注学困生,给予他们更多的关注和指导,提高他们的学习兴趣和自信心。
7.创设互动环节,提高课堂氛围
在教学过程中,教师应注重与学生的互动,鼓励学生提问和发表观点,营造积极向上的课堂氛围。通过提问、讨论等方式,激发学生的思维,提高他们的课堂参与度。
2.自主探究,理解概念
让学生自主探究平方根的定义,引导他们从乘方的角度去理解平方根,并学会用符号表示平方根。在此过程中,关注学生对概念的理解,及时解答学生的疑问。
3.案例分析,掌握方法
通过讲解典型例题,让学生掌握求简单数的平方根的方法,如:完全平方数、近似计算等。强调平方根符号的正确书写,培养学生严谨的学术态度。
1.在自主探究平方根的定义和性质的过程中,培养学生的逻辑思维能力。
2.在求解实际问题的过程中,培养学生将数学知识应用于实际情境的能力。
3.在合作交流中,培养学生倾听他人意见、表达自己观点的能力。
(三)情感态度与价值观
1.培养学生积极探究数学知识的精神,激发学生对数学的好奇心和求知欲。
2.鼓励学生面对数学问题时,保持积极的态度,相信自己能够解决问题。
(二)讲授新知,500字
1.讲解平方根的定义,用符号表示平方根,强调平方根符号的正确书写。

《平方根》设计2

《平方根》设计2

1.使学生理解数的平方根的概念,能运用根号表示一个数的平方根;2.掌握用平方运算求某些数的平方根的方法.重点:平方根的概念及求某些数的平方根的方法。

难点:平方根的概念.一、导入新课我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的.例如已知正方形一边长是 4 厘米,那末它的一条对角线的长是多少厘米?解决这个问题就要运用一种新的运算方法,这种运算叫做开方.这节课我们就要学习开方运算和平方根.二、新课计算:42; (-4)2; (23)2; (-23) 2; 2; (-2;答 42=16; (-4)2=16; (23)2=49; (-23)2=49; 2=; (-2=.问:什么叫乘方?什么叫幂?答:求相同因数的积的运算叫做乘方,运算的结果叫做幂.在式子 42=16 中, 4 叫做底数, 2 叫做指数, 16 叫做 4 的二次幂.乘方运算是已知底数和指数,求幂.如果已知一个数的平方等于 16,怎样求这个数?我们可以设这个数为x,则 x2=16,问题归结为求 x.这个问题可以通过乘方运算来解决.因为 42=16 所以 x=4;又因为(-4)2=16,所以 x=-或者-4 的平方都等于 16,可以表示为(±4)2=16.因为 4 或者-4 的平方都等于 16,我们把 4 及-4 叫做 16 的平方根. 1.平方根.普通地,如果一个数的平方等于 a,这个数就叫做 a 的平方根(或者二次方根).就是说,如果 x2=a,那末 x 就叫做 a 的平方根.如 23 与-23 都是 49 的平方根.因为(±23)2=49,所以±23 是 49 的平方根.问: 100 的平方根是什么?1 100 呢?答:100 的平方根是 10 与-10.因为(±10)2=100,所以 10 与-10 是 100 的平方根.1 100 的平方根是 1 10 与-1 10.因为(±1 10)2=1 100,所以 1 10 与-1 10 是 1 100 的平方根.上面例子可以看到求一个数的平方根,可经转化为通过乘方运算来求.问: 16,49,100,1 100 都是正数,它们有几个平方根?平方根之间有什么关系?答:这些数都是正数,它们都有两个平方根,这些数的两个平方根都分别是互为相反数.问: 0 的平方根是什么?答: 0 的平方根是 0,这是因为 02=0.由于任何不为零的数的平方都不等于零,所以零的平方根惟独一个,它就是零本身.问:负数有平方根吗?为什么?答:负数没有平方根.由于正数、零和负数的平方都不是负数,所以负数没有平方根.请同学概括数的平方根的定义.答:一个正数有两个平方根,它们互为相反数; 0 有一个平方根,它是0 本身;负数没有平方根.2.一个非负数 a 的平方根的表示法.当 a>0 时, a 的正的平方根用符号“2 a”表示,其中 a 叫做被开方数,2 叫做根指数, a 的负的平方根用符号“-2a”表示,这两个平方根合起来可以记作“±2a”.这里符号“2”读作“二次根号”,2a 读作“二次根号a”.当根指数是 2 时,通常将这个 2 省稍不写,如 2a 记作 a,读作“根号a”;±2a 记作±a,读作“正负根号a”.普通地,如果x2=a(a≥0),那末 a 的平方根可以表示为x=±a.例如, 9 的平方根记作±9,读作正负根号 9.那末 3a 的根指数是 3,应读作三次根号 a,na 的根指数是 n,读作 n 次根号 a.3.开平方.求一个数 a(a≥0)的平方根的运算,叫做开平方.开平方运算是已知指数和幂求底数.平方与开平方互为逆运算.一个数可以是正数、负数或者是 0,它的平方数惟独一个,正数或者负数的平方都是正数, 0 的平方是 0.但一个正数的平方根却有两个,这两个数互为相反数, 0 的平方根是 0.负数没有平方根.因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根.例 1 求下列各数的平方根:(1)81; (2)1916; (3).分析:求平方根是开方运算,我们可以通过平方运算来解决.解 (1)因为(±9)2=81,所以 81 的平方根是±9,即±81=±9.(2)因为 19 16=25 16,(±54)2=25 16,所以 1916 的平方根是±54,即±1916=±2516=±54.(3)因为(±2=,所以的平方根是±,即±=±.例 2 下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由.(1)-64; (2)0; (3)(-4)2 (4)10-2.分析:因为惟独正数和零才有平方根,所以首先应观察所给出的数是否为正数或者 0.解 (1)因为-62 是负数,所以-64 没有平方根;(2)0 有一个平方根,它是 0;(3)因为(-4)2=16>0,所以(-4)2,有两个平方根,且± (-4)2= ±16=±4;(4)因为 10-2=1 102 >0 所以 10-2 有两个平方根,且±10 -2=± (1 10)2=±1 10.问: (1)-42 有平方根吗? (2)(-4)2 与-4 相等吗?为什么?答: (1)因为-42=-16 是负数,所以-42 没有平方根.(2)因为(-4)2=16=4,16 是(-4)2 的正的平方根,所以等于 4,而不等于-4.三、课堂练习1.填空:(1)因为(±37)2=9 49 所以______是______的平方根;(2)因为(±2=,所以______是______的平方根;(3)(-2)2 的平方根是 ,(12)2 的平方根是 ;(4)的平方根是,10-6 的平方根是 .2.求下列各数的平方根:(1)49 81; (2)25 64; (3);(4)49×10-4.3.判断下列说法是否正确?(1)0 的平方根是 0; (2)1 的平方根是 1;(3)-1 是 1 的平方根; (4)-1 的平方根是-1;(5)(-1)2 的平方根是-1.答案:1. (1) ±37 是 9 49 的平方根;(2) ±是的平方根;(3)(-2)2 的平方根是±2; (12)2 的平方根是±12;(4)的平方根是±; 10-6 的平方根是±10-3.2. (1)49 81 的平方根是±; (2)25 64 的平方根是±5 8;(3)的平方根是±79;(4)49×10-4=,平方根为± .3. (1)正确; (2)错误, 1 的平方根是± 1; (3)正确; (4)错误,- 1 没有平主根; (5)错误,因为(-1)2=1,1 的平方根是±1.四、小结1.如果 x2=a,那末x 就叫做 a 的平方根,用±a 来表示.当 a>0 时, a 有两个平方根,即±a,a 表示 a 的正的平方根,-a 表示a 的负的平方根,它们互为相反数;当 a=0 时, a 有一个平方根,就是它本身;负数没有平方根.2.求一个数 a 的平方根的运算,叫做开平方,平方和开平方运算有区别又有联系.区别在于,平方运算中,已知的是底数和指数,求的是幂;而在开平方运算中,已知的是指数和幂,求的是底数.在平方运算中的底数可以是任意数,平方的结果是惟一的;在开平方运中,被开方数必须是非负数,开平方的结果不一定是惟一的.平方和开平方运算又有联系,二者互为逆运算.求一个数的平方根,可以通过平方运算来解决.五、作业(一)选择题:1.在四个数 0,-9,2, (-2)2 中,有平方根的是( ).与-9;,-9 和(-2)2;与(-2)2;,2 和(-2)2.2.数 16 的平方根是( ).;; C.-4;或者-4.3.数的平方根是( ).;; C.-;或者-.4.数 1 79 的平方根是( ).或者-49;或者-43;; .5.数(-6)2 的平方根是( ).A.-6;;或者-6. D.无平方根.(二)填空题:1.数 61925 的平方根是;2.数的平方根是;3.数 11549 的负的平方根是;4.数(-2 的平方根是;5.-是的负的平方根.(三)写出下列各数的平方根.121,144,169,196,225,256,289,324,361.答案:( (一);;(二)1. ± 135; 2. ±;; 4. ±; (三)±11;±12;±13;±14;±15;±16;±17;±18;±19.。

平方根教学设计

平方根教学设计

平方根教学设计(一)教学设计思想:平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:1.引导学生建立清晰的概念系统,首先在第1课进要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示.对于a表示a的算术平方根的条件是,被开方数a表示非负数,而a本身也表示非负数,因此在教学中不能要求学生死记硬背,要向学生说明规定的合理性.为此,提出算术平方根的一种几何解释,即面积为a的正方形(a为正数),它的边长为a(a也是正数),从而直观、形象地说明了算术平方根约定的合理性.2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.教学目标:知识与技能:1.能说出平方根和算术平方根的概念,会用根号表示一个数的平方根。

2.知道开平方与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的平方根。

3a的平方根。

过程与方法:1.通过对比体会平方根、算术平方根的联系和区别;2.在学习开平方运算求一个数的平方根、算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系.情感态度价值观:进一步感受到所学数学知识之间的内在联系.教学重难点:重点:平方根和算术平方根的概念和求法.难点:弄清平方根与算术平方根的意义教学方法:探究学习课时安排2课时教学用具多媒体教学过程:第一课时一、引入我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的.例如个面积为50 平方米的正方形展厅,它的边长应是多少?解决这个问题就要运用一种新的运算方法,这种运算叫做开方.这节课我们就要学习开方运算和平方根.二、大家谈谈(1)计算:42,(-4)2;23()5,23()5-;(10)2,(-10)202(2)如果x2=16,则x等于多少?因为42=16所以x=4;又因为(-4)2=16,所以x=-4.4或-4的平方都等于16,可以表示为(±4)2=16.因为4或-4的平方都等于16,我们把4及-4叫做16的平方根.一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根).就是说,如果x2=a,那么x就叫做a的平方根.比如100的平方根是10与-10.因为(±10)2=100,所以10与-10是100的平方根.你能说出49,144的平方根吗?三、一起探究1.当一个正数和一个负数互为相反数时,它们的平方有什么关系?2.正数有平方根吗?如果有,有几个?它们的有什么关系?3.0有平方根吗?如果有,它是什么数?4.负数有平方根吗?学生独自思考,通过具体实例弄懂上述问题,然后总结出:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

13.1平方根(一)优质课教学设计完美版

13.1平方根(一)优质课教学设计完美版
年级 教学媒体 教 学 目 标 过程 方法 情感 态度 知识 技能
八年级
课题
13.1 平方根(1) 多 媒 体
课型
新授
1.理解算术平方根及其相关概念; 2. 会用根号表示数的算术平方根; 3. 会求能开的尽平方的数的算术平方根. 从实际问题出发,揭示算平方根概念,领会算术平方根的求法. 使学生初步体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习 惯. 理解算术平方根概念,会用根号表示一个正数的算术平方根. 理解算术平方根的意义. 教 学 过 程 设 计 师生行为 设计意图
根据解题中反 映出来的逆用 平方知识的方 法,自然而然引 出算术平方根 定义
通过举例说明, 教师结合定义,举例 使学生加深理 说明,使学生理解 解 算术平方根意 9 3
义 教师出示问题 1,学 ,并能够用式子 分析:求算术平方根就是把平方运算逆过来思考,解题 生思考解决,并阐述 表示 步骤体现了“一找(谁的平方等于这个数)、二答(这个数 做题依据和方法,之 的算术平方根是谁)、三列式(式子表示这个数的算术平 后教师总结归纳,师 生达成一致 方根)” ,初学阶段一定要按以下步骤书写,熟练之后方 使学生掌握如 可直接列式. 教 师 板 书 解 题 过 何求一个数的 解:(1)∵ 102 100 ,∴100 的算术平方根是 10, 程,给学生示范 算术平方根的 方法,在书写时 即 100 10 ; 2 采用结合文字 7 49 ,∴ 49 的算术平方根是 7 , (2) ∵ 语言叙述,以利 64 8 64 8 于学生加深对 即 49 7 ; 开平方与平方 64 8 互为逆运算关 (3)∵ 0.012 0.0001, ∴0.0001 的算术 平方 根是 系的理解。此题 0.01, 虽然比较简单 即 0.0001 0.01. 但也考查了学 生对算术平方 2.求下列各式的值: 教师引导学生观察 根的理解情况, 4 (1) 361 (2) (3) 5 2 (4) 4624 各式中被开方数的 学生更容易理 81 特点,并组织学生 解 分析:(1) 361 表示的就是 361 的算术平方根,首先要 讨 论 第 (4) 小 题 的 找哪个数的平方等于 361,因为只有个位是 1 或 9 的数, 做法,让学生口头 平方后个位还是 1,可以尝试着找到这个数;(2)什么数 叙述各小题的求值 4 在教学中学生 的平方等于 呢?可以分子、分母分开考虑;(3)哪个 过程 81 在解决问题中 2 表现出的不同 数的平方等于 5 ,即那个数的平方等于 25;(4)可以通 水平,让学生交 过 计 算 几 个 数 的 平 方 进 行 尝 试 , 如 流各自解决问 602 3600 , 702 4900 , 那么应该从 60-70 间找一个数 题的策略,不断 x,使 x 2 4624,你觉得 x=62 与 x=68 哪个可能性更大 获得解决问题 些?. 的经验,提高思 维水平 归纳:①.“确定那个数的平方等于 a” ,因为求的是算 (1) 100; (3)0.0001
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数2.平方根(一)泾源高级中学于智军一、学生起点分析学生已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.这节课的教学,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,因此确定本节的教学目标如下:·知识与技能目标1.了解算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根.3.了解算术平方根的性质.·过程与方法目标1.在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力.2.在合作交流等活动中,培养他们的合作精神和创新意识.·情感与态度目标1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:对算术平方根的概念和性质的理解.三、教法学法教学方法:讲授法.课前准备:教具:教材,多媒体课件,电脑.学具:教材,笔,练习本.四、教学过程:本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有a 2=2,a = ,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习. 方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空: x 2=,y 2=,z 2=,w 2=.意图:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示x 2=2,y 2=3,z 2=4,w 2=5;能求得z =2,但不能求得x 、y 、w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二。

第二环节:初步探究内容1:情境引出新概念x 2=2,y 2=3,z 2=4,w 2=5,已知幂和指数,求底数x ,你能求出来吗? 意图:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x 、y 、w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?” 内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=. 意图:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1)900; (2)1; (3)6449; (4)14. 意图:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为302=900,所以900的算术平方根是30,即30900=;(2)因为12=1,所以1的算术平方根是1,即11=;(3)因为6449872=⎪⎭⎫ ⎝⎛,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题x 2=2,y 2=3,w 2=5,那么x =2,y =3,w =5.第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间? 意图:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将h =4.9t 2进行变形,再用求算术平方根的方法求得题目的解.解:将h =19.6代入公式得h =4.9 t 2, t 2=4,所以t = 4=2(秒) . 即铁球到达地面需要2秒.说明:此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.意图:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性. 效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ; 2.9的算术平方根是 ; 3.2)32(的算术平方根是 ; 4.若22=+m ,则2)2(+m = . 二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(.三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?15;1; 答案:一、1.7;2.3 ;3.32;4.16;二、6;1211;15;0.8;210-;三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在Rt △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是 10米. CB A意图:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程. 效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评。

第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.意图:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3五、教学设计说明1.设计理念要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,”的 “正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.知识拓展在教学中,根据学生的实际情况,在学有余力的情况下,可用以下的例题和练习题进行知识的拓展:内容:例 已知042=++-y x ,求x y 的值.解:因为 2-x 和4+y 都是非负数,并且042=++-y x ,所以 02=-x ,04=+y ,解得x =2,y = -4,所以16)4(2=-=xy .意图:加深对算术平方根概念中两层含义的认识,会用算术平方根的概念来解决有关的问题. 效果:达到能灵活运用算术平方根的概念和性质的目的.课后还可以布置相应的拓展性习题:内容:1.已知()0232212=++++-z y x ,求x+y+z 的值. 2.若x ,y 满足52112=+-+-y x x ,求xy 的值. 3.求55=-+x x 中的x .4.若115+的小数部分为a ,115-的小数部分为b ,求a +b 的值.5.△ABC 的三边长分别为a ,b ,c ,且a ,b 满足04412=+-+-b b a ,求c 的取值范围. 解:1.因为21-x ≥0,()22+y ≥0,23+z ≥0,且()0232212=++++-z y x ,所以21-x =0,()22+y =0,23+z =0,解得21=x ,2-=y ,23-=z ,所以x +y +z = 3-. 2.因为2x -1≥0,1-2x ≥0,所以 2x -1=0,解得 x =21 ,当 x =21时,y =5,所以 x y =21×5=25. 3.解:因为x -5≥0,x x -=-55≥0 ,所以 x =5 .4.解:因为4113<< ,所以115+的整数部分为8,115-的整数部分为1,所以115+的小数部分3118115-=-+=a ,115-的小数部分1141115-=--=b ,所以1114311=-+-=+b a .5.解:由04412=+-+-b b a ,可得0)2(12=-+-b a ,因为 1-a ≥0,2)2(-b ≥0,所以1-a =0,2)2(-b =0,所以a = 1,b = 2,由三角形三边关系定理有:b- a < c < b +a ,即1 < c < 3.。

相关文档
最新文档