专题16 等腰三角形的性质_答案
--2021年春人教版数学九年级中考专题复习课件 等腰三角形

【对应训练1】如图,在△ABC中,CD是∠ACB的平分线, DE∥BC交AC于点E,若AC=15 cm,AE=7 cm,则DE=__8_cm.
等边三角形 【例2】(2020·营口)如图,△ABC为等边三角形,边长为6,AD⊥BC, 垂足为点D,点E和点F分别是线段AD和AB上的两个动点, 连接CE,EF,则CE+EF的最小值为_3___3_.
∴EC=4,AB=AC=12,∴AE= AC2+EC2 = 122+42 =4 10 , ∴DP=PA=PE=12 AE=2 10 ,∵EF=13 AF,AP=PE, ∴PF=EF=12 PE= 10 ,∵∠DPF=90°,∴DF= DP2+PF2 =5 2
A.3
3 4
B.3 8 3
C.
3 4
D.
3 8
20.(2020·眉山)如图,等腰△ABC中,AB=AC=10,
边AC的垂直平分线交BC于点D,交AC于点E. 若△ABD的周长为26,则DE的长为___1_45_.
21.(2020·襄阳)在△ABC中,∠BAC=90°,AB=AC, 点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE. (1)特例发现:如图①,当AD=AF时, ①求证:BD=CF; ②推断:∠ACE=90°; (2)探究证明:如图②,当AD≠AF时,请探究∠ACE的度数是否为定值,并 说明理由;
∴△ADM∽△AEC,∴∠ACE=∠AMD=90°,
即∠ACE的度数为定值90°
(3)连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴AECB =AEFF =13 , 设EC=a,则AB=AC=3a,AK=3a-136 ,∵DA=DE,DK⊥AE, ∴AP=PE,∴AK=KE=3a-136 ,∵EK2=CK2+EC2, ∴(3a-136 )2=(136 )2+a2,解得a=4或0(舍去),
专题16等腰三角形与直角三角形(共50题)【解析版】

专题16等腰三角形与直角三角形(共50题)一.选择题(共24小题)1.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )A.8cm B.13cm C.8cm或13cm D.11cm或13cm【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解析】当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.【点评】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.2.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是( )A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.【解析】如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1∥l2,∠1=60°,∴∠BEA=180°﹣60°﹣25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°﹣25°=70°.故选:A.【点评】本题考查了等腰三角形的性质,平行线的性质以及三角形外角的性质,解决问题的关键是注意运用两直线平行,同旁内角互补.3.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是( )A.30°B.40°C.50°D.60°【分析】设底角的度数是x°2x+20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.【解析】设底角的度数是x°,则顶角的度数为(2x+20)°,根据题意得:x+x+2x+20=180,解得:x=40,故选:B.【点评】本题考查了等腰三角形的性质,考查了方程思想,掌握等腰三角形两个底角相等是解题的关键.4.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是( )A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解析】设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=AB=3,由勾股定理得:OC===4,∴点A的坐标为(4,3),故选:D.【点评】本题考查的是等腰三角形的性质、坐标与图形性质,掌握等腰三角形的三线合一是解题的关键.5.(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?( )A.∠1=∠2,∠1<∠3B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解析】∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.本题的关键.6.(2022•广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )A.B.3C.2D.【分析】利用勾股定理求出AB,再利用相似三角形的性质求出AE即可.【解析】在Rt△ABC中,BC=6,AC=8,∴AB===10,∵BD=CB=6,∴AD=AB=BC=4,由作图可知EF垂直平分线段AD,∴AF=DF=2,∵∠A=∠A,∠AFE=∠ACB=90°,∴△AFE∽△ACB,∴=,∴=,∴AE=,故选:A.【点评】本题考查勾股定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.7.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是( )A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到超市、学校、体育场、医院的距离,再比较大小即可.【解析】如右图所示,点O到超市的距离为:=,点O到学校的距离为:=,点O到体育场的距离为:=,点O到医院的距离为:=,∵<=<,∴点O到超市的距离最近,故选:A.【点评】本题考查勾股定理、平面直角坐标系,解答本题的关键是明确题意,作出合适平面直角坐标系.8.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF 于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为( )A.B.C.2D.【分析】设CF交AB于P,过C作CN⊥AB于N,设正方形JKLM边长为m,根据正方形ABGF与正方形JKLM的面积之比为5,得AF=AB=m,证明△AFL≌△FGM(AAS),可得AL=FM,设AL=FM=x,在Rt△AFL中,x2+(x+m)2=(m)2,可解得x=m,有AL=FM=m,FL=2m,从而可得AP=,FP=m,BP=,即知P为AB中点,CP=AP=BP=,由△CPN∽△FPA,得CN=m,PN=m,即得AN=m,而tan∠BAC===,又△AEC∽△BCH,得=【解析】设CF交AB于P,过C作CN⊥AB于N,如图:设正方形JKLM边长为m,∴正方形JKLM面积为m2,∵正方形ABGF与正方形JKLM的面积之比为5,∴正方形ABGF的面积为5m2,∴AF=AB=m,由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF=GF,∴△AFL≌△FGM(AAS),∴AL=FM,设AL=FM=x,则FL=FM+ML=x+m,在Rt△AFL中,AL2+FL2=AF2,∴x2+(x+m)2=(m)2,解得x=m或x=﹣2m(舍去),∴AL=FM=m,FL=2m,∵tan∠AFL====,∴=,∴AP=,∴FP===m,BP=AB﹣AP=m﹣=,∴AP=BP,即P为AB中点,∵∠ACB=90°,∴CP=AP=BP=,∵∠CPN=∠APF,∠CNP=90°=∠FAP,∴△CPN∽△FPA,∴==,即==,∴CN=m,PN=m,∴AN=AP+PN=m,∴tan∠BAC====,∵△AEC和△BCH是等腰直角三角形,∴△AEC ∽△BCH ,∴=,∵CE =+,∴=,∴CH =2,故选:C .【点评】本题考查正方形性质及应用,涉及全等三角形判定与性质,相似三角形判定与性质,勾股定理等知识,解题的关键是用含m 的代数式表示相关线段的长度.9.(2022•安徽)已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△PAB ,△PBC ,△PCA 的面积分别记为S 0,S 1,S 2,S 3.若S 1+S 2+S 3=2S 0,则线段OP 长的最小值是( )A .B .C .3D .【分析】如图,不妨假设点P 在AB 的左侧,证明△PAB 的面积是定值,过点P 作AB 的平行线PM ,连接CO 延长CO 交AB 于点R ,交PM 于点T .因为△PAB 的面积是定值,推出点P 的运动轨迹是直线PM ,求出OT 的值,可得结论.【解析】如图,不妨假设点P 在AB 的左侧,∵S △PAB +S △ABC =S △PBC +S △PAC ,∴S 1+S 0=S 2+S 3,∵S 1+S 2+S 3=2S 0,∴S1+S 1+S 0=2,∴S 1=S 0,∵△ABC 是等边三角形,边长为6,∴S 0=×62=9,∴S 1=,过点P 作AB 的平行线PM ,连接CO 延长CO 交AB 于点R ,交PM 于点T .∵△PAB 的面积是定值,∴点P 的运动轨迹是直线PM ,∵O 是△ABC 的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OD的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△PAB 的面积是定值.10.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是( )A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解析】∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDF+∠FDB=90°,∵∠CDF+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=,tan∠FDB=,∴,解得BF=,故选项A错误;故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.11.(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为( )A.25B.22C.19D.18【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD=AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解析】由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴∵△ABD的周长是19,故选:C.【点评】本题考查线段垂直平分线的性质,三角形的周长,解答本题的关键是明确题意,利用数形结合的思想解答.12.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是( )A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整【分析】由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,分这两种情况求解即可.【解析】由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,①当CA⊥BA时,∵∠B=45°,BC=2,∴AC=BC•sin45°=2×=,即此时d=,②当CA=BC时,∵∠B=45°,BC=2,∴此时AC=2,即d>2,综上,当d=或d>2时能作出唯一一个△ABC,故选:B.【点评】本题主要考查三角形的三边关系及等腰直角三角形的知识,熟练掌握等腰直角三角形的性质及三角形的三边关系是解题的关键.13.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是( )A.①②④B.①②③C.①③④D.①②③④【分析】①正确.证明△BAD≌△DAE(SAS),可得结论;②正确.证明A,D,C,E四点共圆,利用圆周角定理证明;③正确.设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,求出AO,CJ,可得结论;④错误.将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,设PD=t,则BD=AD=t,构建方程求出t,可得结论.【解析】如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△DAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴PA+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.【点评】本题考查等腰直角三角形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.14.(2022•眉山)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为( )A.9B.12C.14D.16【分析】根据三角形的中位线平行于第三边,并且等于第三边的一半,可得出△ABC的周长=2△DEF 的周长.【解析】如图,点E,F分别为各边的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC=3,EF=AB=2,DF=AC=4,∴△DEF的周长=3+2+4=9.故选:A.【点评】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.15.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tanα=( )A.2B.C.D.【分析】根据题意和题目中的数据,可以先求出大正方形的面积,然后设出小直角三角形的两条直角边,再根据勾股定理和两直角边的关系可求得直角三角形的两条直角边的长,然后即可求得tanα的值.【解析】由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a,短直角边为b,则a2+b2=5,a﹣b=1,解得a=2,b=1或a=1,b=﹣2(不合题意,舍去),∴tanα===2,故选:A.【点评】本题考查勾股定理的证明、解直角三角形,解答本题的关键是求出直角三角形的两条直角边长.16.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为( )A.B.C.D.【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC==BC=AB,可得BD=.【解析】过C作CD⊥x轴于D,CE⊥y轴于E,如图:∵CD⊥x轴,CE⊥y轴,∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE﹣OA=CD﹣OA=1,∴AC===BC=AB,在Rt△BCD中,BD==,在Rt△AOB中,OB==,∵OB+BD=OD=m,∴+=m,化简变形得:3m4﹣22m2﹣25=0,解得m=或m=﹣(舍去),∴m=,故选:C.【点评】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.17.(2022•扬州)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC【分析】直接利用全等三角形的判定方法分析得出答案.【解析】A.利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,∠B,无法确定三角形的形状,故此选项符合题意;D.根据∠A,∠B,BC,三角形形状确定,故此选项不合题意;故选:C.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.18.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是( )A.12B.9C.6D.3【分析】根据等腰三角形的性质得到BD=CD=3,AD⊥BC,根据等腰直角三角形的性质求出ED,根据三角形的面积公式计算,得到答案.【解析】∵AB=AC,AD是△ABC的角平分线,∴BD=CD=BC=3,AD⊥BC,在Rt△EBD中,∠EBC=45°,∴ED=BD=3,=BC•ED=×6×3=9,∴S△EBC故选:B.【点评】本题考查的是等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.19.(2022•宁波)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为( )A.2B.3C.2D.4【分析】根据三角形中位线可以求得AE的长,再根据AE=AD,可以得到AD的长,然后根据直角三角形斜边上的中线和斜边的关系,可以求得BD的长.【解析】∵D为斜边AC的中点,F为CE中点,DF=2,∴AE=2DF=4,∵AE=AD,∴AD=4,在Rt△ABC中,D为斜边AC的中点,∴BD=AC=AD=4,故选:D.【点评】三角形的中位线,解答本题的关键是求出AD 的长.20.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F 与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是( )A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【分析】由OB平分∠AOC,得∠DOE=∠FOE,由OE=OE,可知∠ODE=∠OFE,即可根据AAS得△DOE≌△FOE,可得答案.【解析】∵OB平分∠AOC,∴∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意,故选:D.【点评】本题考查全等三角形的判定,解题的关键是掌握全等三角形判定定理并会应用.21.(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于( )A.15°B.25°C.35°D.45°【分析】根据平行线的性质得到∠DNM=∠BME=80°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解析】∵AB∥CD,∴∠DNM=∠BME=80°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=80°﹣45°=35°,故选:C.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.22.(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A.B.C.D.【分析】利用圆柱的侧面展开图是矩形,而点B是展开图的一边的中点,再利用蚂蚁爬行的最近路线为线段可以得出结论.【解析】将圆柱侧面沿AC“剪开”,侧面展开图为矩形,∵圆柱的底面直径为AB,∴点B是展开图的一边的中点,∵蚂蚁爬行的最近路线为线段,∴C选项符合题意,故选:C.【点评】本题主要考查了圆柱的侧面展开图,最短路径问题,掌握两点之间线段最短是解题的关键.23.(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为( )A.B.C.4D.【分析】根据题意先作出合适的辅助线,然后根据勾股定理可以得到AB和BC的长,根据等面积法可以求得EG的长,再根据勾股定理求得EF的长,最后计算出CE的长即可.【解析】作EF⊥CB交CB的延长线于点F,作EG⊥BA交BA的延长线于点G,∵DB=DE=2,∠BDE=90°,点A是DE的中点,∴BE===2,DA=EA=1,∴AB===,∵AB=BC,∴BC=,∵=,∴,解得EG=,∵EG⊥BG,EF⊥BF,∠ABF=90°,∴四边形EFBG是矩形,∴EG=BF=,∵BE=2,BF=,∴EF===,CF=BF+BC=+=,∵∠EFC=90°,∴EC===,故选:D.【点评】本题考查勾股定理、等腰直角三角形,解答本题的关键是明确题意,求出EF和CF的长.24.(2022•遂宁)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为( )A.6B.8C.10D.12【分析】过点A作AM⊥BC于交DE于点N,则AN⊥DE,设AN=a,根据DE∥BC,证出△ADE∽△ABC,根据相似三角形对应高的比等于相似比得到DE=a,列出△DEF面积S的函数表达式,根据配方法求最值即可.【解析】如图,过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,设AN=a,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=,∴=,∴DE=a,∴△DEF面积S=×DE×MN=×a•(6﹣a)=﹣a2+4a=﹣(a﹣3)2+6,∴当a=3时,S有最大值,最大值为6.故选:A.【点评】本题考查了三角形的面积,平行线的性质,列出△DEF面积S的函数表达式,根据配方法求最值是解题的关键.二.填空题(共15小题)25.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD= 3 .【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【解析】∵AB=AC,AD⊥BC,∴CD=BD,∵BC=6,∴CD=3,故答案为:3.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.26.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为 6 .【分析】由等腰△ABC是“倍长三角形”,可知AB=2BC或BC=2AB,若AB=2BC=6,可得AB的长为6;若BC=3=2AB,因1.5+1.5=3,故此时不能构成三角形,这种情况不存在;即可得答案.【解析】∵等腰△ABC是“倍长三角形”,∴AB=2BC或BC=2AB,若AB=2BC=6,则△ABC三边分别是6,6,3,符合题意,∴腰AB的长为6;若BC=3=2AB,则AB=1.5,△ABC三边分别是1.5,1.5,3,∵1.5+1.5=3,∴此时不能构成三角形,这种情况不存在;综上所述,腰AB的长是6,故答案为:6.【点评】本题考查三角形三边关系,涉及新定义,解题的关键是分类思想的应用及掌握三角形任意两边的和大于第三边.27.(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是 40°或100° .【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解析】当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.【点评】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论.28.(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为 30° .【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解析】∵AB=AC且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的两个底角相等的性质是解题的关键.29.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是 (,﹣3) .【分析】根据正六边形的性质可得点A和点B关于原点对称,进而可以解决问题.【解析】因为点A和点B关于原点对称,B点的坐标是(﹣,3),所以A点的坐标是(,﹣3),故答案为:(,﹣3).【点评】本题考查了正六边形的性质,中心对称图形,解决本题的关键是掌握关于原点对称的点的坐标特征.30.(2022•金华)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm.把△ABC沿AB方向平移1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为 (8+2) cm.【分析】利用含30°角的直角三角形的性质,勾股定理和平移的性质,求得四边形AB'C'C的四边即可求得结论.【解析】∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,∴AB=2BC=4,∴AC==2.∵把△ABC沿AB方向平移1cm,得到△A'B'C',∴B′C′=BC=2,AA′=CC′=1,A′B′=AB=4,∴AB′=AA′+A′B′=5.∴四边形AB'C'C的周长为AB′+B′C′+CC′+AC=5+2+1+2=(8+2)cm.故答案为:(8+2).【点评】本题主要考查了含30°角的直角三角形的性质,勾股定理和平移的性质,熟练掌握平移的性质是解题的关键.31.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为 3 .【分析】根据题意先求出a、b、c,再代入公式进行计算即可.【解析】根据a:b:c=4:3:2,设a=4k,b=3k,c=2k,则4k+3k+2k=18,解得:k=2,∴a=4k=4×2=8,b=3k=3=6,c=2k=2×2=4,∴S===3,故答案为:3.【点评】本题考查了二次根式的运算,要注意运算顺序,解答的关键是对相应的运算法则的熟练掌握.32.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少 370 m(结果取整数,参考数据:≈1.7).【分析】解法一:如图,作辅助线,构建直角三角形,先根据四边形的内角和定理证明∠G=90°,分别计算AD,CG,AG,BG的长,由线段的和与差可得AM和AN的长,最后由勾股定理可得MN的长,计算AM+AN﹣MN可得答案.解法二:构建【阅读材料】的图形,根据结论可得MN的长,从而得结论.【解析】解法一:如图,延长DC,AB交于点G,∵∠D=60°,∠ABC=120BCD=150°,∴∠A=360°﹣60°﹣120°﹣150°=30°,∴∠G=90°,∴AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,∴BG=BC=50,CG=50,∴DG=CD+CG=100+50,∴AD=2DG=200+100,AG=DG=150+100,∵DM=100,∴AM=AD﹣DM=200+100﹣100=100+100,∵BG=50,BN=50(﹣1),∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50,Rt△ANH中,∵∠A=30°,∴NH=AN=75+25,AH=NH=75+75,由勾股定理得:MN===50(+1),∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,∵CD=DM,∠D=60°,∴△BCM是等边三角形,∴∠DCM=60°,由解法一可知:CG=50,GN=BG+BN=50+50(﹣1)=50,∴△CGN是等腰直角三角形,∴∠GCN=45°,∴∠BCN=45°﹣30°=15°,∴∠MCN=150°﹣60°﹣15°=75°=∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50,∵AM+AN﹣MN=AD+AG﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.【点评】此题重点考查了含30°的直角三角形的性质,勾股定理,二次根式的混合运算等知识与方法,解题的关键是作出所需要的辅助线,构造含30°的直角三角形,再利用线段的和与差进行计算即可.33.(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为 4 .【分析】连接AE,AF,EN,由正方形的性质可得AB=AD,BC=CD,∠ABE=∠BCD=∠ADF=90°,可证得△ABE≌△ADF(SAS),可得∠BAE=∠DAF,AE=AF,从而可得∠EAF=90°,根据等腰三角形三线合一可得点M为EF中点,由AN⊥EF可证得△AEM≌△AFM(SAS),△EMN≌△FMN (SAS),可得EN=FN,设DN=x,则EN=FN=x+5,CE=x+3,由勾股定理解得x=12,可得AB=CD=20,由勾股定理可得AE=5,从而可得AM=EM=FM=,由勾股定理可得MN=,即可求解.【解析】如图,连接AE,AF,EN,∵四边形ABCD为正方形,∴AB=AD,BC=CD,∠ABE=∠BCD=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF,AE=AF,∴∠EAF=90°,∴△EAF为等腰直角三角形,∵AN⊥EF,∴EM=FM,∠EAM=∠FAM=45°,∴△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),∴EN=FN,设DN=x,∵BE=DF=5,CN=8,∴CD=CN+DN=x+8,∴EN=FN=DN+DF=x+5,CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3,在Rt△ECN中,由勾股定理可得:CN2+CE2=EN2,即82+(x+3)2=(x+5)2,解得:x=12,∴AB=CD=x+8=20,EN=x+5=17,在Rt△ABE中,由勾股定理可得:AE===5,∴AM=EM=FM==,在Rt△EMN中,由勾股定理可得:MN===,∴AN=AM+MN=+=4,故答案为:4.【点评】本题考查正方形的性质,勾股定理,等腰三角形的性质,全等三角形的判定与性质等知识点,解题的关键是正确作出辅助线,构建全等三角形解决问题.34.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是 80 .【分析】过点D作DM⊥CI于点M,过点F作FN⊥CI于点N,由正方形的性质可证得△ACJ≌△CDM,△BCJ≌△CFN,可得DM=CJ,FN=CJ,可证得△DMI≌△FNI,由直角三角形斜边上的中线的性质可得DI=FI=CI,由勾股定理可得MI,NI,从而可得CN,可得BJ与AJ,即可求解.【解析】过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.【点评】本题考查正方形的性质,勾股定理,全等三角形的判定与性质等知识点,解题的关键是正确作出辅助线,利用全等三角形的性质进行求解.35.(2022•孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为26,8,10;8,15,17;…,若此类勾股数的勾为2m (m≥3,m为正整数),则其弦是 m2+1 (结果用含m的式子表示).【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【解析】∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2+1,综上所述,其弦是m2+1,故答案为:m2+1.【点评】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.36.(2022•台州)如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为 10 .【分析】根据三角形中位线定理求出AB,根据直角三角形斜边上的中线的性质即可求出CD.【解析】∵E,F分别为BC,CA的中点,∴EF是△ABC的中位线,∴EF=AB,∴AB=2EF=20,在Rt△ABC中,∠ACB=90°,D为AB中点,AB=20,∴CD=AB=10,故答案为:10.【点评】本题考查了直角三角形斜边上的中线的性质以及三角形的中位线定理,求得AB的长是解本题的关键.37.(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件 ∠B=60° .【分析】根据等边三角形的判定定理填空即可.【解析】有一个角是60°的等腰三角形是等边三角形,故答案为:∠B=60°.【点评】本题考查等边三角形的判定,解题的关键是掌握等边三角形的定义及等边三角形与等腰三角形的关系.。
专题16三角形及全等三角形(共40题)-2021年中考数学真题分项汇编(解析版)【全国通用】

2021年中考数学真题分项汇编【全国通用】(第01期)专题16三角形及全等三角形(共40题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】 根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠∠ABC =∠BCD ,∠CB 平分∠DCE ,∠∠BCE =∠BCD ,∠∠BCE =∠ABC ,∠∠AEC =∠BCE +∠ABC =40°,∠∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B【分析】 由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∠25B ∠=︒,50C ∠=︒,∠在Rt ∠BEC 中,由三角形内角和可得105BEC ∠=︒,∠35A ∠=︒,∠170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒【答案】C【分析】 由垂直的定义可得∠2=90°;根据对顶角相等可得510α∠=∠=︒,再根据三角形外角的性质即可求得140β∠=︒.【详解】∠13l l ⊥,∠∠2=90°;∠510α∠=∠=︒,∠125090140β∠=∠+∠=︒+︒=︒.故选C .【点睛】本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∠∠BCD =100°,∠∠CBD +∠CDB =180°-100°=80°,∠∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形. 7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C与D.【详解】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.8.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OA=3,利用圆的面积公式S 圆=163π. 【详解】解:方法一:∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 603c R C ===︒,∠3R = ∠S 圆=2221633R OA ππππ⎛=== ⎝⎭.方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,∠∠AOB =2∠C =2×60°=120°,∠OA =OB ,∠∠OAB =∠OBA =()1180120302︒-︒=︒, ∠OD ∠AB ,AB 为弦,∠AD =BD =122AB =,∠AD =OA cos30°,∠OA =343cos30223AD ÷︒=÷=, ∠S 圆=222431633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】 根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加AB DC =, 在ABC 和DCB 中,AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】 解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断∠ABC ∠∠DEF ,故C 符合题意;D. 添加一个条件AC ∠FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形【答案】D【分析】 此题是有关剪纸的问题,此类问题应亲自动手折一折,剪一剪.【详解】解:由题可知,AD 平分BAC ∠,折叠后AEO △与AFO 重合,故全等,所以EO =OF ;又作了AD 的垂直平分线,即EO 垂直平分AD ,所以AO =DO ,且EO ∠AD ;由平行四边形的判定:对角线互相平分的四边形为平行四边形,所以AEDF 为平行四边形;又AD ∠EF ,所以平行四边形AEDF 为菱形.故选:.D【点睛】本题主要考察学生对于立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,有几何图形想象出实物的图形”的要求相一致,充分体现了实践操作性原则.12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,42b a +是分式,故选项错误; D.若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A .【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.13.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4 【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简. 14.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∠//,140m n ∠=︒,∠∠4=∠1=40°,∠230∠=︒,∠34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点AB 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒【答案】C【分析】 根据题意可得直线MN 是线段AB 的垂直平分线,进而可得CB AC =,利用平行线的性质及等腰三角形中等边对等角,可得40CAB CBA ∠=∠=︒,所以可求得100ACB ∠=︒.【详解】∠已知分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,∠直线MN 垂直平分线段AB ,∠CB AC =,∠//a b ,140∠=︒,∠140CBA ∠=∠=︒,∠40CAB CBA ∠=∠=︒,∠180100ACB CBA CAB ∠=︒-∠-∠=︒.故选:C.【点睛】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线MN垂直平分线段AB 是解题关键.17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。
专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形【考点剖析】1.等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一) 图形:如下所示;21DCBA符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则2.等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2) 等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)3.等边三角形的性质(1)等边三角形性质1:等边三角形的三条边都相等; (2) 等边三角形性质2:等边三角形的每个内角等于60︒; (3)等边三角形性质3:等边三角形是轴对称图形,有三条对称轴.4.等边三角形的判定(1)等边三角形的判定方法1:(定义法:从边看)有三条边相等的三角形是等边三角形; (2)等边三角形的判定方法2:(从角看)三个内角都相等的三角形是等边三角形;(3)等边三角形的判定方法3:(从边、角看)有一个内角等于60︒的等腰三角形是等边三角形. 【典例分析】例1 (杨浦2019期末14)在ABC ∆中,AB=AC ,把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N. 如果CAN ∆是等腰三角形,则B ∠的度数为 . 【答案】4536︒︒或;【解析】因为把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N.所以MN 是AB 的中垂线,∴NB=BA ,B BAN ∴∠=∠,AB AC B C =∴∠=∠Q ,设B x ∠=,则C BAN x ∠=∠=. (1)当AN=NC 时,CAN C x ∠=∠=,在ABC ∆中,根据三角形内角和定理得4180x =︒,得45x =︒,故45B ∠=︒;(2)当AN=AC 时,ANC C x ∠=∠=,而ANC B BAN ∠=∠+∠,故此时不成立;(3)当CA=CN 时,1802x NAC ANC ︒-∠=∠=,于是得1801802xx x x ︒-+++=︒,解得36x =︒. 综上所述:4536B ∠=︒︒或.NM CBA例2 (浦东2018期末18)如图,在ABC ∆中,A=120,=40B ∠︒∠︒,如果过点A 的一条直线把ABC ∆分割成两个等腰三角形,直线l 与BC 交于点D ,那么ADC ∠的度数是 .CBA【答案】14080︒︒或;【解析】如图所示,把BAC ∠分为1000︒︒和2或者4080︒︒和,可得ADC=14080∠︒︒或.ABCDC BA20°80°80°40°40°20°20°40°40°100°例3 (闵行2018期末17)有下列三个等式①AB =DC ;②BE =CE ;②∠B =∠C .如果从这三个等式中选出两个作为条件,能推出Rt △AED 是等腰三角形,你认为这两个条件可以是 (写出一种即可)EDCBA【答案】①②或①③或②③.(答案不唯一)【解析】解:当AB =DC ,BE =CE ,∠AEB =∠DEC 时,Rt △ABE ≌Rt △DCE (HL ),故AE =DE ,即Rt △AED 是等腰三角形;当AB =DC ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (AAS ),故AE =DE ,即Rt △AED 是等腰三角形;当BE =CE ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (ASA ),故AE =DE ,即Rt △AED 是等腰三角形.故答案为:①②或①③或②③.(答案不唯一)例4 (黄浦2018期末27)如图,在ABC ∆中,AD BC ⊥,垂足为点D ,AD 平分BAC ∠,点O 是线段AD 上一点,线段的延长线交边AC 于点F ,线段CO 的延长线交边AB 于点E . (1)说明ABC ∆是等腰三角形的理由; (2)说明BF=CE 的理由.O FE DC BA【答案与解析】(1)AD BC ADB=ADC ⊥∴∠∠Q ,Q AD 平分BAC ∠,BAD=CAD ∴∠∠.ADB=DAC+ACD ADC=BAD+ABD ∠∠∠∠∠∠Q ,,ABD=ACD ∴∠∠,AB=AC ∴即ABC ∆是等腰三角形;(2)ABC ∆Q 是等腰三角形,AD BC ⊥,BD=CD ∴.在BDO CDO ∆∆与中,DO DO ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,BDO CDO ∴∆∆≌OBD OCD ∴∠=∠.在BEC CFB ∆∆与中ECB FBCBC CBABC ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩BEC CFB ∴∆∆≌,BF CE ∴=. 【真题训练】 一、选择题1.(宝山2018期末18)如图7,在ABC ∆中,AB=AC ,30A ∠=︒,以B 为圆心,BC 的长为半径作弧,交AC 于点D ,联结BD ,则ABD ∠等于( )A. 45︒;B. 50︒;C. 60︒;D. 75︒.DABC【答案】A ;【解析】因为在ABC ∆中,AB=AC ,30A ∠=︒,所以18030752ABC ACB ︒-︒∠=∠==︒,又因为以B为圆心,BC 的长为半径作弧,交AC 于点D ,所以,75BD BC BCA BDC =∴∠=∠=︒,30CBD ∴∠=︒,故753045ABD ABC CBD ∠=∠-∠=︒-︒=︒. 故答案选A.2.(长宁2019期末20)在平面直角坐标系,O 为坐标原点,点A的坐标为,M 为坐标轴上一点,且使得MOA ∆为等腰三角形,那么满足条件的点M 的个数为( ) A. 4; B.5; C.6; D.8 【答案】C ;【解析】分三种情况:(1)当OA=OM 时,可得M 点坐标可以为:(0,2)、(0,-2)、(2,0)、(-2,0);当AO=AM 时,M 点坐标可以为(2,0)、(0,;当MO=MA 时,(2,0)、(0,3;故一共有6个不同的点. 故选C. 二、填空题3.(浦东2018期末13)已知一个等腰三角形两边长分别为2和4,那么这个等腰三角形的周长是 . 【答案】10;【解析】依题,(1)若腰长为2、底为4,不可能构成等腰三角形,舍去;(2)若腰长为4、底为2,符合题意,周长为4+4+2=10;由上可知,这个等腰三角形的周长为10. 4.(宝山2018期末7)已知实数x 、y满足|3|0x -=,那么以x 、y 的值为两边长的等腰三角形的周长是 . 【答案】15;【解析】因为实数x 、y满足|3|0x -=,所以x=3,y=6,故符合题意的等腰三角形三边长分别为6、6、3,故此等腰三角形的周长为6+6+3=15.5.(闵行2018期末15)如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2= .l 3l 2l 1【答案】35°.【解析】解:∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∵△ABC 是等边三角形, ∴∠ABC =60°,∴∠4=60°﹣25°=35°,∴∠2=∠4=35°.故答案为:35°.1l 2l 36.(普陀2018期末17)如图,已知△ABC 中,∠ABC 的角平分线BE 交AC 于点E ,DE ∥BC ,如果点D 是边AB 的中点,AB=8,那么DE 的长是 .E D CBA【答案】4;【解析】解:连接BE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∵DE ∥BC ,∴∠DEB=∠ABE , ∴∠ABE=∠DEB ,∴BD=DE ,∵D 是AB 的中点,∴AB=BD ,∴DE=12AB=4,故答案为:4 AD BCE7.(宝山2018期末13)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=AE ,BC=BD ,则ACD BCE ∠+∠= ______-︒.ECBA【答案】45;【解析】过点C 作CH AB ⊥于点H ,因为AC =AE ,所以ACE AEC ∠=∠,因为CH AB ⊥,所以90AEC HCE ∠+∠=︒, 又90ACE BCE ∠+∠=︒,所以=BCE HCE ∠∠;同理可得:ACD HCD ∠=∠; 故+=+BCE ACD HCE HCD ∠∠∠∠即+=45BCE ACD ∠∠︒.HED CBA8.(黄浦2018期末19)已知等腰三角形的一个内角为50度,则这个等腰三角形的顶角为 ︒. 【答案】50︒或80︒;【解析】(1)当顶角为50︒时,这个等腰三角形的顶角为50︒;(2)当底角为50︒时,则顶角为180-250=80︒⨯︒︒;综上述,这个等腰三角形的顶角为50︒或80︒.9.(长宁2018期末14)等腰三角形一腰上的高与另一腰的夹角为40︒,那么这个等腰三角形的顶角为____度.【答案】50130︒︒或.【解析】(1)如下图1,4050ABD A ∠=︒∴∠=︒,(2)如图2,40130ABD BAC ∠=︒∴∠=︒,故这个等腰三角形的顶角为50130︒︒或(图2)(图1)10.(黄浦2018期末14)等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且 ,那么AD BC ⊥且 .DCBA【答案】BD=CD ;BAD CAD ∠=∠;【解析】等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且BD=CD ,那么AD BC ⊥且BAD CAD ∠=∠.故答案为:BD=CD ;BAD CAD ∠=∠. 11.(杨浦2019期末13)如图,已知在ABC ∆中,AB=AC ,点D 在边BC 上,要使BD=CD ,还需添加一个条件,这个条件是 .(只需填上一个正确的条件)D B A【答案】BAD CAD ∠=∠或者AD BC ⊥(只填一个)【解析】解:在ABC ∆中,AB=AC ,BAD CAD ∠=∠,BD CD ∴=;或者 在ABC ∆中,AB=AC ,AD BC ⊥,BD CD ∴=;故答案为:BAD CAD ∠=∠或者AD BC ⊥. 考查等腰三角形的三线合一。
八年级数学竞赛专题训练16 等腰三角形的性质(附答案)

八年级数学竞赛专题训练16 等腰三角形的性质阅读与思考等腰三角形是一类特殊三角形,具有特殊的性质,这些性质为角度的计算、线段相等、直线位置关系的证明等问题提供了新的理论依据.因此,在解与等腰三角形相关的问题时,除了要运用全等三角形知识方法外,又不能囿于全等三角形,应善于利用等腰三角形的性质探求新的解题途径,应熟悉以下基本图形、基本结论.⑴ 图1中,01802A B ∠=-∠,01802AB C -==∠∠∠,22DAC B C ==∠∠∠.⑵ 图2中,只要下述四个条件:①AB AC =;②12=∠∠;③CD DB =;④AD BC ⊥中任意两个成立,就可以推出其余两个成立.例题与求解【例1】如图,在△ABC 中,D 在AC 上,E 在AB 上,且AB =AC ,BC =BD ,AD =DE =BE , 则∠A =___________.(五城市联赛试题)解题思路:图中有很多相关的角,用∠A 的代数式表示这些角,建立关于∠A 的等式.【例2】如图,在△ABC 中,已知∠BAC =900,AB =AC ,D 为AC 中点,AE ⊥BD 于E ,延长AE 交BC 于F ,求证:∠ADB =∠CDF .(安徽省竞赛试题)解题思路:∠ADB 与∠CDF 对应的三角形不全等,因此,需构造全等三角形,而在等腰三角形中,作顶角的平分线或底边上的高(中线)是一条常用的辅助线.BC AD 图1A BC1 2图2A BCD E A BCD EF【例3】如图,在△ABC 中,AC =BC ,∠ACB =900,D 是AC 上一点,且AE 垂直BD 的延长线于E ,又AE =12BD ,求证:BD 是∠ABC 的角平分线. (北京市竞赛试题)解题思路:∠ABC 的角平分线与AE 边上的高重合,故应作辅助线补全图形,构造全等三角形、等腰三角形.【例4】如图,在△ABC 中,∠BAC =∠BCA =440,M 为△ABC 内一点,使∠MCA =300,∠MAC =160,求∠BMC 度数.(北京市竞赛试题)解题思路:作等腰△ABC 的对称轴(如图1),通过计算,证明全等三角形,又440+160=600;可以AB 为一边,向点C 所在的一侧作等边△ABN ,连结CN ,MN (如图2);或以AC 为一边,向点B 所在的一侧作等边△ACN ,连结BN (如图3).BCMAA EBCDB C M A 图 1 DO BC M A 图 2NBC MA 图 3 N【例5】如图,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =1200的等腰三角形,以D 为顶点作一个600角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形.求证:△AMN 的周长等于2.(天津市竞赛试题)解题思路:欲证△AMN 的周长等于2,只需证明MN =BM +CN ,考虑用补短法证明.【例6】如图,△ABC 中,∠ABC =460,D 是BC 边上一点,DC =AB ,∠DAB =210,试确定∠CAD 的度数.(北京市竞赛试题)解题思路:解本题的关键是利用DC =AB 这一条件.能力训练A 级1.如果等腰三角形一腰上的高另一腰的夹角为450,那么这个等腰三角形的底角为_____________. 2.如图,已知∠A =150,AB =BC =CD =DE =EF ,则∠FEM =_____________.3.如图,在等边△ABC 的AC ,BC 边上各取一点P 、Q ,使AP =CQ ,AQ ,BP 相交于点O ,则 ∠BOQ =____________.4.如图,在△ABC 中,∠BCA =900,∠BAC =600,BC =4,在CA 的延长线取点D ,使AD =AB ,则D ,B 两点之间的距离是____________.BD ABACDN M (第2题)ACEM NABC QPO(第3题)ABC D(第4题)5.如图,在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A .900-12∠A B .900-∠AC .1800-∠AD .450-12∠A 6.如图,在△ABC 中,∠ACB =900,AC =AE ,BC =BF ,则∠ECF =()A .600B .450C .300D .不确定(安徽省竞赛试题)B第5题图 第6题图7.△ABC 的一个内角的大小是400,且∠A =∠B ,那么∠C 的外角的大小是( )A .1400B .800或1000C .1000或1400D .800或1400(“希望杯”邀请赛试题) 8.三角形三边长a ,b ,c 满足1111a b c a b c -+=-+,则三角形一定是( ) A .等边三角形 B .以a 为底边的等腰三角形C .以c 为底边的等腰三角形D .等腰三角形(北京市竞赛试题)9.如图,在△ABC 中,AB =AC ,D ,E 分别是腰AB ,AC 延长线上的点,且BD =CE ,连结DE 交BC 于G ,求证:DG =EG .(湖北省竞赛试题)ABC D GE ABEF10.如图,在△ABC 中,∠BAC =900,AB =AC ,BE 平分∠ABC ,CE ⊥BE ,求证:CE =12BD . (江苏省竞赛试题)11.已知Rt △ABC 中,AC =BC ,∠C =900,D 为AB 边中点,∠EDF =900,将∠EDF 绕D 点旋转,它的两边分别交AC ,BC (或它们的延长线)于E 、F ,当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证:S △DEF +S △CEF =12S △ABC ,当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S △DEF ,S △CEF ,S △ABC 又有怎样的数量关系?请写出你的猜想,不需证明.(牡丹江市中考试题)12.如图,在△ABC 中,AB =AC ,∠BAC =800,O 为△ABC 内一点,且∠OBC =100,∠OCA =200,求∠BAO 的度数.(天津市竞赛试题)BA B CAB CAB CE D FE DF DF图1图2图3A B C D EB 级1.如图,在△ABC 中,∠ABC =1000,AM =AN ,CN =CP ,则∠MNP =_________.2.如图,在△ABC 中,AB =AC ,∠BAC =900,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下4个结论:①AE =CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =12S △ABC;④EF =AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合).上述结论正确的是____________.(苏州市中考试题)3.如图,在△ABC 中,AB =BC ,M ,N 为BC 边上两点,并且∠BAM =∠CAN ,MN =AN ,则∠MAC 的度数是____________.4.如图,在△ABC 中,AB =AC ,∠BAC 与∠ACB 的平分线相交于D ,∠ADC =1300,那么∠CAB 的大小是( )A .800B .500C .400D .2005.如图,在△ABC 中,∠BAC =1200,AD ⊥BC 于D ,且AB +BD =DC ,则∠C 的大小是( )A .200B .250C .300D .450 6.如图,在△ABC 中,AC =BC ,∠ACB =900,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 交AC 的延长线于M ,连CD ,下列四个结论:①∠ADC =450;②BD =12AE ;③AC +CE =AB ;④AB -BC =2MC .其中正确结论的个数为( )A .1个B .2个C .3个D .4个7.如图,已知△ABC 为等边三角形,延长BC 至D ,延长BA 至E ,并且使AE =BD ,连结CE 、DE ,求证:CE =DE .ABCNP (第1题)ABC PEF(第2题)AB CN M(第3题)A(第4题)BCD(第5题)ABCD ABD ECM(第6题)A BCDE8.如图,△ABC 中,已知∠C =600,AC >BC ,又△ABC ′、△A ′BC 、△AB ′C 都是△ABC 外的等边三角形,而点D 在AC 上,且BC =DC .⑴ 证明:△C ′BD ≌△B ′DC ; ⑵ 证明:△AC ′D ≌△DB ′A ;⑶ 对△ABC 、△ABC ′、△A ′BC 、△AB ′C ,从面积大小关系上,你能得出什么结论?(江苏省竞赛试题)9.在△ABC 中,已知AB =AC ,且过△ABC 某一顶点的直线可将△ABC 分成两个等腰三角形,试求△ABC 各内角的度数.(江苏省扬州中学测试题)10.如图,在△ABC 中,∠C =900,∠CAD =300,AC =BC =AD ,求证:CD =BD .11.已知△ABC 中,∠B 为锐角,从顶点A 向边BC 或BC 的延长线引垂线交BC 于H 点,又从顶点C 向边AB 或AB 的延长线引垂线交AB 于K ,试问:当2BH BC ,2BKAB是整数时,△ABC 是怎样的三角形?并证明你的结论.(“智能杯”通讯赛试题)ABCDA ′B ′C ′AC D专题16 等腰三角形的性质例1 45°例2 提示:过点A作∠A的平分线BD交于G,先证明△ABG≌△ACF,再证明△AGD≌△CFFD例3 提示:延长BC,AE交于一点.、例4 提示:如图,作BD⊥AC于D,则∠OCD=∠OAD=30°,∴∠BA0=44°-30°=14°,∠MAO=∠OAC-∠MAC=14°,∴∠BAO=∠MAO,又∵∠AOD=∠COD=90°-30°=60°,∴∠AOB=∠AOM=120°,∴OB=OM.又∵AO=AO,∴△AOB≌△AOM又∵∠BOM=120°,∴∠OMB=30°,故∠BMC=180°-∠OMB=150°.例5 如图,在AC延长线上截取CM1=BM,由Rt△BDM≌Rt△CDM1,得MD=M1D,∠MDB= ∠M1DC.∴∠MDM1=120°-∠MDB+∠M1DC=120°,又∠MDN=60°,∴∠NDM1=60°,∵MD=MD1,∠MDN=∠NDM1=60°,DN=DN,∴△MDN≌△M1DN,得MN=NM1,故△AMN周长:AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2.例6 解法1 如图a,作△ABD关于AD的轴对称图形△ADC,则∠EAD=21°,AE=AB,∴DE=BD,又∠ADC=21°+46°=67°,故∠ADE=∠ADB=180°-67°=113°,∠CDE=113°-67°=56°,连CE,可证△CDE≌△ABD≌△AED,∠ODE=∠OED=46°,得OD=OE,又DC=AE,则AO=CO,∠OCA=∠OAC,∠COE=2∠ACO,∠COE=2×46°=92°=2∠ACO.从而∠ACO=46°=∠OAC,∴∠DAE+∠EAC=67°.解法2 如图b,过A点作AE∥BC.过D作DE∥AB,连接EC.∵∠EDC=∠ABC=46°,DE=AB=CD,∴∠DCE=∠CED=12×(180°-46°)=67° ∵∠ADC=∠ABC+∠BAD=46°+21°=67° ∴∠ADC=∠DCE ,,∴AD=EC. ∴梯形ADCE 为等腰梯形∴AC=DE (等腰梯形对角线相等),∴AB=AC=CD ,∴∠DAC=∠ADC=67°.A 级1. 67.5°或22.5° 2.75°3.60°4.85.A6.B7.B8.D 提示:由已知得(b -c)(a -b)(a+c)=0,故b=c 或a=b.9. 提示:过D 作DF ∥AC 交BC 于F ,证明△DFG ≌△ECG .10. 提示:延长CE 交BA 的延长线于F ,证明△BEC ≌△BEF ,再证明△AFC ≌△ADB. 11. 提示:图2成立,联系图1,可证明△ECD ≌△FBD ,12DEF CEF ECD CDF FBD CDF CDB ACB S S S S S S S S ∆∆∆∆∆∆∆∆+=+=+==图3不成立,此时12DEF CEF ABC S S S ∆∆∆-=12.作∠BAC 的角平分线与CO 的延长线交于D ,连BD ,则△ABD ≌△ACD ,则∠ABD=∠ACD=30°, ∠OBD=∠ABC -∠OBC -∠ABD=20°=∠ABD , ∠DOB=∠OBC+∠OCB=40°=∠DAB ,从而△ABD ≌△OBD ,AB=OB ,即△ABO 为等腰三角形,得∠BAO=12(180°-40°)=70° B 级1.40°2.①②③ 提示:连AP.3. 60°提示:设∠CAN =∠BAM =α,∠MAN =β,则∠C =∠BAC =2α+β,∠AMN =β4. D5.A6.D7. 提示:延长BD 到F ,使DF =BC ,则△BEF 为等边三角形,再证明△BCE ≌△FDE8.⑴证明略;⑵由①得C ´D =AC =AB ´,由②得DB ´=BA =C ´A ,又AD =AD ,∴△AC ´D ≌△DB ´A ;⑶S △AB ´C >S △ABC ´>S △ABC >S △A ´BC ,S △ABC + S △ABC ´= S △AC ´B + S △A ´BC 9.满足题意的图形有以下四种情形:10.提示:在△ACD 内以CD 为边作等边△ECD ,连AE ,则△ACE ≌△ADE .∴∠CAE =12∠CAD =15°,又∵∠DCB =90°-∠ACD =90°-75°=15°,∴∠CAE =∠BCD =∠ECA . 又∵AC =BC ,CE =CD ,∴△ACE ≌△BCD ,∴∠DBC =∠EAC =15°. ∴∠DCB =∠DBC ,∴DC =DB .ABE C图bABC F图c图dABC GABD C图a11.设2BHm BC =,2BK n AB =,因BH <BA ,BK <BC ,故mn <4,得11m n =⎧⎨=⎩;12m n =⎧⎨=⎩;13m n =⎧⎨=⎩;21m n =⎧⎨=⎩;31m n =⎧⎨=⎩ ①当m =n =1时,BH =12BC ,BK =12AB ,△ABC 是等边三角形.②当m =1,n =2时,BH =12BC ,BK =AB ,△ABC 是∠A 为直角的等腰直角三角形. ③当m =1,n =3时,BH =12BC ,BK =32AB ,△ABC 是∠A 为120°的等腰三角形. ④当m =2,n =1时,△ABC 是以∠C 为直角的等腰直角三角形. ⑤当m =3,n =1时,△ABC 是以∠C 为120°的等腰三角形.A CB ED。
分类讨论之等腰三角形

分类讨论之等腰三角形一.填空题(共11小题)1.(2013秋•临沭县期末)等腰三角形的一个内角为40°,则顶角的度数为.2.(2009•昆明)等腰三角形的一个外角为100°,则这个等腰三角形的顶角的度数为.3.(2011•鹤岗模拟)等腰三角形一边上的高等于一边的一半,则它的顶角度数为.4.如果等腰三角形腰上的高是腰长的一半,那么它顶角的度数是.5.(2011春•微山县月考)用36根火柴棒首尾相接围成一个等腰三角形,最多你能围成种不同的等腰三角形.6.(2014春•海盐县校级期末)如图,已知Rt△ABC中,∠C=90°,∠A=30°.在直线BC 或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有个.(在图上作出点P的位置)7.(2013春•九江期末)Rt△ABC中,∠C=90°,CA=CB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成的△PAB、△PBC、△PAC都是等腰三角形,则满足条件的点P的个数为.8.(2014春•丹东期末)如图,在△ABC中,∠B=30°,∠C=∠B,AB=2cm,点P从点B开始以1cm/s的速度向点C移动,当△ABP要以AB为腰的等腰三角形时,则运动的时间为.9.(2012•丹东)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q 为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有个.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)11.(2011春•沙坪坝区校级期末)如图,在长方形ABCD中,AB=4,AD=10,点Q是BC 的中点,点P在AD边上运动,当△BPQ是腰长为5的等腰三角形时,AP的长度为.12.(2014•上城区二模)在凸四边形ABCD中,AB=AD=BC,∠BAD=90°,AC把四边形ABCD分成两个等腰三角形,则∠ABC的度数为.二.解答题(共6小题)13.(2014秋•江阴市期末)如图,在Rt△ABC中,∠ACB=90°,AC=3cm,BC=4cm.动点P从点B出发,以每秒1cm的速度沿射线BA运动,求出点P运动所有的时间t,使得△PBC 为等腰三角形.14.(2014秋•嘉善县校级期中)如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;(3)当t为何值时,△BCP为等腰三角形?15.(2014秋•涞水县期末)如图,在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD、△AFD关于直线AD对称,∠FAC的角平分线交BC边于点G,连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ,当θ为何值时,△DFG为等腰三角形?16.(2013秋•甘井子区校级月考)如图,已知AB=2的线段在线段MN上左右平移,MN=5,以A为中心顺时针旋转针M,以B为中心逆时针旋转点N,使M、N两点重合成一点,构成△ABC,设AM=x.(1)求x的取值范围;(2)探究:△ABC是否可能为等腰三角形?若可能,求出此时x的值,不可能请说明理由.17.(2014秋•自贡期末)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?18.(2009•鸡西)有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)分类讨论之等腰三角形参考答案与试题解析一.填空题(共11小题)1.(2013秋•临沭县期末)等腰三角形的一个内角为40°,则顶角的度数为100°或40°.2.(2009•昆明)等腰三角形的一个外角为100°,则这个等腰三角形的顶角的度数为80°或20°.3.(2011•鹤岗模拟)等腰三角形一边上的高等于一边的一半,则它的顶角度数为30°、90°、120°或150°.BC=AB=,BC=AC ACD=,BC=CD=BDBA=,4.如果等腰三角形腰上的高是腰长的一半,那么它顶角的度数是30°或150°.ABABACABABAC5.(2011春•微山县月考)用36根火柴棒首尾相接围成一个等腰三角形,最多你能围成8种不同的等腰三角形.6.(2014春•海盐县校级期末)如图,已知Rt△ABC中,∠C=90°,∠A=30°.在直线BC 或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有6个.(在图上作出点P的位置)7.(2013春•九江期末)Rt△ABC中,∠C=90°,CA=CB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成的△PAB、△PBC、△PAC都是等腰三角形,则满足条件的点P的个数为3.8.(2014春•丹东期末)如图,在△ABC中,∠B=30°,∠C=∠B,AB=2cm,点P从点B开始以1cm/s的速度向点C移动,当△ABP要以AB为腰的等腰三角形时,则运动的时间为2s或6s.cm=2×=3cmcmBP=2ss9.(2012•丹东)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q 为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有5个.10.(2011春•沙坪坝区校级期末)如图,在长方形ABCD中,AB=4,AD=10,点Q是BC 的中点,点P在AD边上运动,当△BPQ是腰长为5的等腰三角形时,AP的长度为2或3或8.BC=×QE=BE==11.(2014•上城区二模)在凸四边形ABCD中,AB=AD=BC,∠BAD=90°,AC把四边形ABCD分成两个等腰三角形,则∠ABC的度数为60°、90°、150°.AD二.解答题(共6小题)12.(2014秋•江阴市期末)如图,在Rt△ABC中,∠ACB=90°,AC=3cm,BC=4cm.动点P从点B出发,以每秒1cm的速度沿射线BA运动,求出点P运动所有的时间t,使得△PBC 为等腰三角形.t=BP=AB=;,t=BP=秒或秒13.(2014秋•嘉善县校级期中)如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;(3)当t为何值时,△BCP为等腰三角形?14.(2014秋•涞水县期末)如图,在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD、△AFD关于直线AD对称,∠FAC的角平分线交BC边于点G,连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ,当θ为何值时,△DFG为等腰三角形?15.(2013秋•甘井子区校级月考)如图,已知AB=2的线段在线段MN上左右平移,MN=5,以A为中心顺时针旋转针M,以B为中心逆时针旋转点N,使M、N两点重合成一点,构成△ABC,设AM=x.(1)求x的取值范围;(2)探究:△ABC是否可能为等腰三角形?若可能,求出此时x的值,不可能请说明理由.,<<16.(2014秋•自贡期末)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?17.(2009•鸡西)有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)==m=10+10+420+==xx=AD+BD+AB=++10=m。
2020中考数学专项解析:等腰三角形

【文库独家】等腰三角形一、选择题1. (•广东,第9题3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A. 17 B. 15 C. 13 D.13或17考点:等腰三角形的性质;三角形三边关系.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.2. (•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是(),3.(·浙江金华,第8题4分)如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B的度数是【】A.70°B.65°C.60°D.55°【答案】B.【解析】4. (•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()(第1题图)=,MN二.填空题1. (•广东,第16题4分)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.2. (•珠海,第10题4分)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为8.=;OA=3. (•广西贺州,第17题3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.解答:解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.4.(年天津市,第17 题3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).考点:等腰三角形的性质.菁优网分析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.解答:解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为45.点评:本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.5.(•新疆,第12题5分)如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.(6.(年云南省,第13题3分)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=18°.考点:等腰三角形的性质.分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7. (•益阳,第13题,4分)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC 重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.(第1题图)8. (•泰州,第15题,3分)如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为y=(x>0).(第2题图)为=,=,(9. (•扬州,第10题,3分)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.10.(•呼和浩特,第13题3分)等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为63°或27°.三.解答题1. (•湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m 为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.(第1题图)==m×mm m﹣×m.m m+2((.其中<3﹣+33=.==.=,.=.2. (•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.(第2题图),解得,=,即正方形的边长为3. (•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形AB C.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第3题图)=,×××的面积为=====.==,=.=的长度为4. (•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第4题图)=BD×==2,=2.5. (•泰州,第26题,14分)平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、B.(第5题图)(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1=(x>0)的图象都有交点,请说明理由.的纵坐标分别为、﹣,根据两点())(﹣)﹣(=,),,)=﹣,(),而×=的纵坐标分别为、﹣,()(﹣)))))﹣﹣=(,,)﹣,﹣(﹣),(6. (•扬州,第28题,12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(第6题图)(1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP 上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB 于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.DC AP ===.=====PQ QB P==4PB=22.7.(•温州,第20题10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.8.(年广东汕尾,第19题7分)如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.分析:(1)根据题意可知MN是线段AC的垂直平分线,由此可得出结论;(2)先根据勾股定理求出BC的长,再根据线段垂直平分线的性质即可得出结论.解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.点评:本题考查的是作图﹣基本作图,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.9.(•襄阳,第21题6分)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=O C.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.10.(•滨州,第24题10分)如图,已知正方形ABCD,把边DC绕D点顺时针旋转30°到DC′处,连接AC′,BC′,CC′,写出图中所有的等腰三角形,并写出推理过程.11.(•菏泽,第16题6分)(1)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.=。
等腰三角形的轴对称性

等腰三角形的轴对称性1.知识.能力聚焦1.等腰三角形的性质(1)等腰三角形是轴对称图形,顶角的角平分线所在直线是它的对称轴。
(2)等腰三角形的两个底角相等(简称“等边对等角”)(3)等腰三角形顶角的角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)2.等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”),这就是等腰三角形的重要判定方法。
3.直角三角形的性质直角三角形斜边上的中线等于斜边的一半。
在应用该性质时应注意以下两点:(1)必须是在直角三角形中;(2)中线必须是斜边上的中线,二者缺一不可。
4.等边三角形(1)定义:三边相等的三角形叫做等边三角形,也叫正三角形。
(2)性质:应为等边三角形是特殊的等腰三角形,所以它除了具有等腰三角形的一切性质外,还具有如下性质:①等边三角形是轴对称图形,并且有3条对称轴。
②等边三角形是每个角都等于60°(3)识别:判定等边三角形有如下三种方法:①三边相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
创新.思维拓展等腰三角形性质的拓展由于等腰三角形的特殊性,除了边、角的等量关系以外,还有以下特殊的性质;(1)等腰三角形两腰上的高、中线分别相等。
(2)等腰三角形两底角的平分线相等。
(3)等腰三角形底边中线上的任一点到两腰的距离相等。
(4)在一个三角形中,等边对等角,如果边不等则所对的角也不等,并且大边对大角。
再探直角三角形的性质在直角三角形中,30°锐角所对的直角边等于斜边的一半。
EDCB A第2题图习题1.(1)等腰三角形中,如果底边长为6,一腰长为8,那么周长是 ;(2)等腰三角形有一边长是6,另一边长是8,那么它的周长是 ; (3)若等腰三角形的一边长为3,另一边长为6,则它的周长为( ) A .9 B .12 C .15 D .12或152.如图,△ABC 中,AB=AC ,∠BAC=120°,AD 是BC 边上的中线,且BD=BE ,则∠ADE 是 °.3.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为( )A .80°、80°、20°B .80°、50°、50°C .80°、80°、20°或80°、50°、50°D .以上答案都不对4.(2009年贵州黔东南州)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )A .30o B .40o C .45o D .36o5. 如图,已知E 、F 两点在线段BC 上,AB =AC ,BF =CE ,你能判断线段AF 和AE 的大小关系吗?说明理由.(用两种不同的方法说明)6.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC ,求∠BDE 的度数.专题二:直角三角形斜边上的中线等于斜边的一半10.在直角三角形ABC 中,如果斜边上的中线CD=3cm ,斜边上的高为2cm ,△ABC 的面积是___________.11.如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF=5,BC=8,则△EFM 的周长是 ( ) A .21B .18C .13D .1512.如图,△ABC 中,AB =AC =6,BC =8,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连结DE ,则△ADE 的周长是_________.(结果保留根号)DCBAEDACBAAEFMCB第11题图专题三:等腰三角形的判定13.(2009年嘉兴市)如图,等腰△ABC 中, ∠A =36°,∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD 于E ,图中共有等腰三角形( )A .3个 B .4个 C .5个 D .6个14.把一张长方形纸,按如图所示折叠,重合部分是什么形状?请说明理由.15.如图,等边△ABC 中,点D 在延长线上,CE 平分∠ACD ,且CE=BD . 说明:△ADE 是等边三角形.16.如图,在△ABC 中,AB=AC ,∠B=90°,D 、E 分别为AB 、BC 上的动点,且BD=CE ,M 是AC 的中点,试探究在DE 运动的过程中,△DEM 的形状是否发生变化?它是什么形状的三角形?AD CE B1ABC DE5423 第12题图C‘EDCB AMEDCBA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题16 等腰三角形的性质
例1 45°
例2 提示:过点A作∠A的平分线BD交于G,先证明△ABG≌△ACF,再证明△AGD≌△CFFD
例3 提示:延长BC,AE交于一点.、
例4 提示:如图,作BD⊥AC于D,则∠OCD=∠OAD=30°,∴∠BA0=44°-30°=14°,
∠MAO=∠OAC-∠MAC=14°,∴∠BAO=∠MAO,又∵∠AOD=∠COD=90°-30°=60°,∴∠AOB=∠AOM=120°,∴OB=OM.又∵AO=AO,∴△AOB≌△AOM
又∵∠BOM=120°,∴∠OMB=30°,故∠BMC=180°-∠OMB=150°.
例5 如图,在AC延长线上截取CM1=BM,由Rt△BDM≌Rt△CDM1,得MD=M1D,∠MDB= ∠M1DC.∴∠MDM1=120°-∠MDB+∠M1DC=120°,又∠MDN=60°,∴∠NDM1=60°,∵MD=MD1,∠MDN=∠NDM1=60°,DN=DN,∴△MDN≌△M1DN,得MN=NM1,故△AMN 周长:AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2.
例6 解法1 如图a,作△ABD关于AD的轴对称图形△ADC,则∠EAD=21°,AE=AB,∴DE=BD,又∠ADC=21°+46°=67°,故∠ADE=∠ADB=180°-67°=113°,∠CDE=113°-67°=56°,连CE,可证△CDE≌△ABD≌△AED,∠ODE=∠OED=46°,得OD=OE,又DC=AE,则AO=CO,∠OCA=∠OAC,∠COE=2∠ACO,∠COE=2×46°=92°=2∠ACO.从而∠ACO=46°=∠OAC,∴∠DAE+∠EAC=67°.
解法2 如图b,过A点作AE∥BC.过D作DE∥AB,连接EC.
∵∠EDC=∠ABC=46°,DE=AB=CD,
∴∠DCE=∠CED=1
2
×(180°-46°)=67°
∵∠ADC=∠ABC+∠BAD=46°+21°=67°
∴∠ADC=∠DCE ,,∴AD=EC.
∴梯形ADCE 为等腰梯形
∴AC=DE (等腰梯形对角线相等),
∴AB=AC=CD ,∴∠DAC=∠ADC=67°.
A 级
1. 67.5°或2
2.5° 2.75°
3.60°
4.8
5.A
6.B
7.B
8.D 提示:由已知得(b -c)(a -b)(a+c)=0,故b=c 或a=b.
9. 提示:过D 作DF ∥AC 交BC 于F ,证明△DFG ≌△ECG .
10. 提示:延长CE 交BA 的延长线于F ,证明△BEC ≌△BEF ,再证明△AFC ≌△ADB.
11. 提示:图2成立,联系图1,可证明△ECD ≌△FBD ,
12DEF CEF ECD CDF FBD CDF CDB ACB S S S S S S S S ∆∆∆∆∆∆∆∆+=+=+==
图3不成立,此时12
DEF CEF ABC S S S ∆∆∆-=
12.作∠BAC 的角平分线与CO 的延长线交于D ,连BD ,则△ABD ≌△ACD ,则∠ABD=∠ACD=30°, ∠OBD=∠ABC -∠OBC -∠ABD=20°=∠ABD , ∠DOB=∠OBC+∠OCB=40°=∠DAB ,从而△ABD ≌△OBD ,AB=OB ,即△ABO 为等腰三角形,得∠BAO=
12
(180°-40°)=70° B 级
1.40°
2.①②③ 提示:连AP.
3. 60°提示:设∠CAN =∠BAM =α,∠MAN =β,则∠C =∠BAC =2α+β,∠AMN =β
4. D
5.A
6.D
7. 提示:延长BD 到F ,使DF =BC ,则△BEF 为等边三角形,再证明△BCE ≌△FDE
8.⑴证明略;⑵由①得C ´D =AC =AB ´,由②得DB ´=BA =C ´A ,又AD =AD ,∴△AC ´D ≌△DB ´A ;⑶S △AB ´C >S △ABC ´>S △ABC >S △A ´BC ,S △ABC + S △ABC ´= S △AC ´B + S △A ´BC
9.满足题意的图形有以下四种情形:
10.提示:在△ACD 内以CD 为边作等边△ECD ,连AE ,则△ACE ≌△ADE .∴∠CAE =1
2∠CAD =15°,
又∵∠DCB =90°-∠ACD =90°-75°=15°,∴∠CAE =∠BCD =∠ECA . 又∵AC =BC ,CE =CD ,∴△ACE ≌△BCD ,∴∠DBC =∠EAC =15°. ∴∠DCB =∠DBC ,∴DC =DB .
A C
B E
D A
B E
C 图b A B
C F 图c 图d A B C G A
B D
C 图a
11.设2BH m BC =,2BK n AB =,因BH <BA ,BK <BC ,故mn <4,得11m n =⎧⎨=⎩;12m n =⎧⎨=⎩;13m n =⎧⎨=⎩;21m n =⎧⎨=⎩;31m n =⎧⎨=⎩
①当m =n =1时,BH =12BC ,BK =12AB ,△ABC 是等边三角形.
②当m =1,n =2时,BH =12BC ,BK =AB ,△ABC 是∠A 为直角的等腰直角三角形. ③当m =1,n =3时,BH =12BC ,BK =32AB ,△ABC 是∠A 为120°的等腰三角形. ④当m =2,n =1时,△ABC 是以∠C 为直角的等腰直角三角形.
⑤当m =3,n =1时,△ABC 是以∠C 为120°的等腰三角形.。