结构力学 2几何组成分析
合集下载
结构力学第二章几何组成分析.李廉锟

geometrically stable system
结构
Under the action of any loads, the system still maintain its shape and remains its location if the deformations of the members are neglected.
F
E
2 rigid bodies, connected by 3 links, which are nonparallel and nonconcurrent cross the hinge, form an internally stable system with no redundant restraints. 。
Degrees of freedom of a system are the numbers of independent movements or coordinates which are required to locate the system fully.
for a point in plane n=2
C
structure formed by Attaching of binary systems 减二元体简化分析
W=3 ×10-(2×14+3)=-1<0 W=2 ×6-13=-1<0
计算自由度 = 体系真实 的自由度 ?
W=2 ×6-12=0 W=3 ×9-(2×12+3)=0
缺少联系 几何可变
W=2 ×6-11=1 W=3 ×8-(2×10+3)=1
summary
W>0, 缺少足够联系,体系几何可变 Restraints are not enough, unstable。 W=0, 具备成为几何不变体系所要求的最少 联系数目has the minimum necessary numbers of restraints for stable system。
结构力学(几何组成分析)详解

单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3
Pr
A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1
Ⅰ
.O2
ⅡⅡ
Ⅲ
ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回
结构力学《第二章几何组成分析》龙奴球

第二章 结构的几何构造分析
瞬变体系(
×)
体系是由三个刚片用三个共线的铰 ABC相连,故为瞬变体系。( )
×
第二章 结构的几何构造分析
几种常用的分析途径
1、去掉二元体,将体系简单化,然 后再分析。
D A
C
B
依次去掉二元体A、B、C、D后, 剩下大地。故该体系为无多余约 束的几何不变体系。
第二章 结构的几何构造分析 2、如上部体系与基础用满足要求三个约束相联可去掉 基础,只分析上部。
第二章 结构的几何构造分析
用一链杆将一刚片与地面相联 两刚片用一链杆相联
1、2、3、4是链杆, 折线型链杆、曲线型 链杆可用直线型链杆 代替。
3 6 4
Ⅰ
1 5
5、6不是链杆。
第二章 结构的几何构造分析
单铰:联结两个刚片的铰称为单铰
一个单铰相当于几个约束呢? 在平面内两个刚片自由 度等于6 加入一个单铰后自由度 等于4,减少了2个自由 度
A
C B
规则4 三刚片以不在一条直线 上的三铰 两两相连,组成无多余 约束的几何不变体系。
如约束不满足限制条件,将出现下列几种形式的瞬变体系
三铰共线瞬变体系
第二章 结构的几何构造分析
关于无穷远瞬铰的情况
1 C II
I A
2
B
III
图示体系,一个瞬铰C在无穷远处,铰A、 B连线与形成瞬铰的链杆1、2不平行,故三个 铰不在同一直线上,该体系几何不变且无多 余约束。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
第二章 结构的几何构造分析
§2-2 几何不变体系的组成规则
基本规律:三角形规律
结构力学-体系的几何组成分析

2 / 40
第二章 体系的几何组成分析
第一节 体系几何组成的定义和分析目的
1、体系几何组成的定义
在忽略变形的前提下,在某种外力作用下,若体系不 能保证其形状或位置不变,则该体系称为几何可变体系。
FP
FP
3 / 40
第二章 体系的几何组成分析 第一节 体系几何组成的定义和分析目的
1、体系几何组成的定义
第二节 自由度和约束的概念
体系自由度数 S 等于零是体系几何不变的充分条件 复杂体系的必要约束往往不易直观判定。 W > 0 表明体系存在自由度,肯定是几何可变体系。 W = 0 表明体系的约束数正好等于部件总自由度数,是
体系不变的必要条件,而非必要条件,如无多余 约束,体系是静定结构。 W < 0 表明体系的约束数多于部件总自由度数,必有多余 约束,如为几何不变体系,则体系是超静定结构。
a、研究结构正确的连接方式,确保所设计的结构能 承受荷载,维持平衡,不至于发生刚体运动。
b、了解结构各部分之间的组成关系,有助于改善和 提高结构的性能。
c、在结构计算时,可根据其几何组成情况,选择适 当的计算方法;分析其组成顺序,寻找简便的求解途 径。
7 / 40
第二章 体系的几何组成分析
第二节 自由度和约束的概念
单约束 仅连接两个刚片的约束.
单铰
1个单铰 = 2个约束 = 2个的单链杆。
虚铰——在运动中虚铰的位置不定,这 是虚铰和实铰的区别。通常我们研究的 是指定位置处的瞬时运动,因此,虚铰 和实铰所起的作用是相同的都是相对转 动中心。
10 / 40
第二章 体系的几何组成分析 第二节 自由度和约束的概念
1、体系的自由度 2、约束 所谓约束即能限制体系运动的装置。
第二章 体系的几何组成分析
第一节 体系几何组成的定义和分析目的
1、体系几何组成的定义
在忽略变形的前提下,在某种外力作用下,若体系不 能保证其形状或位置不变,则该体系称为几何可变体系。
FP
FP
3 / 40
第二章 体系的几何组成分析 第一节 体系几何组成的定义和分析目的
1、体系几何组成的定义
第二节 自由度和约束的概念
体系自由度数 S 等于零是体系几何不变的充分条件 复杂体系的必要约束往往不易直观判定。 W > 0 表明体系存在自由度,肯定是几何可变体系。 W = 0 表明体系的约束数正好等于部件总自由度数,是
体系不变的必要条件,而非必要条件,如无多余 约束,体系是静定结构。 W < 0 表明体系的约束数多于部件总自由度数,必有多余 约束,如为几何不变体系,则体系是超静定结构。
a、研究结构正确的连接方式,确保所设计的结构能 承受荷载,维持平衡,不至于发生刚体运动。
b、了解结构各部分之间的组成关系,有助于改善和 提高结构的性能。
c、在结构计算时,可根据其几何组成情况,选择适 当的计算方法;分析其组成顺序,寻找简便的求解途 径。
7 / 40
第二章 体系的几何组成分析
第二节 自由度和约束的概念
单约束 仅连接两个刚片的约束.
单铰
1个单铰 = 2个约束 = 2个的单链杆。
虚铰——在运动中虚铰的位置不定,这 是虚铰和实铰的区别。通常我们研究的 是指定位置处的瞬时运动,因此,虚铰 和实铰所起的作用是相同的都是相对转 动中心。
10 / 40
第二章 体系的几何组成分析 第二节 自由度和约束的概念
1、体系的自由度 2、约束 所谓约束即能限制体系运动的装置。
结构力学第2章平面几何组成分析

几何组成作业题
2-3, 2-5 2-7, 2-8 2-10, 2-12 2-16, 2-21 交作业时间:周 3
§2. 几何组成分析
补充作业:(不做) 2-1 (b)试计算图示体系的计算自由度
解:
或:
W 8 3 11 2 3 1 W 1 3 5 2 2 2 10 1
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片.
例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 方法3: 将只有两个铰与其它 部分相连的刚片看成链杆. 书上例题2-1、2-3同。
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
计算自由度大于零一定可变; 若等于零则一定不变吗? 五. 计算自由度 六. 多余约束 必要约束 计算自由度小于零一定不变吗? 计算自由度小于零一定有多余约束
§2.1 基本概念
§2-1 基本概念 一. 几何不变体系 几何可变体系 二. 刚片 三. 自由度 四. 约束(联系) 链杆 单铰 复铰 虚铰 实铰 五. 计算自由度 六. 多余约束 必要约束
练习: 对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
练习: 对图示体系作几何组成分析
无多余约束的几何不变体系。
三杆不平行不变 平行且等长常变 平行不等长瞬变
§1. 几何组成分析
结构力学第2章 结构的几何构造分析

有一根链杆是多余约束
§2-1 几何构造分析的几个概念
5. 瞬变体系
特点:从微小运动的角度看,这是一个可变体系;
经微小位移后又成为几何不变体系;
在任一瞬变体系中必然存在多余约束。 瞬变体系:可产生微小位移 常变体系:可发生大位移
可变体系
§2-1 几何构造分析的几个概念
6. 瞬铰 O为两根链杆轴线的交点,刚片I
可发生以O为中心的微小转动, O点
称为瞬时转动中心。 两根链杆所起的约束作用相当于在链 杆交点处的一个铰所起的约束作用,这个 铰称为瞬铰。
§2-1 几何构造分析的几个概念
7. 无穷远处的瞬铰 两根平行的链杆把刚片I与基础相
连接, 则两根链杆的交点在无穷远处。
两根链杆所起的约束作用相当于无穷远 处的瞬铰所起的作用。
体系计算自由度:
W=2j-b
§2-3 平面杆件不变体系的计算自由度
若W>0,则S >0,体系是几何可变的
若W=0, 则S=n, 如无多余约束则为几何不变,如有多余约束则 为几何可变 若W<0,则n>0, 体系有多余约束 例 2-4 试计算图示体系的W。 方法一:
m=7,h=9,b=3, g=0
W=3m-2h-b=3×7-2×9-3=0 方法二: j=7,b=14
W=2j-b=2×7-14=0
§2-3 平面杆件不变体系的计算自由度
例 2-5 试计算图示体系的W。
将图(a)中全部支座去掉,在G处切开,如图(b) m=1,h=0,b=4, g=3 W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10 体系几何不变,S=0 n=S-W=0-(-10)=10
第2章
§2-1 §2-2
结构力学第二章 平面体系的几何组成分析

不完全铰节点 1个单铰
13/73
2-1 几何构造分析的几个概念
四、约束 两个互不相连的刚片,若用刚结点连接, 则两者被连为一体成为一个刚片,自由 度由6减少为3。 一个单刚结点相当于3个约束。 单刚结点
三个互不相连的刚片,若用刚结点连接, 自由度由9减少为3。
由此类推:
复刚节点
连接 n 个刚片的复刚结点,它相当于n-1 个单刚结点或3(n- 1)个约束。
A A
1 B
2 C B
1
3
2 C
B 1
A 2
C
几何可变 几何不变 有多余约束
几何不变 无多余约束
规律1 一个刚片与一个点用两根链杆相连,且三个铰不在同一 直线上,则组成几何不变的整体,并且没有多余约束。
23/73
2-2 平面几何不变体系的组成规律
二、两个刚片之间的联结方式
A 2 B I 3 C
A II B I 3 C
16/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I
C
A
II
1 B
2 C
两根链杆彼此共线 1、从微小运动的角度看,这是一个可变体系。 左图两圆弧相切,A点可作微小运动; 右图两圆弧相交,A点被完全固定。
17/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I A 1 B C 2 D
在体系运动的过程中,瞬铰的位臵随之变 化。 用瞬铰替换对应的两个链杆约束,这种约 束的等效变换只适用于瞬时微小运动。
20/73
2-1 几何构造分析的几个概念
八、无穷远处的瞬铰
结构力学第二章

重庆大学土木工程学院®
第二章 几何组成分析
分析图何组成。
解:如图所示去除二元体后,中间两竖向链杆 如图所示去除二元体后, 各缺一个约束,为几何常变体系。 各缺一个约束,为几何常变体系。
All Rights Reserved
重庆大学土木工程学院®
第二章 几何组成分析
All Rights Reserved
重庆大学土木工程学院®
第二章 几何组成分析
分析图示体系的几何组成。 例2-14 分析图示体系的几何组成。
Ⅲ
[Ⅰ, Ⅲ]
Ⅰ
[Ⅰ, Ⅱ]
Ⅱ
[Ⅱ, Ⅲ]
解:取图示三刚片,三铰共线,不符合三刚片 取图示三刚片,三铰共线, 规则,为几何瞬变体系。 规则,为几何瞬变体系。
All Rights Reserved 重庆大学土木工程学院®
第二章 几何组成分析
分析图示体系的几何组成。 例2-11 分析图示体系的几何组成。
[Ⅰ, Ⅱ] Ⅰ Ⅱ
[Ⅰ, Ⅲ] Ⅲ
[Ⅱ, Ⅲ]
解:先分析外框,如右 先分析外框, 上图,符合三刚片规则, 上图,符合三刚片规则, 视作地基扩展。 视作地基扩展。在分析内 三铰共线, 部,三铰共线,不符合三 刚片规则,几何瞬变。 刚片规则,几何瞬变。
All Rights Reserved 重庆大学土木工程学院®
第二章 几何组成分析
分析图示体系的几何组成。 例2-16 分析图示体系的几何组成。
Ⅰ
[Ⅰ, Ⅱ] Ⅱ [Ⅱ, Ⅲ] Ⅲ
[Ⅰ, Ⅲ]
解:取图示三刚片,符合三刚片规则,因此为 取图示三刚片,符合三刚片规则, 无多余约束的几何不变体系。 无多余约束的几何不变体系。
All Rights Reserved
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
II
解: 三刚片三铰相连,三铰不共线,所以该体系 三刚片三铰相连,三铰不共线, 为无多余约束的几何不变体系. 为无多余约束的几何不变体系.
三刚片虚铰在无穷远处的讨论
一个虚铰在无穷远
一个虚铰在无穷远: 一个虚铰在无穷远:若组成此虚铰的二杆与另两铰的连 线不平行则几何不变;否则几何可变. 线不平行则几何不变;否则几何可变
例1: 对图示体系作几何组成分析
I II
III
解: 三刚片三铰相连,三铰不共线,所以该体 三刚片三铰相连,三铰不共线, 系为无多余约束的几何不变体系. 系为无多余约束的几何不变体系.
例2: 对图示体系作几何组成分析Байду номын сангаас
I
II
III
主从结构, 主从结构,顺序安装
例3: 对图示体系作几何组成分析
I III
FAy 如何求支 座反力? 座反力 静定结构
FB 无多余 联系几何 不变。 不变。
例1:如何通过减约束变成静定? 1:如何通过减约束变成静定 如何通过减约束变成静定?
或
或
还有其他可能吗? 还有其他可能吗?
结论与讨论
结构的组装顺序和受力分析次序密切相关。 结构的组装顺序和受力分析次序密切相关。 正确区分静定、超静定,正确判定超静定结 构的多余约束数十分重要。 超静定结构可通过合理地减少多余约束使其 变成静定结构。 变成静定结构。 分析一个体系可变性时,应注意刚体形状可 任意改换。按照找大刚体(或刚片)、减二元 任意改换。按照找大刚体(或刚片)、减二元 体、去支座分析内部可变性等,使体系得到最 大限度简化后,再应用三角形规则分析。 大限度简化后,再应用三角形规则分析。
彼此等长 →常变
彼此不等长 →瞬变
例 1 合理选择刚片
2,3
1,2
.
1,3
.
1,3
1,2
. 2,3
几何瞬变体系
例2
1 2 3 1 (1,2) (2,3) 2 3
5 4 6 (1,2) 1 (2,3) 5 4 6 4 6 1 2
5
2
3
3 (1,3)
5 4 (1,2) 6
.
几何瞬变体系
(2,3)
例 3 定向支座的处理
不平行 →不变
平行且等长 →常变
平行不等长 →瞬变
两个虚铰在无穷远
两个虚铰在无穷远: 两个虚铰在无穷远:若组成此两虚铰的两对链不平行则 几何不变;否则几何可变; 几何不变;否则几何可变;
四杆不平行 →不变
平行且等长 →常变
平行不等长 →瞬变
三个虚铰在无穷远
三个虚铰在无穷远: 体系为可变( 三个虚铰在无穷远 : 体系为可变 ( 三点交在无穷远的 一条直线上) 一条直线上)
②
W 0 W 0, W 0是必要条件 W W
计算自由度 ① 刚片法
注意
W = 3m (3 g + 2h + s ) m 刚片数 g 刚结点数 h 铰结点数 s 支座链杆
三个多余约束
无多余约束
一个多余约束
两个多余约束
② 铰结点法
W = 2 j (b + s ) j 结点数 b 杆件数 s 支座链杆数
刚片间连接的约束
A C
B
链杆-1个约束 简单铰-2个约束
简单刚结点-3个约束
连接两个以上刚片的约束. 复约束 连接两个以上刚片的约束.
复铰 复刚
一个连接 n个刚片的复铰 个刚片的复铰 相当于(n-1)个单铰,相当 相当于 个单铰, 于2(n-1)个约束。 个约束。 一个连接 n个刚片的复刚 个刚片的复刚 相当3(n-1)个约束。 相当 个约束。
本来是几何可变, ⑥ 瞬变体系 :本来是几何可变,经微小位移后成为几 何不变的体系 可变体系:包括瞬变体系 瞬变体系和常变体系 可变体系:包括瞬变体系 和常变体系
C B B C’
A A
注意:一般说来, 注意:一般说来,瞬变体系中必然存在多余约束
二 几何不变体系的基本组成规则
① 二元体规则(实质为铰结点三角形) 规则Ⅰ:点和刚片用不在一直线的两根链杆相连
P 几 何 不 变 P 几 何 可 变
② 刚片:凡几何形状不变者。如地基、链杆、几 何不变体系
③ 自由度:独立运动的数目 自由度:
约束(constraint) ④ 约束(constraint)
如果体系有了自由度,必须消除,消除的办法是增加约束。
支座约束
A C
滚轴支座-1个约束
B
固定铰支座-2个约束 固定支座-3个约束 定向支座-2个约束
A
B 2,3
C E
D F A
A
1,3 1,3 B 1,2
1,3 D C F E
B 1,2 C E
D F
几何不变体系
几何可变体系
自由度的计算
实际自由度与计算自由度
实际自由度: W = 总自由度 必要约束 计算自由度:W = 总自由度 总约束 W W 必要约束 总约束 W 0 ① W 0, 体系可变 W W
注意: 注意:必要约束与多余约束经常是相对的
⑤ 约束代换和瞬铰
O
.
.
O’
A
C
B
D
1个单铰 个约束 个单链杆 个单铰=2个约束 个单链杆。 个单铰 个约束=2个单链杆 瞬铰——在运动中瞬铰的位置不定,这是瞬铰 在运动中瞬铰的位置不定,这是瞬铰 瞬铰 在运动中瞬铰的位置不定 虚铰)和实铰的区别。 (虚铰)和实铰的区别。
② 铰结点法
注意②:在计算链杆系的 结点数时,凡是链杆 的端点,都应当算作 结点。如下图的体 系,A、B、C、D、E
一般来说,连接n个点的复 链杆相当与2n-3个单链杆
几何组成与静定性关系
静定结构:几何不变,无多余约束(可通过平衡方程) 超静定 :几何不变,有多余约束(不能仅通过平衡方程)
F FAx
解题方法
1. 2. 先找出体系中一个或几个不变部分, 先找出体系中一个或几个不变部分,在逐步组 装扩大形成整体(组装法) 装扩大形成整体(组装法) 对于不影响几何不变的部分逐步排除, 对于不影响几何不变的部分逐步排除,使分析 对象简化(排除法) 对象简化(排除法)
3. 将几何不变部分作一个大刚片;复杂形状的链杆 将几何不变部分作一个大刚片; 可看成直链杆; 可看成直链杆;连接两个刚片的链杆用虚铰代替 代替法) (代替法)
③ 三刚片规则(实质为铰结点三角形) 三刚片规则(实质为铰结点三角形) 规则Ⅲ 不在一直线的三个铰两两相连 规则Ⅲ:用不在一直线的三个铰两两相连
II
III
1,3
.
2,3
.1,2
.
I
总结: 总结:三种规则其实质是三角形规律
利用组成规律可以两种方式构造一般的结构: : (1)从基础出发构造
(2)从内部刚片出发构造
I
I
注意:增加或减少二元体不改变体系的自由度
② 两刚片规则(实质为铰结点三角形) 两刚片规则(实质为铰结点三角形) 规则Ⅱ 用一根链杆和不通过 不通过该链杆的铰相连 规则Ⅱ:用一根链杆和不通过该链杆的铰相连 规则Ⅱ 规则Ⅱ’:用三个不相交于一点的链杆两两相连
II
II
I
I
右图是什么体系? 右图是什么体系?
结构力学
Structural mechanics 2 结构的几何组成分析
(Geometric construction analysis)
华夏学院土木与建筑工程系
一 目的
(1) 判定是否用作结构 ) (2) 研究几何不变体系的组成规则 ) (3) 帮助静力分析 )
二 基本概念
几何不变体系:不考虑材料应变,形状和位置不变 ① 几何可变体系:不考虑材料应变,形状和位置可变
复链杆
A B
连接n个结点的复链杆相 连接 个结点的复链杆相 当于2n-3个约束 当于 个约束
④ 约束:限制运动的装置 约束:
但并非所有的约束都能减少自由度。 但并非所有的约束都能减少自由度。 一般把不能减少体系自由度的约束叫多余约束 多余约束。 一般把不能减少体系自由度的约束叫多余约束。 把能够减少体系自由度的约束叫必要约束 把能够减少体系自由度的约束叫必要约束