相似三角形的性质 (2)教学设计

合集下载

北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计

北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
3.自主学习反思应真实反映学生的学习情况,有助于提高学习效果。
(五)总结归纳
1.让学生回顾本节课所学的相似三角形的性质,总结性质的应用和证明方法。
2.引导学生将相似三角形的性质与全等三角形的性质进行对比,明确它们的联系与区别。
3.强调相似三角形在实际生活中的应用,激课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好铺垫。
北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的基本性质,如对应角相等、对应边成比例,并能运用这些性质解决实际问题。
2.使学生能够运用相似三角形的性质,进行几何图形的证明和计算,提高学生的逻辑思维能力和解题技巧。
3.培养学生运用相似三角形的性质,解决与生活实际相关的问题,如地图比例尺、摄影中的相似变换等。
1.学生对相似三角形定义的理解程度,是否能顺利过渡到性质的学习。
2.学生在几何证明方面的能力,是否能运用已知性质进行严密的逻辑推理。
3.学生在实际问题中运用相似三角形性质的能力,是否能够将理论知识与生活实际相结合。
针对以上情况,教师应采取生动形象的教学方法,如运用多媒体、实物模型等辅助教学,帮助学生形象地理解相似三角形的性质。同时,设计具有启发性的问题和例题,引导学生积极参与课堂讨论,提高他们的逻辑思维能力和解题技巧。在课后,关注学生的作业完成情况,及时发现并解决他们在学习过程中遇到的问题,确保学生对相似三角形性质的理解和应用。
(3)采用小组合作法,鼓励学生相互交流、讨论,共同解决几何证明和实际问题;
(4)实施启发式教学法,教师通过提问、引导学生思考,激发学生的思维潜能。
2.教学策略:
(1)逐步引导:从复习相似三角形的定义入手,逐步过渡到性质的学习,让学生在已有知识的基础上自然过渡;

北师大版九年级数学上册4.7相似三角形性质(课时2)教学设计

北师大版九年级数学上册4.7相似三角形性质(课时2)教学设计
-组织学生进行小组合作,共同完成一份关于相似三角形性质及其应用的小研究,提高学生的合作能力和研究能力。
4.反思与总结:
-要求学生完成一份学习反思,内容包括本节课学到的知识、遇到的问题、解决方法以及收获等,帮助学生建立自我评价和反思的习惯。
-教师在批改作业时,要及时给予评价和反馈,关注学生的进步,鼓励学生持续努力。
-新知探究:组织学生分组讨论,合作探究相似三角形的性质,教师适时引导和点拨。
-性质应用:设计不同层次的例题和练习,让学生在解决问题的过程中运用相似三角形的性质。
-总结提升:引导学生归纳相似三角形性质的关键点,总结解题策略和方法。
-课堂反馈:通过课堂练习和小结,了解学生的学习情况,及时调整教学策略。
3.教学评价:
-注重培养学生的几何直观和逻辑思维能力,通过逐步引导,帮助学生建立知识体系。
四、教学内容与过程
(一)导入新课
在导入新课阶段,我将以生活实例为基础,引导学生从实际问题中发现相似三角形的性质。首先,我会向学生展示一组图片,包括放大镜下的三角形、不同尺寸的国旗图案等,让学生观察并思考这些图形之间是否存在某种关系。通过学生的回答,我会引导他们回顾全等三角形和相似三角形的定义,为新课的学习做好铺垫。
接着,我会提出一个具有挑战性的问题:“如果我们在一个三角形中,知道两边和它们夹角的比例关系,我们能否求出第三边的长度?”这个问题将激发学生的好奇心,促使他们积极思考。在此基础上,导入相似三角形的性质,为接下来的新知学习奠定基础。
(二)讲授新知
在讲授新知阶段,我会采用讲解、示范、引导相结合的方式,让学生逐步理解并掌握相似三角形的性质。
3.引导学生通过观察、实践、探索,发现相似三角形在生活中的应用,提高学生将数学知识应用于实际问题的能力。

24.5(2)相似三角形的性质

24.5(2)相似三角形的性质

24.5相似三角形的性质(2)一、教学内容分析本课是相似三角形性质的第二课时,引导学生探索相似三角形的周长、面积分别具有的数量关系特征.二、教学目标1、掌握“相似三角形性质定理2和3”;2、经历相似三角形性质定理2、3的探索过程,体会类比思想,发展合情推理能力.三、教学重点及难点相似三角形的性质定理2、3及其应用.相似三角形性质定理2、3的发现与证明.三、教学过程设计(一)温故知新1、复习:上节课学习了相似三角形的什么性质?相似三角形的性质定理1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2、思考:相似三角形的周长比和面积比与相似比之间有怎样的关系?已知:图1中(1)、(2)、(3)分别是边长为1、2、3的等边三角形,它们都相似.求:(2)与(1)的相似比=_____ ,(2)与(1)的周长比=_____;(2)与(1)的面积比=_____;图1(3)与(1)的相似比=_____;(3)与(1)的周长比=_____;(3)与(1)的面积比=_____.3.猜想:相似三角形的周长比等于______;相似三角形的面积比等于_________.4.证明猜想:已知:如图,△ABC ∽△A 1B 1C 1,且相似比是k .顶点A 、B 、C 分别与A 1、B 1、C 1对应. 求证:k A C C B B A CA BC AB =++++111111.于是得到 相似三角形的性质定理2:相似三角形周长比等于相似比.性质1和2可以概括为:相似三角形对应高的比、对应中线的比、对应角平分线的比、周长比都等于相似比.已知:如图,△ABC ∽△A 1B 1C 1,且相似比是k .顶点A 、B 、C 分别与A 1、B 1、C 1对应. 求证:2111k S S C B A ABC =∆∆.C1B1A1C BA C1B1A1C B A相似三角形的性质定理3:相似三角形的面积比等于相似比的平方.引导学生用几何语言表示出相似三角形性质定理.几何语言:ABC ∆∽111C B A ∆,⇒2111k S S C B A ABC =∆∆ ABC ∆∽111C B A ∆, ⇒k C C C B A ABC =∆∆111 (二)简单应用例1 已知:△ABC ∽△A ′B ′C ′,它们的周长分别是48cm 和60cm ,且AB=12,B ′C ′=25,求BC 、A ′B ′.例2如图,△ABC 中,点D 点E 分别在AB 和AC 上,DE//BC,DE=6,BC=9,且16=∆ADE S .求的值ABC S ∆(三)、布置作业练习册的24.51,2,3全体学生4,5部分学生 课后反思周长比等于相似比掌握的比较好,但面积比等于相似比的平方这点上,学生往往会遗漏平方,所以一定要多加强练习,并指导学生如何更牢固的掌握概念。

相似三角形的性质(2课时)

相似三角形的性质(2课时)

团山中学数学导学案科目数学年级九年级授课人编号课题 3.4.2相似三角形的性质(2课主备人禹曼琼审核人自主探究学习目1、使学生了解相似三角形对应线段的比等于相似比;周长比等于相似比面积比等于相似比的平方。

2、能运用相似三角形的性质解决数学问题。

重相似三角形性质的证明与应用难相似三角形性质的推导过程自学检测如图,已知△ABC~△A B C''',根据相似的定义,我们可以得出哪些结论?两个三角形除了对应边成比例、对应角相等以外,还能得出其它什么结论吗?1.相似三角形对应高的比等于。

2.相似三角形对应的角平分线的比等于。

3.相似三角形对应边上的中线的比等于。

4.相似三角形的面积比等于。

5.相似三角形的周长比等于。

6.两个相似三角形对应中线的比是1:2,那么它们的面积之比为。

质疑设疑提问合作交流一、自主探究:1、如图:△A B C'''~△ABC,相似比为k,分别作BC,B C''上的高AD,A D'',探究A DAD''的值与k的关系。

个性修改导入22-23设疑提问合作交流展示释疑探究交流:交流汇报:探究点拨:由△A B C'''~△ABC可得∠B=∠B',结合∠ADB=∠A D B''',可得△ABD~△A B D''',从而有A DAD''=A BAB''=k由上述探究可得:相似三角形对应边上的高之比等于相似比。

思考:1.相似三角形对应的角平分线之比与相似比有什么关系呢?2.相似三角形对应边上的中线的比与相似比又有什么关系?3.若△ABC~△A´B´C´,相似比为k,那么它们的周长比是多少?面积比是多少?探究交流:交流汇报交流点拨:相似三角形周长比等于相似比,面积比等于相似比的平方。

沪科版数学九年级上册22.3《相似三角形的性质》教学设计2

沪科版数学九年级上册22.3《相似三角形的性质》教学设计2

沪科版数学九年级上册22.3《相似三角形的性质》教学设计2一. 教材分析《相似三角形的性质》是沪科版数学九年级上册第22章第3节的内容。

本节主要让学生掌握相似三角形的性质,并能够运用性质解决实际问题。

教材通过引入生活中的实例,引导学生发现相似三角形的性质,并通过大量的练习让学生熟练掌握。

本节内容是学生进一步学习几何的基础,对于培养学生的逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经学习了三角形的性质,对于图形的变换也有了一定的了解。

但是,学生对于抽象的数学概念的理解仍然有所欠缺,需要通过具体的实例来帮助理解。

同时,学生的逻辑思维能力有所差异,需要通过适量的练习来巩固所学知识。

三. 教学目标1.了解相似三角形的性质,并能够运用性质解决实际问题。

2.培养学生的观察能力、动手能力以及逻辑思维能力。

3.提高学生运用数学解决生活问题的能力。

四. 教学重难点1.掌握相似三角形的性质。

2.能够运用相似三角形的性质解决实际问题。

五. 教学方法1.实例导入:通过生活中的实例引入相似三角形的性质,让学生感受到数学与生活的紧密联系。

2.小组合作:学生在小组内讨论相似三角形的性质,培养学生的合作意识。

3.练习巩固:通过大量的练习让学生熟练掌握相似三角形的性质。

4.拓展应用:引导学生运用相似三角形的性质解决实际问题。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示生活中的实例以及练习题目。

2.练习题:准备相关的练习题目,以便让学生在课堂上进行练习。

七. 教学过程1.导入(5分钟)通过展示一个生活中的实例,如古建筑的设计,引导学生发现古建筑中的三角形与实际生活中的三角形相似。

让学生思考:为什么古建筑中的三角形与实际生活中的三角形相似?从而引入相似三角形的性质。

2.呈现(10分钟)引导学生观察相似三角形的性质,并通过PPT展示相关的性质。

让学生自己总结出相似三角形的性质,如对应边成比例,对应角相等。

3.操练(10分钟)让学生在小组内进行讨论,通过实际的例子来运用相似三角形的性质。

湘教版数学九年级上册3.4《相似三角形的判定与性质》教学设计2

湘教版数学九年级上册3.4《相似三角形的判定与性质》教学设计2

湘教版数学九年级上册3.4《相似三角形的判定与性质》教学设计2一. 教材分析湘教版数学九年级上册3.4《相似三角形的判定与性质》是九年级数学的重要内容,主要让学生掌握相似三角形的判定方法和性质。

本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的内角和定理等知识的基础上进行学习的,为后续学习相似多边形、三角函数等知识打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和性质有一定的了解。

但是,对于相似三角形的判定和性质的理解还需要加强,特别是对于一些具体的判定方法和性质的证明过程,需要通过实例进行讲解和练习。

三. 教学目标1.让学生掌握相似三角形的定义和性质。

2.让学生学会运用相似三角形的性质解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.相似三角形的定义和判定方法。

2.相似三角形的性质及其应用。

五. 教学方法1.采用问题驱动法,引导学生自主探究相似三角形的定义和性质。

2.运用实例讲解法,让学生通过具体例子理解相似三角形的判定和性质。

3.采用小组合作学习法,让学生在小组内讨论和分享学习心得。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备一些实际的例子,用于讲解和练习相似三角形的判定和性质。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一些实际的例子,让学生观察和思考:这些图形有什么共同的特点?从而引导学生发现相似三角形的定义。

2.呈现(10分钟)讲解相似三角形的定义,并通过PPT展示相关的图片和例子,让学生理解和掌握相似三角形的定义。

3.操练(10分钟)让学生通过实际的例子,运用相似三角形的定义进行判定,并在小组内进行讨论和分享。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)讲解相似三角形的性质,并通过PPT展示相关的图片和例子,让学生理解和掌握相似三角形的性质。

沪科版数学九年级上册22.3《相似三角形的性质》(第2课时)教学设计

沪科版数学九年级上册22.3《相似三角形的性质》(第2课时)教学设计

沪科版数学九年级上册22.3《相似三角形的性质》(第2课时)教学设计一. 教材分析《相似三角形的性质》是沪科版数学九年级上册第22章第3节的内容。

本节内容是在学生已经掌握了相似三角形的概念和性质的基础上进行教学的。

通过本节课的学习,使学生能够熟练掌握相似三角形的性质,并能够运用性质解决一些实际问题。

教材通过实例引入相似三角形的性质,引导学生通过观察、归纳、推理等方法发现性质,并通过练习题进行巩固。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和推理能力,对于相似三角形的概念和性质已经有了一定的了解。

但学生在运用性质解决实际问题时,可能会出现理解不深刻、应用不灵活的情况。

因此,在教学过程中,教师需要引导学生通过观察、归纳、推理等方法发现和掌握相似三角形的性质,并能够灵活运用。

三. 教学目标1.知识与技能:使学生能够熟练掌握相似三角形的性质,并能够运用性质解决一些实际问题。

2.过程与方法:通过观察、归纳、推理等方法,引导学生发现和掌握相似三角形的性质。

3.情感态度价值观:培养学生的团队协作意识,让学生在合作中发现问题、解决问题。

四. 教学重难点1.重点:相似三角形的性质。

2.难点:相似三角形的性质在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、归纳、推理等方法发现和掌握相似三角形的性质。

2.运用多媒体教学手段,展示实例和练习题,帮助学生更好地理解和运用性质。

3.采用小组合作学习的方式,培养学生的团队协作意识。

六. 教学准备1.准备相关的多媒体教学课件和练习题。

2.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的相似图形,引导学生观察并思考:这些图形有什么共同的特点?从而引出相似三角形的性质。

2.呈现(10分钟)展示相似三角形的性质,引导学生通过观察、归纳、推理等方法发现性质。

在呈现过程中,教师引导学生对比、分析,帮助学生理解和记忆性质。

4.7_相似三角形性质(课时2)(教案)

4.7_相似三角形性质(课时2)(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形性质的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我会在课后收集学生的反馈,了解他们在学习过程中的困惑和需求,以便在接下来的教学中做出相应的调整。我相信,通过不断反思和改进,我们能更好地激发学生的学习兴趣,提高他们的几何学科素养。
五、教学反思
在今天的相似三角形性质教学中,我发现学生们对对应角和对应边成比例的概念掌握得还不错,但在具体的案例分析中,有些同学在辨识对应角和对应边时仍然感到困惑。这让我意识到,我们需要在接下来的课程中加强对这部分知识点的巩固。
课堂上,我尝试通过引入日常生活中的实例,让学生感受到相似三角形性质的实际应用,这样的教学方式似乎引起了学生的兴趣。不过,我也注意到,在理论介绍环节,部分学生显得有些吃力,可能是因为概念的理解需要更多的时间和练生在辨识相似三角形中的对应角和对应边时,容易混淆,需要教师通过具体示例和练习进行指导。
-性质证明的逻辑推理:学生在证明相似三角形性质时,可能会遇到推理不严密、逻辑混乱等问题,教师应引导学生梳理证明过程,强化逻辑推理能力。
举例:
(1)难点突破:教师展示多个相似三角形图形,让学生辨识对应角和对应边,并提供提示和指导,如“如何快速找到相似三角形中的对应角和对应边?”
(2)逻辑推理:针对性质证明的难点,教师可以设计梯度性练习题,从简单到复杂,让学生逐步掌握证明方法。例如,先证明“相似三角形中,对应角相等”,再证明“相似三角形中,对应边成比例”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的性质
【教学目标】
1.初步掌握相似三角形的周长比、面积比与相似比的关系以及关于它们之间关系的两条定理的证明方法,并会运用定理进行有关简单的计算。

2.在动手参与解决身边实际问题的过程中,增强主动探索、发现数学知识的意识,提高观察、归纳能力,应用数学知识解决生活中实际问题的能力。

3.在学习过程中,进一步改善独立思考、合作学习、自主评价等学习品质。

【教学重难点】
重点:相似三角形的周长比、面积比与相似比的关系的探究与证明。

难点:相似三角形的周长比、面积比与相似比的关系的应用。

【教学过程】
一、设计龟免赛跑故事导入新课
有一只极速乌龟和骄傲的兔子在规定的两块相似四边形的场地上进行比赛,谁先跑完一圈谁为胜,已知:免子的速度是乌龟的4倍,结果乌龟跑完一圈只用了一个小时,兔子说,我睡上半个小时再跑,也能比你先跑完一圈;你认为兔子的说的话对吗?你能猜到比赛的最后结果吗?
(以“龟兔赛跑”精典故事开头,引起同学对这堂课的兴趣。

)
二、自主探究,发现新知
1.分组猜想探究活动,完成下列实验报告单
(学生经历动手实验 - 观察-思考-归纳-发现的学习过程,分别总结两个相似三角形的周长比与相似比的关系,面积比与相似比的关系。

注重学生动手实验、探索过程,并利用小组合作方式,培养学生的合作意识。

)
猜测得到命题:相似三角形的周长比等于相似比。

相似三角形的面积比等于相似比的平方。

2.验证猜想,得出结论(小组讨论)
探究:如果两个三角形相似,它们的周长比是否等于相似比呢?两个相似多边形呢? 如果△ABC ∽△A'B'C',相似比为k ,那么

AB BC CA
k A B B C C A ===''''''
⇒AB=kA′B ',BC=kB 'C ',CA=kC 'A '

AB BC CA kA B kB C kC A k A B B C C A A B B C C A ++''+''+''
==''+''+''''+''+'' 可以得到 相似三角形周长的比等于相似比
类似的方法还可以得出 相似多边形周长的比等于相似 延伸问题: 探究:
(1) 如图27.2-11(1),∆ABC ∽∆ A'B'C',相似比为k 1 ,它们的面积比呢?
图27.2-11(1)
分析:如图27.2-11,分别作出∆ABC 和∆ A'B'C'的高AD 和A'D'。

∵∠ADB =∠A'D'B'=900又∠B =∠B'
∴∆ABD ∽∆A'B'D' ∴1''''AD AB k A D A B ==(在此得出相似三角形对应高的比等于相似比)
111
11111
212
ABC A B C BC AD S S B C A D ∆∆•=• =()()1111211111
21
2kB C kA D k
B C A D =• 可以得到:相似三角形面积比等于相似比的平方
相似三角形对应中线的比,对应角平分线的比都等于相似比吗?
(2)如图图27.2-11(2),四边形ABCD 相似于四边形A'B'C'D',相似比为k 2,它们的面积比是多少?
图27.2-11(2)

ABC A B C S S '''=ACD A C D S S '''= k 2
2

ABCD A B C D S S ''''=四边形四边形ABC ACD A B C A C D S S
S S
''''''
+=+ k 22
相似多边形面积比等于相似比的平方 三、运用性质,熟悉新知
1.已知两个三角形相似,根据下列数据填表: 相似比 2
1/3
周长比 0.01 10 面积比
10000
0.0001
2.实际问题的解决
在福州中环线的建设施工中,曾遇到这样一个实际问题:由于马路拓宽,有一个面积是100平方米、周长80米的三角形的绿化地被削去了一个角,变成了一块梯形绿地,原绿化地的一边AB 的长由原来的20米缩短成12米(如图所示)。

为了保证福州的绿化建设,市政府规定:因为种种原因而失去的绿地面积必须等面积补回。

这样就引出了一个问题:这块失去的面积到底有多大?它的周长是多少?
你能够将上面生活中的实际问题转化为数学问题吗?
E
B
C
D
A 12
实际问题:如图,已知,在△ABC 中,DE∥BC,AB=20m ,BD=12m , △ABC 的周长为80m ,面积为100m ²,求:△ADE 的周长和面积。

(通过探索、论证,到运用解决实际问题,一方面学生摸索到了从已知到未知的研究方法,另一方面又感受到了数学来源于生活又服务于生活。


3.引申分别连接CD 和BE 交于点G.
C
B
A
求:(1)
S
S
CDE
ADE ∆∆(2)DEC S ∆,
S
BDE

(3)DGE S ∆,EGC S ∆,BDG S ∆,BGC S ∆。

(对引例的变式是培养学生多层次、多角度思维能力的一种较好形式。

复杂图形中观察基本图形对学生来说有一定的难度,教师借助于多媒体的力量,采用图形的闪烁,色彩的变化等手段,突出基本图形,突破难点。

) 四、小结反思, 自主评价
1. 知识技能部分的小结:
相似三角形的周长比、面积比与相似比的关系;两条有关定理的证明思路与证明方法;定理的运用(进行有关简单的计算)。

2.自主评价:
如:对网格图上的两个格点三角形相似的认识;对运用定理解决问题的注意点的反思性总结;对自己及同伴在课堂上数学学习表现的评价;提出自己的困惑与不解,或进行质疑等。

3. 教师根据学生自主评价情况作适当的点评。

【作业布置】
F
C
B
A
C
1.选做题:(1)对引例继续探究
过点E作EF//AB,EF交BC于点F,其他条件不变,则EFC
的面积等于多少?平行四边形DBFE面积为多少?(作业的布置,帮助学生对知识的保持和迁移,尊重学生的个体差异满足多样化的学习需要,使不同层次的学生有不同的收获。

)
【课后反思】
本节课是论证几何中“相似形”的重点内容之一,是在学会相似三角形的定义及判定的基础上,进一步研究相似三角形的性质,以完成对相似三角形的全面研究。

它是全等三角形的拓展,也是解决有关实际问题的重要工具。

本节课的引入,是以“龟兔赛跑”精典故事开头,引起同学对这堂课的兴趣。

整个探究活动部分,主要是对网格图上的格点三角形进行研究,选择网格图上的格点三角形进行研究,主要考虑网格有支架作用,便于学生进行边长、周长、面积的计算。

另外对于网格图,学生在相似三角形的判定中已有接触,比较熟悉。

这个部分注重学生动手实验、探索过程,并利用小组合作方式,培养学生的合作意识。

课本例题进行“再创造”,以福州的中环线建设为背景,提出数学问题。

这样的设计,既可以调动学生的学习热情与积极性,又可以使学生认识到,现实生活中处处有数学,提高学生应用数学的意识。

在得出定理后,及时进行思维训练。

通过探索、论证,到运用解决实际问题,一方面学生摸索到了从已知到未知的研究方法,另一方面又感受到了数学来源于生活又服务于生活。

对引例的变式是培养学生多层次、多角度思维能力的一种较好形式。

小结部分,拟让学生小结反思与自主评价。

这样做,有利于学生巩固刚获得的知识和技能,有利于学生提高归纳能力和语言表达能力,有利于学生逐步养成对已学知识的反思习惯,有利于学生逐步树立敢于提出自己独到见解的求真精神,有利于学生逐步形成正确的数学价值观。

当然,教师也将根据学生小结、自主评价的实际情况作适当的点评,以体现师生互动,发挥教师的主导作用。

相关文档
最新文档