静电场静电场中的导体(精)

合集下载

大学物理-第3章-静电场中的导体

大学物理-第3章-静电场中的导体

R2 R1
在金属球壳与导体球之间(r0 < r < R1时):
q r0
作过 r 处的高斯面S1
q
S1 E2 dS 0

E2 r
q
40r 2
q
E2 40r 2 er
在金属球壳内(R1< r < R2时):电场 E3 0
在金属球壳外( r > R2时): 作过 r 处的高斯面 S 2
S2
E4
dS
在它形成的电场中平行放置一无限大金属平板。求:
金属板两个表面的电荷面密度?
解:带电平面面电荷密度0 ,导体两面感应电荷面密度分 别为1 和 2,由电荷守恒有
1 2 0 (1)
导体内场强为零(三层电荷产生)
σ0 σ1
σ2
E0 E1 E2 0
(2)
E0
0 1 2 0
(3)
20 20 20
导体表面任一点的电场强度都与导体表面垂 直。
20
2.导体在静电平衡状态下 的一些特殊性质
❖ 导体是等势体,导体表面是等势面。
在导体内部任取两点P和Q,它们之间的电势差可以表示为
VP VQ
Q
E
dl
0
P
❖ 导体表面的电场强度方向与导体的表面相垂直。
❖ 导体上感应电荷对原来的外加电场施加影响,改
Q1
Q2
0
q
q
0

E4r
q
4 0 r 2
E4
q
4 0 r 2
er
43
思考:(3)金属球壳和金属球的电势各 为多少?
解:设金属球壳的电势为U壳 ,则:
U壳
R2 E4 dl

(整理)静电场中的导体和电介质

(整理)静电场中的导体和电介质

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。

(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。

从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。

用一句话说:静电平衡时导体为等势体。

二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。

静电场中的导体

静电场中的导体
静电场中的 导体
一、导体的静电平衡条件
+
++++ + + + +
感应电荷
静电平衡条件
导体 内部 的场
E0
E E0 E'
E'
静电平衡时
E E' E0
E E0 E' 0
外场
E0
•静电平衡条件: 导 感应场 E '
体内部场强为0。
导体内部的场 E
二、处于静电平衡的导体的性质
1.静电平衡时导体为等势体,导体表面 为等势面。
R2 R3
(1)球壳B内、外表面上的电量及球A和球壳B的电势
(2)将球壳B接地然后断开,再把金属球A接地,求金 属球A和球壳B内、外表面上各带有的电量以及球A 和球壳B的电势
• 例:有一块大金属平板,面 积为S,带有总电量Q,在 其近旁平等放置第二块 大金属板,此板原来不带 电.求静电平衡时,金属板 上的电荷 分布及其空间
如尖端放电
三、静电空腔内表面无电荷,全部电 荷分布于外表面。
证明:在导体内作高斯面
S
E
dS
q
0
导体内 E 0, q 0
面内电荷是否会等量异号?
如在内表面存在等量异号 电荷,则腔内有电力线, 电势沿电力线降落,所以 导体不是等势体,与静电 平衡条件矛盾。
所以内表面无电荷,所有电荷分布于外表 面。
• 不管外电场如何变化,由于导体表面电 荷的重新分布,总要使内部场强为 0。
• 空腔导体具有静电屏蔽作用。例如:高 压带电作业人员穿的导电纤维编织的工 作服。
2.腔内有电荷
空腔原带有电荷 Q ,将 q 电荷放入空腔内。 结论:

静电场中的导体

静电场中的导体

导体上的电荷分布
V 1 Q 1 q
4 0 R 4 0 r
Q R
q
r
可见大球所带电量Q比小球所带电量q多。
两球的电荷密度分别为
R
Q
4R2
,
r
q
4r 2
可见电荷面密度和半径成反比,即曲率半径 愈小(或曲率愈大),电荷面密度愈大。
导体上的电荷分布
例1. 证明两无限大平行金属板达到静电平衡时,其相对 两面带等量异号电荷,相背两面带等量同号电荷。
§9-1 静电场中的导体
1.导体的静电平衡
静电感应: 在静电场力作用下,导体中自由电子在电场力的作 用下作宏观定向运动,使电荷产生重新分布的现象。
导体的静电平衡
导体的静电感应过程
导体的静电平衡
导体达到静电平衡
E 感
E外 E感 0
+
+
+ E外
+ +
导体的静电平衡
静电平衡: 导体中电荷的宏观定向运动终止,电 荷分布不随时间改变。
证明:从左至右一共有四个带电平
面,设其所带电荷的面密度依次 为1、2、3、4。
以向右作为电场正向。
1 2
左边导体中任意一点的场强:
E 1 2 3 4 0 20 20 20 20
3 4
导体上的电荷分布
在右边导体中任取一点,则该点
E 1 2 3 4 0 20 20 20 20
2 3
2.2 空腔导体
(1)腔内无带电体: 电荷分布在导体表面,导体
内部及腔体的内表面处处无净电 荷。
+ + + ++ + +
+ +

静电场中的导体与电介质

静电场中的导体与电介质

§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。

在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。

导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。

从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。

(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。

)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。

可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。

充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。

对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。

1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。

2静电场中的导体和电介质(精)

2静电场中的导体和电介质(精)

V 实验证明,对于绝大多数各向同性的介质,极化强度 P与电场强度E成正比,即P = 0 E
V 0
P
lim
p
式中称为介质的电极化率,它与场强E无关,取决于电介质。
2.5.3

束缚电荷
电介质处于极化状态时,在电介质的端面或内部上产生极化 电荷。这些电荷不能离开电介质表面,称为束缚电荷。 如果介质不均匀,在介质内部也会由于极化而出现束缚电荷。 设单位体积分子数为n,
这类分子在外电场的作用下,分子中的正负电荷中心
将发生相对位移,形成一个电偶极子,它们的等效电偶极 矩 P 的方向都沿着电场的方向,导致介质表面上出现了电
荷。这种情况称为介质的极化。
无极性分子电介质的这种极化方式称为位移极化。
有极性分子的极化
有极性分子的正负电荷中心即使在无外电场存在时也是不 重合的,例如水分子等。由于分子热运动的无规则性 , 在物理 小体积内的平均电偶极矩为零,宏观上也不显电性。 当介质受到外电场作用时,每个分子的电偶极矩都受到一 个力矩的作用,使分子电矩转向外电场方向,这样分子固有电 矩的矢量和就不等于零了。 但由于分子的热运动,这种转向并不完全。外电场越强, 分子电矩沿着电场方向排列得越整齐。
2.4
静电场中的导体
2.4.1 导体的静电平衡
金属导体中存在大量的自由电子,它们时刻作无规则的
微观运动(“热运动”)。当自由电子受到电场力作用时,
会在热运动的基础上附加一种有规则的宏观运动,形成电流。 当导体中自由电子不作宏观运动(没有电流)时,我们说导 体达到了静电平衡的状态。
2.4.1 导体的静电平衡
D=E
2.5.5
静电场的边界条件
在两种介质的分界面上,电场强度矢量E的切线分量连续。

静电场中的导体

E2 4 0 r 2
R1 r R2
E3
1
4
0
Q q/ r2
U
R1
E.dr
R2 R1
E2.dr
R2 E3.dr 0
r R2
q/
4 0
1 R1
1 R2
1
4 0
Q q/ R2
0,
解得
q
R 1
Q
R
2
故外球壳外表面荷电 Q q/ Q R1 Q
R2
17
10
例8-14 如图所示,一带正电Q的点电荷离半径为R的金属球壳 外的距离为d,求金属球壳上的感应电荷在球心O处的场强。
q/
R
r
E0 0 E/ d
Q
解 以球心为坐标原点,球心指向点电荷的方向为矢径方向,则
点电荷在球心处的场强
Q
E0 4 0 (R d )2 r0

E E/ E 0

0
q
总之,导体壳内部电场不受壳外电荷的影响,接地导体使 得外部电场不受壳内电荷的影响。这种现象称为静电屏蔽。
12
2、尖端放电
在带电尖端附近,电离的分子与周围分子碰撞,使周围的 分子处于激发态发光而产生电晕现象。
+ +
++ +++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电晕, 故此,高压设备中的金属柄都做成光滑的球形。
△s面上σ均匀, E1=常矢 ,且垂直于导体表面,又E内=0
e
E表
E s1 1
0
ds
s

1.5 静电场中的导体

10
§5 静电场中的导体
5.2 导体上的电荷分布 尖端放电现象 尖端放电可以利用的一面——避雷针。 当带电的云层接近地表面时,由于静电感应使地面上 物体带异号电荷,这些电荷比较集中地分布在突出的 物体(如高大建筑物、烟囱、大树)上。当电荷积累 到一定程度,就会在云层和这些物体之间发生强大的 火花放电。这就是雷击现象。 为了避免雷击,如右图所示,可在高大建筑物上安装 尖端导体(避雷针),用粗铜缆将避雷针通地,通地 的一端埋在几尺深的潮湿泥土里或接到埋在地下的金 属板(或金属管)上,以保持避雷针与大地电接触良 好。当带电的云层接近时,放电就通过避雷针和通地 粗铜导体这条最易于导电的通路局部持续不断地进行 以免损坏建筑物。
2
§5 静电场中的导体
2.1.1 导体的静电平衡条件 导体从非平衡态趋于平衡态的过程:
把一个不带电的导体放在均匀电场中。在导体所占据的那部分空间 里本来是有电场的,各处电势不相等。在电场的作用下,导体中的自由 电荷将发生移动,结果使导体的一端带上正电,另一端带上负电,这就 是静电感应现象。 导体上的电荷达到什么程度时,电荷不再增加? 导体内部: E E0 E 0, 达到平衡
12
§5 静电场中的导体
5.3 导体壳(腔内无带电体情形) (2)法拉第圆筒 静电平衡时,导体壳内表面没有电荷的结论 可以通过如图所示的实验演示。
A、B是两个验电器,把一个差不多封闭的空心金 属圆筒C(圆筒内无带电体)固定在验电器B上。给圆 筒和验电器B以一定的电荷,则金箔张开。取一个装有 绝缘柄的小球D,使它和圆筒C外表面接触后再碰验电 器A(图a),则A上金箔张开,如果重复若干次,我们 就能使金属箔A张开的角度很显著,这证明圆筒C的外 表面是带上了电的。 如果把小球D插入圆筒上的小孔使之与圆筒的内 表面相接触后,再用验电器A检查(图b),则发现A的 金属箔总不张开。这表明圆筒C的内表面不带电。这 就从实验上证实了上述结论。这实验称为法拉第圆筒 实验,实验中的圆筒C称为法拉第圆筒。

静电场中的导体和电介质


2.1.1 导体的静电平衡条件 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,则该带电体系达到了静电平衡。 均匀导体的静电平衡条件就是其体内场强处为0。 从导体静电平衡条件还可导出以下推论: (1)导体是个等位体,导体表面是个等位面。 (2)导体以外靠近其表面地方的场强处处与表面垂直。
2.2.3 电容器的并联、串联 (1) 并联 电容器并联时,总电容等于个电容器电容之和。 (2) 串联 电容器串联后,总电容的倒数是各电容器电容的到数之和
2.2.4 电容器储能(电能) 设每一极板上所带电荷量的绝对值为Q,两极板间的电压为U,则电容器储存的电能 从这个意义上说,电容C也是电容器储能本领大小的标志。
(2)极化电荷的分布与极化强度矢量的关系 以位移极化为模型,设想介质极化时,每个分子中的正电“重心”相对负电“重心”有个位移l。用q代表分子中正、负电荷的数量,则分子电矩P分子=ql。设单位体积内有 n个分子,则极化强度矢量P=np分子=nql。
取任意闭合面S,根据电荷守恒定律,P通过整个闭合面S的通量应等于S面内净余的极化电荷∑q′的负值 ,即 这个公式表达了极化强度矢量P与极化电荷分布的一个普遍关系。
(3)库仑平方反比率的精确验证 用实验方法来研究导体内部是否确实没有电荷,可以比库仑扭秤实验远为精确的验证平方反比律。 卡文迪许的验证实验装置见教材中图2-11。实验时,先使连接在一起的球1和壳3带电,然后将导线抽出,将球壳3的两半分开并移去,再用静电计检验球1上的电荷。反复实验结果表明球1上总没有电荷。
(1) 平行板电容器 平行板电容器由两块彼此靠得很近的平行金属极板组成。设两极板A、B的面积为S , 带电量分别为±q , 则电荷的面密度分别为 ±σe =±q/S 根据式(2.1),场强为 E = σe/ε0 , 电位差为 根据电容的定义

静电场中导体


q
S内
i
0
由于高斯面 S 可取得任意小,所以导 体内无净电荷分布。
2. 静电平衡导体, 其表面附近场强的大 ---- - - E S P 小与该处表面的电荷 面密度成正比。 + +S ' + +
+ + ++ + + ++ + +
S '
dS E dS E dS E dS E S S ' 侧面
1. 孤立带电导体接地时,为什么所有 电荷会流向地球?
2. 地球的电势为何视为零?
Q R q r
1 Q VR 40 R
尖端放电现象:

+ + + + +
避害:避雷针的使用等。
趋利:电焊,静电喷漆, 电子点火等。
§13-4 空腔导体内外的静电场 静电屏蔽
一、空腔导体内外的静电场 1. 空腔内没有电荷 空腔内没有电荷时,电荷只能分布 在导体外表面。空腔内没有电场分布。
P
σ
3. 孤立导体静电平衡时,表面曲率越 大的地方,电荷面密度越大。
+ + + + + + + + + + + +
以下例定性说明。
例: 设有两个相距很远的带电导体球, 半径分别为 R 和 r (R >r),用一导线将两 球相连, 哪个球带电量大?哪个球的面电 荷密度大?
R
Q
r q
R 解:设系统达到静电平衡时,两球的 带电量分别为Q 和 q , 两球的电势
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电场、静电场中的导体
判断题
(×)1. 静电场中电场线可以是闭合的。

(×)2. 电场是标量场,电势是矢量场。

(×)3.静电场的高斯定理i S 01E dS q ε⋅=∑⎰中E 取决于高斯面内部的电荷。

(×)4.高斯面上的电场强度是仅仅由高斯面包围的电荷产生的。

选择题
1、关于静电场的电场线,以下说法错误的是 C
(A )静电场的电场线总是从正电荷出发,到负电荷终结;
(B )静电场的任何两条电场线不会相交; (C )沿静电场的电场线方向电场强度的大小减小;
(D )静电场的电场线的切线方向就是该点电场强度的方向。

2、下列关于高斯定理∑⎰⎰=⋅i S q S d E 0
1ε 说法正确的是 D (A) 若闭合曲面S 内电荷的代数和为零,则面上任一点的电场强度为零;
(B) 若0=⋅⎰⎰S S d E ,则闭合曲面内一定没有电荷;
(C) 由高斯定理可知,静电场的电场线是有起点和终点的;
(D) 由高斯定理可知,静电场是保守力场。

3、一平行板空气电容器,极板面积为S ,极板间的距离为d ,充电至带电Q 后与电源断开,然后用力缓缓地把两极板拉开到d 2。

电容器的能量( B )
(A)不变 (B )增大 (C )减小 (D )不可确定
4、在静电场中,下列说法正确的是(无答案)
A 、 电势为零处,场强必为零。

B 、 场强为零处,电势必为零。

C 、 场强大小相等处,电势必相等。

D 、电势处处相等处,场强必为零。

5、关于静电场中的高斯定理⎰⎰∑=⋅i q s d E 01ε ,下列说法正确的是( D )
A 、E 为高斯面内电荷所产生的场强,∑i q 为高斯面内电荷的代数和。

B 、E 为高斯面内电荷所产生的场强,∑i q 为高斯面内外电荷的代数和。

C 、E 为高斯面内外电荷所产生的场强,∑i
q 为高斯面内自由电荷代数和。

D 、E 为高斯面内外电荷所产生的场强,∑i q 为高斯面内电荷的代数和。

7. 下列说法正确的是(B )
A 、闭合曲面上各点的电场强度都为零时,曲面内一定没有电荷
B 、闭合曲面上各点的电场强度都为零时,曲面内电荷的代数和必为零
C 、闭合曲面的电通量为零时,曲面上各点的电场强度必为零
D 、闭合曲面的电通量不为零时,曲面上任一点的电场强度都不可能为零
填空题
1.边长为a 正方体中心放置一个电荷Q ,则通过任一个正方体侧面的电通量为 0
6εQ 。

2.半径为R 的球面均匀带电,所带总电量为q ,则球内距球心距离为r (r <R )处的电势为 R
q
04πε 。

计算题 1.有两个半径分别为1R 、2R 的同心球壳,带电分别为1Q 、2Q ,试求空间电场分布。

解:以同心球壳的球心为球心,以任意的r 为半径做球形高斯面 则:⎰⎰∑=⋅i q s d E 01ε
⎪⎪⎪⎩
⎪⎪⎪⎨⎧≥<≤<+==⋅⎰⎰)
()()(0422110210
12R r R r R R r Q Q Q E r s d E εεπ ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<+=∴)
()()(44022110221021R r R r R R r r Q Q r Q E επεπ 方向:沿半径发散
2. 一个半径为R 的带电球体,电荷分布均匀,体密度为ρ,试求此带电球体内、外的场强
分布。

解:以带电球体的球心为球心,以任意的r 为半径做球形高斯面 则:⎰⎰∑=⋅i q s d E 01ε
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<==⋅⎰⎰)
()(34344030
32R r R r R
r
E r s d E επρεπρπ
⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧≥<=∴)
()(330
23
R r R r r R r E ερερ 方向:沿半径发散
3.如图所示,两个带有等量异号电荷的无线长同轴圆柱面,半径分别为1R 和2R (12R R >) 单位长度上的电荷为λ。

求离轴线为r 处的电场强度 (1)1R r <(2)21R r R << (3)2R r >
解:以同轴圆柱面的轴为轴,以任意的r 为半径做圆柱形高斯面 则:⎰⎰∑=⋅i q s d E 01ε
⎪⎪⎪⎩
⎪⎪⎪⎨⎧≥<≤<==⋅⎰⎰)
()()(00222110
R r R r R R r h E rh s d E ελπ ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<=∴)
()()(02022110
R r R r R R r r E επλ 方向:沿半径发散
4.两个均匀带电球壳同心放置,半径分别为1R 和2R (12R R >),已知内外球壳之间的电势差为12U ,求两个球壳之间的场强布。

解:设内球壳带电为Q ,则按第一题可知、 在12R r R >>处,2
04r Q
E πε= 则:)1
1
(442
10201221R R Q dr r Q
U R R -==⎰πεπε
1
22
10124R R R R U Q -=∴πε ∴21221121
r
R R R R U E -=。

相关文档
最新文档