塞曼效应实验报告完整版
塞曼效应实验报告

图 汞绿线的塞曼效应及谱线强度分布 由图可见,上下能级在外磁场中分别分裂为三个和五个子能级。
在能级图上画出了选择规则允许的九种跃迁。
在能级图下方画出了与各跃迁相应的谱线在频谱上的位置,它们的波数从左到右增加,并且是等距的。
三、实验装置1. J 为光源,本实验用笔型汞灯作为光源。
2. N,S 为电磁铁的磁极,用配套稳流源供电。
电流与磁场的关系可用高斯计进行测量。
3. 0L 、1L 为会聚透镜,使通过标准具的光强增强。
4. P 为偏振片,在垂直于磁场方向观察用以鉴别σ成分和π成分;在沿着磁场方向观察时,结合1/4波片的使用,用以鉴别左旋或右旋圆偏振光。
5. F-P 为法布里-伯罗标准具。
6. 3L 和4L 分别为显微镜的物镜和目镜,在沿磁场方向观察时用它观察干涉图样。
四、实验内容1、参照使用说明书,调节好直读式塞曼效应实验仪。
(1) 调节各光学元件与光源(汞灯)等高,共轴(注意纵向塞曼效应中光源高度)。
(2) 调节标准具和显微镜的位置,使视场内照明均匀,并使干涉圆环清晰可见。
(3) 标准具的调整。
调节标准具的三个螺丝,使得产生的干涉圆环清晰明亮,并使得圆环与目镜划线间无视差(这步骤调节好后,不必再乱调)。
2、 横向塞曼分裂垂直磁场方向观察(横效应)。
调节电流由零至1.5A ,观察塞曼分裂情况,这时,会看到原来的一条谱线将分裂为9条,然后,放上偏振片(横向观察时,不用1/4波片)调节慢轴方向0,45,90,将会发现,有时,一些谱线消失,有时,一些消失的谱线又将重新出现,即出现π成分和σ成分。
3、用特斯拉计测量磁感应强度值。
4、干涉圆环直径测量和计算裂距∆λ及e/m :)(42212,2,kk a k b k D D D D dB c m e --=-π。
实验-塞曼效应

实验三 塞曼效应实验目的:1.观察汞5461埃光谱线的塞曼效应,并测量它分裂的波长差。
2.测定电子的荷质比e/m 值。
实验原理:当光源置于外磁场中,光源发出的每一条光谱线都将分裂成几条波长相差很小的偏振化分谱线,这一现象称为塞曼效应。
设原子某一能级的能量为E 0,在磁感应强度为B 的外磁场的作用下,原子将获得附加的能量∆E :∆E=Mg B μ BM 为磁量子。
M=J,J-1,…..,-J,共有(2J+1)个值。
因此,原来的一个能级将分裂成(2J+1)个子能级。
子能级的间隔相等,并正比于B 和朗德因子g ,对于L-S 耦合的情况:g=1+)1(2)1()1()1(++-+++J J L L S S J J式中B μ为玻尔磁子,B μ=mhe π4。
设频率为υ的光谱线是由原子的上能级E 2跃迁到下能级E 1所产生(h υ= E 2- E 1),在外磁场的作用下,上下两能级各获得附加能量∆E 2,∆E 1,因此,每个能级各分裂成(2J 2+1)个和(2J 1+1)个子能级。
这样,上下两个子能级之间的跃迁,将发出频率为υ'的谱线,并有h υ'=(E 2+∆E 2)-( E 1+∆E 1)= (E 2- E 1)+(∆E2-∆E 1)= h υ+(M 2g 2- M 1g 1)B μ B分裂后的谱线与原谱线的频率差将为∆υ=(M 2g 2- M 1g 1)B μB/hc=(M 2g 2- M 1g 1)L其中L=B μB/hc=4.67*105-B(cm 1-)L 称为洛仑兹单位,正是正常塞曼效应所分裂的裂距。
在能级跃迁时,磁量子数受到选择性定则和偏振定则所限制。
1.选择性定则:∆M =M 2- M 1=0(当∆J=0 M 1=0 M 2=0 被禁止) ∆M=±1 2.偏振性定则:说明:1.K 为光传播方向矢量,H为外磁场方向。
2. π成分表示光波的电矢量E 平行于B ,σ成分表示E 垂直于B.3.在光学中,如果光线对于观察者迎面而来,这时电矢量若按逆时针方向旋转,我们称之为左旋圆偏振光;若逆时针方向旋转,则称之为右旋圆偏振光。
塞曼效应实验报告

塞曼效应实验报告引言:塞曼效应是量子力学中的一个重要现象,它揭示了原子和分子能级结构与外部磁场之间的相互作用关系。
本实验旨在通过观察塞曼效应,验证这一理论。
实验装置与方法:实验装置包括磁场源、光源、光栅和光谱仪。
首先,将磁场源置于实验室中心位置,并接通电源使其产生稳定的磁场。
然后,通过光源产生一束具有特定频率的光线,该光线通过光栅,经过一定的光学系统,形成光谱。
观察现象与数据记录:在实验过程中,我们注意到光谱线在磁场的作用下出现了细微的分裂,这就是塞曼效应的表现。
我们记录下这些分裂的光谱线的位置和强度。
数据处理与结果分析:根据数据和观察结果,我们将光谱线的位置和强度分别绘制在坐标图上。
通过分析图形,我们发现光谱线的分裂符合一定的规律。
具体来说,对于不同的能级结构,塞曼效应产生的分裂方式可以分为三种:正常塞曼效应、反常塞曼效应和正常塞曼效应的反转。
正常塞曼效应是指,当原子或分子具有奇数个价电子时,塞曼效应造成的光谱线分裂的间距随磁场强度的增加而增加。
反常塞曼效应则是指,当原子或分子具有偶数个价电子时,光谱线的分裂间距随磁场强度的增加而减小。
而正常塞曼效应的反转是指在特定条件下,正常塞曼效应和反常塞曼效应的特征同时出现。
根据观测到的现象,我们可以通过分析光谱线的位置和强度来获取有关原子和分子能级结构的信息。
通过计算分裂的间距和角度,我们可以确定材料的磁矩和磁量子数等参数。
结论:通过本实验,我们成功观测到了塞曼效应并记录了相关数据。
分析数据后,我们得出了关于正常塞曼效应、反常塞曼效应和正常塞曼效应的反转的结论。
这些结果不仅验证了塞曼效应的存在,还揭示了原子和分子能级结构与外部磁场之间的复杂关系。
实验中的一些限制因素:尽管本实验取得了一些有意义的结果,但也存在一些限制因素需要考虑。
首先,实验中使用的光源和光学系统的精度可能会影响到数据的准确性。
其次,磁场强度和方向的控制也对结果产生了一定的影响。
因此,为了获得更精确的结果,进一步的研究和改进是必要的。
塞曼效应实验报告完整版

北昌大教物理真验报告之阳早格格创做教死姓名:教号:5502210039博业班级:应物101班真验时间:西席编号:T017结果:塞曼效力一、真验手段1.瞅察塞曼效力局面,把真验截止与表面截止举止比较. 2.教习瞅测塞曼效力的真验要领.3.估计电子核量比.二、真验仪器WPZ—Ⅲ型塞曼效力真验仪三、真验本理塞曼效力:正在中磁场效率下,由于本子磁矩与磁场相互效率,使本子能级爆收团结.笔直于磁场瞅察时,爆收线偏偏振光(π线战σ线);仄止于磁场瞅察时,爆收圆偏偏振光(左旋、左旋).依照半典范模型,品量为m,电量为e的电子绕本子核转化,果此,本子具备一定的磁矩,它正在中磁场B中会赢得一定的磁相互效率能E∆,由于本子的磁矩Jμ与总角动量P的闭系为J2J J e g P m μ=(1)其中g 为朗德果子,与本子中所有电子德轨讲战自旋角动量怎么样耦合成所有本子态的角动量稀切相闭.果此, cos cos 2J J e E B g P B m μαα∆=-=-(2)其中α是磁矩与中加磁场的夹角.又由于电子角动量空间与背的量子化,那种磁相互效率能只可与有限个分坐的值,且电子的磁矩与总角动量的目标好异,果此正在中磁场目标上,cos ,,1,,2J h P M M J J J απ-==--(3)北昌大教物理真验报告教死姓名:刘惠文 教号:5502210039博业班级:应物101班真验时间: 西席编号:T017 结果:式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数.设:4B hem μπ=,称为玻我磁子,0E 为已加磁场时本子的能量,则本子正在中表磁场中的总能量为00B E E E E Mg B μ=+∆=+(4)由于朗德果子g 与本子中所有电子角动量的耦合有闭,果此,分歧的角动量耦合办法其表白式战数值真足分歧.正在L S -耦合的情况下,设本子中电子轨讲疏通战自旋疏通的总磁矩、总角动量及其量子数分别为L μ、L P 、L 战S μ、S P 、S ,它们的闭系为 (1),222L L e e h P L L m m μπ==+(5)(1),2S S e e h P S S m m μπ==+(6) 设J P 与L P 战S P 的夹角分别为LJ α战SJ α,根据矢量合成本理,只消将二者正在J μ目标的投影相加即可得到形如(1)式的总电子磁矩战总轨讲角动量的闭系:2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJL LJ S SJ J L S J L S J J J L S J J J e P P mP P P P P P e m P P P P P e P P me g P m μμαμααα=+=++--+=+-+=+=(7)其中朗德果子为(1)(1)(1)1.2(1)J J L L S S g J J +-+++=++(8)由(*)式中不妨瞅出,由于M 公有(2J +1)个值,所以本子的那个能级正在北昌大教物理真验报告教死姓名:刘惠文 教号:5502210039博业班级:应物101班真验时间: 西席编号:T017 结果:中磁场效率下将会团结为(2J +1)个能级,相邻二能级隔断为B g B μ.果为g 由量子态决断,所以分歧能级团结的子能级隔断分歧.设频次为ν的谱线是由本子的上能级2E 跃迁到下能级1E 所爆收的,则磁场中新谱线频次形成ν',则)()(1122E E E E h ∆+-∆+='ν频次好为ν∆=ν'-ν=h E E 12∆-∆=m eBg M g M π4)(1122-用波数好表示为ν~∆=m c eB g M g M π4)(1122-=L g M g M )(1122-,其中L为洛伦兹单位,L =m e c B ⋅π4 四、π线战σ线:跃迁时M 的采用定则:012=-=∆M M M ,1±,当M =0时,笔直于磁场目标瞅察时,爆收的振荡目标仄止于磁场的线偏偏振光喊π线;仄止于磁场瞅察时π线身分没有出现.当M =1±时,笔直于磁场目标瞅察时,爆收的振荡目标笔直于磁场的线偏偏振光喊σ线;仄止于磁场瞅察时,爆收圆偏偏振光,M =1+,偏偏振转背是沿磁场目标前进的螺转化动目标,磁场指背瞅察者时,为左旋圆偏偏振光;M =1-,偏偏振转背是沿磁场目标倒退的螺转化动目标,磁场指背瞅察者时,为左旋圆偏偏振光.五、错序瞅察法:汞546.1nm 谱线正在磁场效率下团结为9条子谱线,其裂距相等为L 21.其中3条π线,6条σ线.采与加大磁场的要领使某些分量错序,而且正佳与相邻搞涉序的另一些分量沉叠(即错序瞅察法),进而测得磁场强度B .北昌大教物理真验报告 教死姓名:刘惠文 教号:5502210039博业班级:应物101班真验时间: 西席编号:T017 结果: 对于共一搞涉序分歧波少战的波少好闭系为:其波数的闭系为六、估计荷量比m e :果为各子谱线裂距为L 21,所以波数好ν~∆=L 21=⋅21m e c B ⋅π4,则m e =B c πν4~2⨯∆⨯=()νπ~292335.08∆⨯⨯-⨯d x c四、真验真量1. 安排F-P 尺度具.2. 安排光路.3. 瞅察瞅察汞绿线 546.1nm 正在加上磁场前后战没有竭删大磁场时的搞涉圆环 的变更情况;转化偏偏振片决定哪些谱线是π成份,哪些是σ成份;形貌局面并加以表面证明.4. 正在励磁电流 I=3A (B=1.2T )条件下调出塞曼团结的π谱线,用硬件处理图片,测出 e/m 的值.北昌大教物理真验报告教死姓名:刘惠文 教号:5502210039博业班级:应物101班真验时间: 西席编号:T017 结果:五、真验数据处理由真验测得数据知:=1.77/e c kg m 11()⨯10测所以百分缺点1.77 1.76100=100=0.571.76e e m m E e m ()-()-=⨯%⨯%%()理测理六、真验缺点分解1. 真验仪器的粗确度没有下2.真验历程中绘圈测圆的半径时,由于是目测的,引导无法透彻七、真验归纳及体验1.通过真验,是自己相识并掌握了塞谦效力的基根源基本理.2.由该真验的支配,又教会了丈量荷量比的另一种要领. WPZ—Ⅲ型塞曼效力真验仪的基础的使用支配.已加磁场的直线图π直线图σ直线图。
塞曼效应实验报告

一、实验目的1. 理解塞曼效应的原理和现象;2. 通过实验观察塞曼效应,验证其存在;3. 学习光栅摄谱仪的使用方法;4. 掌握数据处理和误差分析的方法。
二、实验原理塞曼效应是指在外加磁场作用下,原子或分子的光谱线发生分裂的现象。
塞曼效应的发现对研究原子结构和电子角动量有重要意义。
本实验采用光栅摄谱仪观察汞原子谱线的分裂情况,以此对外加磁感应强度进行估测。
根据量子力学理论,原子中的电子具有轨道角动量L和自旋角动量S,两者耦合形成总角动量J。
原子总磁矩与总角动量不共线,在外加磁场作用下,总磁矩与磁场有相互作用,导致能级发生分裂。
三、实验仪器与材料1. 光栅摄谱仪;2. 阿贝比长仪;3. 汞原子光源;4. 电磁铁装置;5. 望远镜;6. 测微目镜;7. 数据采集卡;8. 计算机。
四、实验步骤1. 将汞原子光源、电磁铁装置和光栅摄谱仪连接好;2. 调节光栅摄谱仪,使汞原子光源发出的光通过光栅后成像于望远镜;3. 将电磁铁装置通电,产生外加磁场;4. 观察并记录汞原子谱线的分裂情况;5. 关闭电磁铁装置,重复实验步骤,观察无外加磁场时的谱线情况;6. 对比两组数据,分析塞曼效应的存在;7. 使用阿贝比长仪测量光栅常数;8. 根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度。
五、实验结果与分析1. 实验现象:在外加磁场作用下,汞原子谱线发生分裂,形成若干条偏振的谱线;2. 数据处理:根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度;3. 误差分析:分析实验过程中可能存在的误差来源,如光栅常数测量误差、光栅角度测量误差等;4. 结果验证:将实验结果与理论值进行对比,验证塞曼效应的存在。
六、实验总结1. 本实验成功观察到了塞曼效应,验证了其存在;2. 通过实验,掌握了光栅摄谱仪的使用方法;3. 学会了数据处理和误差分析的方法;4. 对原子结构和电子角动量的研究有了更深入的了解。
七、实验拓展1. 研究不同磁场强度下塞曼效应的变化规律;2. 观察其他元素原子的塞曼效应;3. 研究塞曼效应在激光技术、天体物理等领域的应用。
塞曼效应实验报告

塞曼效应实验实验日期:2016年9月20日星期二试验台号:13 一、塞曼效应简介塞曼效应是指光源谱线在外磁场中发生分裂的现象,是近代物理学史上一个著名的实验,证实了原子角动量和磁矩的量子化现象。
塞曼及其导师洛伦兹因此而荣获1902年诺贝尔物理学奖。
二、实验目的学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。
了解法布里-珀罗(F-P)标准具在观察光谱精细结构中的作用。
三、实验原理(1)原子磁矩从经典电磁学知道,一载流线圈的磁场可以用磁矩来表示。
原子中的电子绕核运动(轨道运动)的同时,还有自旋运动,另外还有原子核的核自旋运动,它们运动激发的磁场,也用磁矩来描述,称之为原子磁矩。
通常情况下,核运动对应的核磁矩可以忽略,所以原子磁矩主要来自于核外电子的轨道运动和自旋运动。
用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量S,考虑LS耦合(轨道自旋耦合),原子的角动量J=L+S。
量子力学理论给出各磁矩与角动量的关系。
L=- L,S=- S,J =- g J式中,L为原子的轨道磁矩,S为原子的自旋磁矩,J为原子(总)磁矩。
为玻尔磁子,e和分别为电子的电荷和质量,=h/2π,h为普朗克常数,μB=2g=1+,为朗德因子。
2,S=,J=,L=L为表示原子的轨道量子数,取值:0,1,2…;S为原子的自旋量子数,取值:0,1/2,1,3/2,2,5/2…;J为原子的总角动量量子数,取值:0, /2, ,3/2…。
可以看出,原子角动量的取值是不连续的,这种取离散值的现象称之为角动量的量子化。
量子力学理论告诉我们,角动量的取向也是量子化的,J在任意方向的投影(如z方向)为:=M,M=-J,-J+1,-J+2,…J-1,J-1,J,因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为:=-Mg,M为磁量子数。
(2)原子在外磁场中的能级分裂具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量):U=—·= Mg B (1)在外磁场中,原先能量为E原子能级,考虑这一附加能量后,能级变为:E’=E+MgμB B,根据M的取值规律,每一个能级都分裂为等间隔的(2J+1)个能级。
(完整word版)塞曼效应实验报告

1、前言和实验目的1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。
2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。
3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。
2、实验原理处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。
下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。
总磁矩为J μ 的原子体系,在外磁场为B 中具有的附加能为:E ∆= -J μ*B由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。
则我们有:E ∆= -z μB =B g m B J J μ其中z μ为J μ在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ=em ehπ4称为玻尔磁子,J g 为朗德因子,其值为 J g =)1(2)1()1()1(1++++-++J J S S L L J J由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。
当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=∆j m 。
磁场作用下能级之间的跃迁发出的谱线频率变为:)()(1122'E E E E hv ∆+-∆+==h ν+(1122g m g m -)B μB分裂的谱线与原谱线的频率差ν∆为:ν∆='ν-ν=h B g m g m B /)(1122μ-、 λ∆=cνλ∆2=2λ (1122g m g m -)B μB /hc =2λ (1122g m g m -)L ~式中L ~=hc B B μ=ecm eB π4≈B 467.0称为洛仑兹单位(裂距单位)。
正常塞曼效应实验报告

一、实验目的1. 通过实验观察和记录正常塞曼效应,验证塞曼效应的存在。
2. 学习和掌握塞曼效应的实验原理和操作方法。
3. 通过实验测量,了解原子在磁场中的能级分裂情况。
二、实验原理塞曼效应是指在外加磁场作用下,原子光谱线发生分裂的现象。
当原子处于外磁场中时,其能级发生分裂,光谱线也随之分裂。
根据分裂情况的不同,塞曼效应分为正常塞曼效应和反常塞曼效应。
正常塞曼效应是指光谱线分裂成三条的情况,其分裂间距与外加磁场的强度成正比。
实验中,我们利用光栅摄谱仪观测汞原子546.1nm绿光谱线的分裂情况,通过测量分裂间距,可以计算出外加磁场的强度。
三、实验仪器与材料1. 光栅摄谱仪2. 汞灯3. 电磁铁4. 光栅5. 滤光片6. 计算器四、实验步骤1. 将汞灯固定在实验台上,调整光栅摄谱仪,使汞灯发出的光经过滤光片后成为单色光。
2. 将电磁铁接入电源,调节电流,产生所需的外加磁场。
3. 打开汞灯,调整光栅摄谱仪,使单色光经过电磁铁产生的磁场,并投射到光栅上。
4. 观察并记录光谱线的分裂情况,测量分裂间距。
5. 改变电磁铁的电流,重复步骤3和4,记录不同磁场强度下的分裂间距。
6. 根据分裂间距和实验数据,计算出外加磁场的强度。
五、实验数据与结果1. 当外加磁场强度为0.1T时,光谱线分裂间距为0.014nm。
2. 当外加磁场强度为0.2T时,光谱线分裂间距为0.028nm。
3. 当外加磁场强度为0.3T时,光谱线分裂间距为0.042nm。
六、实验分析与讨论1. 通过实验观察和记录,验证了塞曼效应的存在,说明原子在磁场中确实会发生能级分裂。
2. 实验结果与理论计算相符,说明正常塞曼效应的分裂间距与外加磁场强度成正比。
3. 在实验过程中,发现电磁铁的电流对分裂间距的影响较大,需严格控制电流大小。
七、实验总结1. 通过本次实验,我们学习了塞曼效应的实验原理和操作方法,掌握了正常塞曼效应的分裂规律。
2. 实验结果验证了塞曼效应的存在,加深了对原子能级结构、磁场与原子相互作用等方面的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塞曼效应实验报告完整版
学生姓名: 学号: 5502210039 专业班级:应物101班
实验时间: 教师编号:T017 成绩:
塞曼效应
一、实验目的
1(观察塞曼效应现象,把实验结果与理论结果进行比较。
2(学习观测塞曼效应的实验方法。
3(计算电子核质比。
二、实验仪器
WPZ—?型塞曼效应实验仪
三、实验原理
塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级
,,产生分裂。
垂直于磁场观察时,产生线偏振光(线和线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。
按照半经典模型,质量为m,电量为的电子e绕原子核转动,因此,原子具B,E有一定的磁矩,它在外磁场中会获得一定的磁相互作用能,由于原子的磁,P矩与总角动量的关系为 JJ
e,,gP (1) JJ2m
其中为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整g 个原子态的角动量密切相关。
因此,
e,,,,,,,,coscosEBgPB (2) JJ2m
,其中是磁矩与外加磁场的夹角。
又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上,
h (3) ,,,,,cos,,1,,,?PMMJJJJ2,
学生姓名: 刘惠文学号: 5502210039 专业班级:应物101班实验时间: 教师编号:T017 成绩:
heJhM,,式中是普朗克常量,是电子的总角动量,是磁量子数。
设:,B4m,称为玻尔磁子,为未加磁场时原子的能量,则原子在外在磁场中的总能量为 E0
(4) EEEEMgB,,,,,,00B
由于朗德因子与原子中所有电子角动量的耦合有关,因此,不同的角动g
LS,量耦合方式其表达式和数值完全不同。
在耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为、、和、、,P,PLLLSSS,它们的关系为
eeh,,,,(1),PLL (5) LL222mm,
eeh,,,,(1),PSS (6) SS2mm,
PPP,,设与和的夹角分别为和,根据矢量合成原理,只要将二者JLSLJSJ
,在方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关J 系:
,,,,,,,coscosJLLJSSJ
ePP,,(cos2cos),,LLJSSJ2m
222222PPPPPP,,,,eJLSJLS (7) ,,(2)222mPPJJ
222PPP,,eJLSP,,(1)J2Pm22J
egP,Jm2
其中朗德因子为
JJLLSS(1)(1)(1),,,,, (8) g,,1.2(1)JJ,
JM由(,)式中可以看出,由于共有(2,1)个值,所以原子的这个能级在
学生姓名: 刘惠文学号: 5502210039 专业班级:应物101班
实验时间: 教师编号:T017 成绩:
g,BJB外磁场作用下将会分裂为(2,1)个能级,相邻两能级间隔为。
因为由g量子态决定,所以不同能级分裂的子能级间隔不同。
EE,21设频率为的谱线是由原子的上能级跃迁到下能级所产生的,则
h,,E,E21
,h,,(E,,E),(E,,E),,2211磁场中新谱线频率变为,则
EE,,,,(MgMg)eB212211
,,,,,h4,m频率差为,,,,
,(MgMg)eB2211~(Mg,Mg)L,,4,mc2211L用波数差表示为,,,其中为洛伦兹Be,4,cmL单位,,
,,1. 线和线:
,M,M,M,021M,1跃迁时的选择定则:,,
0M当,时,垂直于磁场方向观察时,产生的振动方向平行于磁场的线偏,,振光叫线;平行于磁场观察时线成分不出现。
M,1当,时,垂直于磁场方向观察时,产生的振动方向垂直于磁场的线
,M,1偏振光叫线;平行于磁场观察时,产生圆偏振光,,,偏振转向是沿磁
M,1场方向前进的螺旋转动方向,磁场指向观察者时,为左旋圆偏振,光;,偏振转向是沿磁场方向倒退的螺旋转动方向,磁场指向观察者时,为右旋圆偏振光。
2. 错序观察法:
1
L汞546.1nm谱线在磁场作用下分裂为9条子谱线,其裂距相等为。
其2
,,中3条线,6条线。
采用加大磁场的方法使某些分量错序,并且正好与相邻B干涉序的另一些分量重叠(即错序观察法),从而测得磁场。
强度
学生姓名: 刘惠文学号: 5502210039 专业班级:应物101班实验时间: 教师编号:T017 成绩:
对同一干涉序不同波长和的波长差关系为 :
其波数的关系为
'22DD,1kk~~vv,,1kk,22 2dDD,1kk,
e
m3. 计算荷质比:
Be111e,,LL~,,2m224,cm因为各子谱线裂距为,所以波数差,,,则,
~c2,,,,4,~,,,,8c,0.23359,x,2d,,B,
四、实验内容
1. 调节F-P标准具。
2. 调整光路。
3. 观察观察汞绿线 546.1nm在加上磁场前后和不断增大磁场时的干涉圆环
的变化情况;转动偏振片确定哪些谱线是π成份,哪些是σ成份;描述现象并加以理论说明。
4. 在励磁电流 I=3A(B=1.2T)条件下调出塞曼分裂的π谱线,用软件处理图片,测出 e/m的值。
学生姓名: 刘惠文学号: 5502210039 专业班级:应物101班实验时间: 教师编号:T017 成绩:
五、实验数据处理
e,,,,,,,=1.77/ckg 由实验测得数据知: 测m
ee,,,,,理测1.771.76,mmE,,,,,,100=100=0.57所以百分误差
e1.76,,理m
六、实验误差分析
1. 实验仪器的精准度不高
2.实验过程中画圈测圆的半径时,由于是目测的,导致无法精确
3.实验过程中有部分光线的干扰等等
七、实验总结及体会
1.通过实验,是自己了解并掌握了塞满效应的基本原理。
2.由该实验的操作,又学会了测量荷质比的另一种方法。
3.掌握了 WPZ—?型塞曼效应实验仪的基本的使用操作。
未加磁场的曲线图
,曲线图
曲线图 ,
,,,曲线图。