江西省四校2012-2013学年高一第三次月考数学试题

合集下载

2025届江西省南昌三校高三第三次模拟考试数学试卷含解析

2025届江西省南昌三校高三第三次模拟考试数学试卷含解析

2025届江西省南昌三校高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3162.函数的图象可能是下面的图象( )A .B .C .D .3.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( ) A .120种B .240种C .480种D .600种4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤5.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =,则实数a 的值可以为( )A .2B .1C .0D .2-6.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -7.函数2|sin |2()61x f x x=+ )A .B .C .D .8.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤9.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 10.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .625B .627C 63-D .962-11.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .3212.()6321x x x ⎫-⎪⎭的展开式中的常数项为( ) A .-60B .240C .-80D .180二、填空题:本题共4小题,每小题5分,共20分。

2012年秋四校联考期中考试数学试题2

2012年秋四校联考期中考试数学试题2

2012秋季九年级第五次月考数学试题一、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共21分) 1、一元二次方程032=+x x 的解是( )A .3-=xB .3,021==x xC .3,021-==x xD .3=x 2、下列计算正确的是( )3、将抛物线y=3x 向左平移2个单位,再向下平移1个单位,所得抛物线为( ).(A)y=3(x+2)2—1 (B)y=3(x-2)2+1 (C)y=3(x-2)2—1 (D)y=3(x+2)2+l 4a 3=- ,则 a 的范围是( )A 、a ≥3B 、a>3C 、a ≤3 D 、a<35、△ABC 的内切圆和外接圆是两个同心圆,那么△ABC 一定是()A 、等腰三角形B 、等边三角形C 、直角三角形D 、钝角三角形 6、如上图,⊙O 的半径为2,弦AB=C 在弦AB 上,且AC=AB41,则OC 的长为( )7、抛物线y=(k -2)2x 2+(2k +1)x +1与x 轴有两个交点,则k 的取值范围是( )(A) k >34且k ≠2 (B)k ≥34且k ≠2 (C) k >43且k ≠2 (D)k ≥43且k ≠2 8、如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图像大致是( )二、填空题(共8道题,每小题3分,共24分) 9、函数13++=x x y 的自变量x 的取值范围是__________________. 10、如图,在⊙0中,CD ⊥AB 于E ,若50B ∠=︒,则A ∠度数为 11、已知x 1、x 2是方程2x 2+14x -16=0的两实数根,那么121123x x +=-的值为 12、已知圆锥的底面半径为2cm ,其母线长为3cm ,则它的侧面积为2cm 。

江西师范大学附属中学2023-2024学年高二下学期3月月考数学试题参考答案

江西师范大学附属中学2023-2024学年高二下学期3月月考数学试题参考答案

第一次月考一、单选题1. 等差数列{}n a 中,1239a a a ++=,4516a a +=,则6a =( ) A. 9 B. 10 C. 11 D. 12【答案】C【解析】因为1231339a a a a d ++=+=,4512716+=+=a a a d , 所以可解得1a 1,d 2,所以61511011a a d =+=+=,故选:C2.在正项等比数列{}n a 中,n S 为其前n 项和,若1010S =,2030S =,则30S 的值为( ) A .50 B .70 C .90 D .110【答案】B【解析】由等比数列的片段和性质得10S ,1200S S −,3020S S −成等比数列 所以()()22010103020S S S S S −=− 所以()()23030101030S −=−, 解得3070S =. 故选:B.3.用数学归纳法证明“1111112331n n n n ++++>++++”时,假设n k =时命题成立,则当1n k =+时,左端增加的项为( ) A .134k + B .11341k k −++ C .111323334k k k +++++ D .11232343(1)k k k +−+++ 131k +++111+31323k k k ++++111+31331111233123k k k k k k k ⎫++−⎪+++⎭⎫+++⎪++++⎭故选:D4.已知数列{}n a 为等差数列,首项10a >,若101210131a a <−,则使得0n S >的n 的最大值为( ) A .2022 B .2023C .2024D .20255. 已知数列{}n a 为正项递增等比数列,123212a a a ++=,12311176a a a ++=,则该等比数列的公比q =( )A. 2B. 3C. 4D. 5【答案】A【解析】由题意10,1a q >>, 由123212a a a ++=,1312321231322111716a a a a a a a a a a a a +++++==+=, 得2221726a =,所以23a =(23a =−舍去),所以132********q a a q =−=++=, 整理得22520q q −+=,解得2q (12q =舍去), 所以2q.故选:A.6.近几年,我国在电动汽车领域有了长足的发展,电动汽车的核心技术是动力总成,而动力总成的核心技术是电机和控制器,我国永磁电机的技术已处于国际领先水平.某公司计划今年年初用196万元引进一条永磁电机生产线,第一年需要安装、人工等费用24万元,从第二年起,包括人工、维修等费用每年所需费用比上一年增加8万元,该生产线每年年产值保持在100万元.则引进该生产线后总盈利的最大值为( ) A .204万元 B .220万元C .304万元D .320万元7. 已知数列{}n a 的前n 项和为n S ,且满足12cos 3n n n a a a ++++=,11a =,则2023S =( ) A. 0 B.12C. lD. 32【答案】C【解析】解:()()()20231234567202120222023S a a a a a a a a a a =++++++++++2π5π1coscos 33=++++2018π2021πcoscos33+ 2π5π1337cos cos 133⎛⎫=+⨯+= ⎪⎝⎭.故选:C .8.已知数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且111,1,1n n n n a S n a b a +=+==+,则使得n T M <恒成立的实数M 的最小值为( )A .1B .32C .76D .2【答案】C【解析】数列{}n a 中,11a =,1n n a S n +=+,当2n ≥时,11n n a S n −=+−,两式相减得11n n n a a a +−=+,二、多选题9.在等比数列{}n a 中,11a =,427a =,则( ) A .{}1n n a a +的公比为9 B .{}31log n a +的前20项和为210C .{}n a 的前20项积为2003D .()111()231nn k k k a a −+=+=−∑2020++=,n a 的前201919033⨯⨯=,因为()1313n n a −++}1n n a a ++的前)13213n −=−10.下列命题中正确的是( )A .已知随机变量16,3XB ⎛⎫⎪⎝⎭,则()3212D X += B .若随机事件A ,B 满足:()12P A =,()23P B =,()56P A B ⋃=,则事件A 与B 相互独立C .若事件A 与B 相互独立,且()()01P A P B <<,则()()P A B P A =D .若残差平方和越大,则回归模型对一组数据()11,x y ,()22,x y ,…,(),n n x y 的拟合效果越好11. 已知数列1C :0,2,0,2,0,现在对该数列进行一种变换,规则f :每个0都变为“2,0,2”,每个2都变为“0,2,0”,得到一个新数列,记数列()1k k C f C +=,1,2,3,k =,且n C 的所有项的和为n S ,则以下判断正确的是( )A. n C 的项数为153n −⋅B. 4136S =C. 5C 中0的个数为203D. 1531n n S −=⋅−【答案】ABC【解析】设数列{}n C 的项数为一个数列{}n a ,因为1C 中有5项,即15a =, 根据题意:在f 作用下,每个0都变为“2,0,2”,每个2都变为“0,2,0”, 所以有()13Nn n a a n *+=∈,由此可知数列{}n a 为首相15a =,公比3q =的等比数列, 所以n C 的项数为153n n a −=⋅,故A 正确;根据变换规则,若数列的各项中,2与0的个数相同, 则与之相邻的下一个数列中2与0的个数也相同;若2比0多n 个,则与之相邻的下一个数列中2比0的个数少n 个, 若2比0少n 个,则与之相邻的下一个数列中2比0的个数多n 个,因为1C 中有5项,其中2个2,3个0,2比0少1个, 所以2C 的15项中,2比0的个数多1个,以此类推,若n 为奇数,则数列的各项中2比0少1个, 若n 为偶数,则数列的各项中2比0多1个,4C 中4n =,项数为353135⋅=个,n 为偶数,所以2的个数为1351682+=, 所以4682136S =⨯=,所以B 正确;5C 中共有453405⋅=项,其中5n =为奇数,所以数列中有40512032+=个0,所以C 正确; D 选项,n S 的值与n 的奇偶有关()()11531531n n n n S n −−⎧⋅−⎪=⎨⋅+⎪⎩为奇数为偶数,所以D 错误. 故选:ABC.【点睛】方法点睛:学生在理解相关新概念、新法则 (公式)之后,运用学过的知识,结合已掌握的技能,通过推理、运算等解决问题.在新环境下研究“旧”性质.主要是将新性质应用在“旧”性质上,创造性地证明更新的性质,落脚点仍然是数列求通项或求和. 三、填空题12.已知等差数列{}n a 中,24a =,616a =,若在数列{}n a 每相邻两项之间插入三个数,使得新数列也是一个等差数列,则新数列的第41项为___. 【答案】31【解析】设等差数列{}n a 的公差为d ,则62123624a a d −===−, 在数列{}n a 每相邻两项之间插入三个数,则新的等差数列{}n b 的公差为344d =, 故新数列的首项为431−=,故通项公式为()33111444n b n n =+−=+, 故4131413144b =⨯+=. 故答案为:3113.箱子中装有5个大小相同的小球,其中3个红球、2个白球.从中随机抽出2个球,在已知抽到红球的条件下,则2个球都是红球的概率为 .14.已知n S 是各项均为正实数的数列{}n a 的前n 项和,221111,60n n n n a a a a a ++=−−=,若*,2270n n n n S a ma ∀∈−+≥N ,则实数m 的取值范围是 .(2)记n n n b a c ⋅=,n T 为n c 的前n 项和,求n T .【解】(1)解:由已知可得32112127a b a b d q d q =++=++=+①, ()()22231122212a b a d b q d q −=+−=+−=②,联立①②,得()()26320q q q q +−=+−=,解得3q =−或2q,2q,代入①式可得在曲线()y f x =上(1)3f '⇒−=,21a a ++−(1n ⋅++=,)1+;()(1nn −−⋅,)()(1212233445212222k k k k k ⎡+++⋅⋅−⋅+⋅−⋅++−⋅−⋅+⎣[]12224222k +⋅−⋅−⋅−−⋅()()222224221k k k k k k k k =+−+++=+−+=,即T 2n =n 2.18.已知数列{}n a 的前 n 项和为n S ,()*∈−=N n S a n n 2.(1)求数列{}n a 的通项公式; (2)是否存在实数λ ,使数列⎭⎬⎫⎩⎨⎧++n n n S 2λλ为等差数列?若存在, 求出λ的值; 若不存在,请说明理由; (3)已知数列{}n b ,()()1121++=+−n n nn a a b ,其前 n 项和为n T ,求使得442m T m n<<−对所有*N n ∈都成立的自然数m 的值.的一动点,PAB 面积的最大值为C 交于,D 两点,记ODE 的面积为,DN EN 的斜率分别为12,k k .联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x 可得()234m y +所以()()222Δ3636341441m m m =++=+且12122269,3434m y y y y m m +=−=−++, ODES=1,t t =≥2631t t =+试卷第11页,共11页。

江西省部分学校2024-2025学年高二上学期9月月考数学试题

江西省部分学校2024-2025学年高二上学期9月月考数学试题

江西省部分学校2024-2025学年高二上学期9月月考数学试题一、单选题 1.2024︒角是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.设扇形的圆心角为α,半径为r ,弧长为l ,而积为S ,周长为L ,则下列说法不正确的是( )A .若α,r 确定,则,L S 唯一确定B .若α,l 确定,则L ,S 唯一确定C .若,S L 确定,则,r α唯一确定D .若,S l 确定,则,r α唯一确定3.“sin θ是“π4θ=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.若π1cos 22α⎛⎫+= ⎪⎝⎭,则sin α=( )A .12B .12-C D .5.已知函数()()sin πf x x =+,则( ) A .()f x 在π0,2⎛⎫⎪⎝⎭上单调递增B .曲线()y f x =关于直线π2x =-对称C .曲线()y f x =关于点π,02⎛⎫⎪⎝⎭对称D .曲线()y f x =关于直线π4x =对称6.已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为( )A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,17.已知3sin7a π=,3cos 7b π=,3tan 7c π=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .<<c a b8.如图,为测量旗杆的高AB ,在水平线AC 上选取相距10m 的两点,D E ,用两个垂直于水平面且高度均为2m 的测量标杆观测旗杆的顶点B ,记,D E 处测量标杆的上端点分别为,F G ,直线,BF BG 与水平线AC 分别交于点,H C ,且测得,DH EC 的长分别为3m,5m ,则旗杆的高AB 为( )A .12mB .13mC .14mD .15m二、多选题9.下列说法中,正确的是( ) A .330︒是第四象限角 B .锐角一定是第一象限角 C .第二象限角大于第一象限的角 D .若角α为第二象限角,那么2α为第一象限角10.在ABC V 中,下列等式恒成立的是( )A .sin sin()0ABC -+= B .cos cos()0A B C -+= C .cossin 022A B C +-= D .coscos 022A B C+-=11.已知函数()π214f x x ⎛⎫+- ⎪⎝⎭,给出的下列四个选项中,正确的是( )A .函数()f x 的最小正周期是πB .函数()f x 在区间π,85π8⎡⎤⎢⎥⎣⎦上是减函数C .函数()f x 的图象关于点π,08⎛⎫- ⎪⎝⎭对称D .函数()f x 的图象可由函数2y x =的图象向左平移π8个单位,再向下平移1个单位得到三、填空题12.砖雕是我国古建筑雕刻中的重要艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图所示,一扇环形砖雕,可视为将扇形OCD 截去同心扇形OAB 所得图形,已知0.1m OA =,0.4m AD =,125AOB ∠=︒,则该扇环形砖雕的面积为2m .13.函数()()ln 2cos 1f x x =-的定义域是. 14.函数πtan 34x y ⎛⎫=+ ⎪⎝⎭的最小正周期为.四、解答题15.已知α角的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(4,3)P -. (1)求sin ,cos ,tan ααα;(2)求cos 2cos()2()sin()2cos()f παπααπαα⎛⎫+-+ ⎪⎝⎭=-+-的值. 16.已知函数()πtan 23x f x ⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的定义域; (2)求函数()f x 的单调区间; (3)求不等式()f x ≤17.已知函数()()2sin cos cos 05f x x x x ωωω=-<<满足π04f ⎛⎫= ⎪⎝⎭.(1)求ω;(2)求()f x 在区间π,04⎡⎤-⎢⎥⎣⎦上的最小值.18.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象先向右平移π4个单位,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象,求()g x 在ππ,126⎡⎤-⎢⎥⎣⎦上的最大值和最小值;19.风力发电的原理是利用风力带动风机叶片旋转,当风吹向叶片时驱动风轮转动,风能转化成动能,进而来推动发电机发电.如图,风机由一座塔和三个叶片组成,每两个叶片之间的夹角均为2π3,现有一座风机,叶片旋转轴离地面100米,叶片长40米.叶片按照逆时针方向匀速转动,并且每5秒旋转一圈.风机叶片端点P 从离地面最低位置开始,转动t 秒后离地面的距离为h 米,在转动一周的过程中,h 关于t 的函数解析式为()()sin h t A t B ωϕ=++(0A >,0ω>,π<ϕ).(1)求函数()h t 的解析式;(2)当风机叶片端点P 从离地面最低位置开始,在转动一周的过程中,求点P 离地面的高度不低于80米的时长.。

江西省南昌市第二中学2023-2024学年高一上学期月考数学试题(一)

江西省南昌市第二中学2023-2024学年高一上学期月考数学试题(一)

教队伍的职称只有小学中级、小学高级、中学中级、中学高级,无论是否把我计算在内,
以上条件都成立"由队长的叙述可以推测出他的职称是
.
四、解答题
17.已知集合 A x 2 x 8 , B x 1 x 6 , C x x a ,全集U R . (1)求 A B ; ðU A B ;
(2)如果 A C ,求 a 的取值范围.
所含的纯农药药液不超过桶的容积的 20% ,则桶的容积可能为( )
A.7
B.9
C.11
D.13
11.下列命题正确的是( ) A.若 0 a b 3, 2 a b 1,则 1 2a b 4
B.命题“ a 1 , a2 1 0 ”的否定是“ a0 1, a02 1 0 ”
C.若 ac2 bc2 ,则 a b
b
1
.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看
看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式 ab a b (a 0, b 0) ,当且仅当 a b 时等号成立,它是解 2
决最值问题的有力工具.
例如:在 x 0 的条件下,当 x 为何值时, x 1 有最小值,最小值是多少? x
m,对于任意
x,y,使得
m
x
2y
恒成立,则 m 的最大值为
.
16.长沙市为了支援边远山区的教育事业.组织了一支由 13 名教师组成的队伍下乡支教,
记者采访队长时询问这个团队的构成情况,队长回答:“有中学高级教师,中学教师不
试卷第 2页,共 4页
多于小学教师,小学高级教师少于中学中级教师,小学中级教师少于小学高级教师,支

2012年江西高考数学理科试卷(带详解)

2012年江西高考数学理科试卷(带详解)

2012年普通高等学校招生全国统一考试(江西卷)数学(理科)第I 卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合11A =-{,}02B ={,},,则集合,,Z Z x y x A y B =+∈∈{}中的元素的个数为( )A .5 B. 4 C. 3 D. 2 【测量目标】集合的含义.【考查方式】考查了集合的互异性. 【难易程度】容易 【参考答案】C【试题解析】集合A 、B 中元素两两相加得到1-,1,1,3,由集合的互异性可知集合 ,,Z Z x y x A y B =+∈∈{}中的元素的个数为3. 2.下列函数中,与函y =定义域相同的函数为 ( ) A .1sin y x =B. ln x y x =C. 2e y x = D. sin x x【测量目标】函数的定义域.【考查方式】考查了有关对数函数、指数函数、分式函数的定义域. 【难易程度】容易 【参考答案】D 【试题解析】函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为 ()(),00,-∞+∞.故选D.3.若函数21(1)()lg (1)x x f x x x ⎧+=⎨>⎩,则((10))f f = ( )A. lg101B.2C. 1D. 0 【测量目标】分段函数.【考查方式】考查分段函数的求值. 【难易程度】容易 【参考答案】B【试题解析】101>,(10)lg101f ∴==.2((10))(1)112f f f ∴==+=.4.若1tan 4tan θθ+=,则sin 2θ= ( )A .15 B.14 C. 13 D. 12【测量目标】二倍角.【考查方式】考查三角恒等变形式以及转化与化归的数学思想. 【难易程度】容易 【参考答案】D【试题解析】221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===, 1sin 22θ∴=. 5.下列命题中,假命题为 ( ) A .存在四边相等的四边形不.是正方形. B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数. C .若,x y ∈R ,且2x y +>则,x y 至少有一个大于1.D .对于任意01,C C n n n ∈++N …C nn +都是偶数.【测量目标】四种命题及其之间的关系.【考查方式】以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等. 【难易程度】容易 【参考答案】B【试题解析】(验证法)对于B 项,令121i,9i()z m z m m =-+=-∈R ,显然128z z +=∈R ,但12,z z 不互为共轭复数,故B 为假命题,应选B.6.观察下列各式:223344551,3,4,7,11a b a b a b a b a b +=+=+=+=+=,…,则1010a b += ( )A .28B .76C .123D .199 【测量目标】合情推理.【考查方式】考查归纳推理的思想方法. 【难易程度】中等 【参考答案】C【试题解析】观察各等式的右边,它们分别为1,3,4,7,11,…,发现从第3项开始,每一 项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…,故1010123a b +=.7.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则222PA PB PC+= ( )A .2B .4C .5D .10【测量目标】三种距离公式.【考查方式】主要考查两点间的距离公式,以及坐标法这一重要的解题方法和数形结合的数学思想.【难易程度】中等 【参考答案】D【试题解析】取特殊的等腰直角三角形,令4AC BC ==,42AB =,1222CD AB ==122PC PD CD ===,22PA PB AD PD ==+()()2222210=+=2221010102PA PB PC++∴==. 8.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植 年产量/亩年种植成本/亩每吨售价黄瓜 4吨 1.2万元 0.55万元 韭菜6吨 0.9万元 0.3万元为使一年的种植总利润(总利润总销售收入总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30,20 C .20,30 D .0,50 【测量目标】二元线性规划的实际应用.【考查方式】考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及 实践能力.【难易程度】较难 【参考答案】B【试题解析】设黄瓜和韭菜的种植面积分别为,x y 亩,总利润为z 万元,则目标函数为()()0.554 1.20.360.90.9z x x y y x y =⨯-+⨯-=+.(步骤1)线性约束条件为50,1.20.954,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩ 即50,43180,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩(步骤2)做出不等式组50,43180,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩表示的可行域,易求得点()0,50A ,()30,20B ,()0,45C .(步骤3)平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).(步骤4)故选B.第8题图9.样本(1x ,2x ,…,)n x 的平均数为x ,样本(1y ,2y ,…,)m y 的平均数为()y x y ≠,若样本(1x ,2x ,…,n x ,1y ,2y ,…,)m y 的平均数()1z ax a y =+-,其中102a <<,则,n m 的大小关系为 ( )A .n m <B .n m >C .n m =D .不能确定 【测量目标】用样本数字特征估计总体数字特征.【考查方式】考查统计中的平均数,作差法比较大小以及整体思想. 【难易程度】较难 【参考答案】A【试题解析】由统计学知识,可得12x x ++…n x nx +=,12y y ++…m y my +=,12x x ++…n x ++12y y ++…()()()1m y m n z m n ax a y ⎡⎤+=+=++-⎣⎦()()()1m n ax m n a y =+++-,()()()1nx my m n ax m n a y ∴+=+++-.(步骤1)()()(),1.n m n a m m n a =+⎧⎪∴⎨=+-⎪⎩故()()()()121n m m n a a m n a -=+--=+-⎡⎤⎣⎦.(步骤2)10,2102a a <<∴-<.0n m ∴-<.即n m <.(步骤3)10.如图,已知正四棱锥S —ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01)SE x x =<<,截面下面部分的体积为()V x ,则函数()y V x =的图像大致为 ( )第10题图A B C D第10题图【测量目标】函数图象的判断.【考查方式】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法. 【难易程度】较难 【参考答案】A【试题解析】(定性法)当102x <<时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越快;当112x <时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A 图象符合.故选A. 第Ⅱ卷注:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题5分,共20分. 11.计算定积分()121sin xx dx -+=⎰___________【测量目标】微积分基本定理求定积分.【考查方式】考查有关多项式函数,三角函数定积分的应用. 【难易程度】中等 【参考答案】23【试题解析】()31211111112sin cos cos1cos1333333x x x dx x --⎛⎫-⎛⎫⎛⎫+=-=---=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰. 12.设数列{}n a ,{}n b 都是等差数列,若117a b +=,3321a b +=,则55a b += ___________ 【测量目标】等差数列的性质.【考查方式】考查等差中项的性质及整体代换的数学思想. 【难易程度】中等【参考答案】35 【试题解析】解法一:数列{}n a ,{}n b 都是等差数列,∴数列{}n n a b +也是等差数列.故由等差中项的性质,得551133()()2()a b a b a b +++=+,即55()7221a b ++=⨯,解得5535a b +=.解法二:设数列{}n a ,{}n b 的公差分别为1d ,2d ,()()()()()3311121112122227221a b a d b d a b d d d d +=+++=+++=++=,127d d ∴+=,()()553312235a b a b d d ∴+=+++=.13.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是1F ,2F .若1AF ,12F F ,1F B 成等比数列,则此椭圆的离心率为_______________.【测量目标】椭圆的简单几何性质与等比数列的性质.【考查方式】着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想. 【难易程度】中等 【参考答案】5 【试题解析】利用椭圆及等比数列的性质解题.由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故()()()22a c a c c -+=,即2224a c c -=,则225a c =.故5c e a ==.即椭圆的离心率为5. 14.下图为某算法的程序框图,则程序运行后输出的结果是______________.第14题图【测量目标】循环结构的程序框图.【考查方式】考查算法程序框图的应用以及运算求解的能力. 【难易程度】容易 【参考答案】3【试题解析】由程序框图可知: 第一次:π0,1,sin1sin 002T k ===>=成立,1,1,2,26a T T a k ==+==<,满足判断条件,继续循环; (步骤1) 第二次:πsin π0sin12=>=不成立,0,1,3,36a T T a k ==+==<,满足判断条件,继续循环; (步骤2) 第三次: 3πsin1sin π02=->=不成立,0,1,4,46a T T a k ==+==<, 满足判断条件,继续循环; (步骤3) 第四次: 3πsin 2π0sin 12=>=-成立,1,2,5a T T a k ==+==, 满足判断条件,继续循环; (步骤4)第五次: 5πsin1sin 2π02=>=成立,1,2,666a T T a k ==+==<,不成立,不满足判断条件,跳出循环,故输出T 的值3. (步骤5)三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分. 15.(1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为2220x y x +-=,以原点为 极点,x 轴的正半轴为极轴建立积坐标系,则曲线C 的极坐标方程为___________. 【测量目标】极坐标方程与直角坐标方程的互化.【考查方式】考查极坐标方程与直角坐标方程的互化及转化与化归的数学思想. 【难易程度】中等 【参考答案】2cos ρθ=【试题解析】由极坐标方程与直角坐标方程的互化公式cos ,sin ,x y ρθρθ=⎧⎨=⎩得22222cos 0x y x ρρθ+-=-=,又0ρ>,所以2cos ρθ=.15.(2)(不等式选做题)在实数范围内,不等式21216x x -++的解集为___________.【测量目标】绝对值不等式的解法.【考查方式】考查绝对值不等式的解法以及转化与划归、分类讨论的数学思想. 【难易程度】中等 【参考答案】3322x x⎧⎫-⎨⎬⎭⎩【试题解析】原不等式可化为1,212216,x x x ⎧-⎪⎨⎪---⎩①或11,2221216x x x ⎧-<<⎪⎨⎪---⎩②或 1,221216,x x x ⎧⎪⎨⎪-++⎩③由①得3122x--;由②得1122x -<<;由③得1322x, 综上,得原不等式的解集为3322x x⎧⎫-⎨⎬⎭⎩.四.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知数列{}n a 的前n 项和21()2n S n kn k +=-+∈Ν,且n S 的最大值为8. (1)确定常数k ,求n a ; (2)求数列922n na -⎧⎫⎨⎬⎩⎭的前n 项和n T . 【测量目标】错位相减法求和.【考查方式】考查了数列的通项公式n a 与前n 项和n S 之间的关系以及错位相减法求和的应用能力.【难易程度】中等【试题解析】(1)当n k +=∈Ν时,212n S n kn =-+取最大值,即22211822k k k =-+=,故4k =,从而19(2)2n n n a S S n n -=-=-,(步骤1)又1172a S ==,92n a n ∴=-. (步骤2) (2)19222n n n n a n b --==,12n T b b =++...223122n b +=+++ (2)1122n n n n---++, 212111112221 (44222222)n n n n n n n n n n n T T T -----+∴=-=++++-=--=-.(步骤3)17.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .已知π4A =, ππsin sin 44b C c B a ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭.(1)求证: π2B C -=; (2)若a =ABC △的面积.【测量目标】诱导公式与正弦定理.【考查方式】给出三角形的三条边长及一个角,求证另外两角差为定值,并求三角形的面积. 【难易程度】中等 【试题解析】(1)由ππsin sin 44b C c B a ⎛⎫⎛⎫+-+=⎪ ⎪⎝⎭⎝⎭及正弦定理得: ππsin sin sin sin sin 44B C C B A ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,(步骤1)即22222sin cos sin sin cos sin B C C C B B ⎛⎫⎛⎫+-+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 整理得:sin cos cos sin 1B C B C -=,()sin 1B C ∴-=,(步骤2)又0B <,3π4C <,π2B C ∴-=.(步骤3) (2) 由(1)及3π4B C +=可得5π8B =,π8C =,又π4A =,2a =,sin 5π2sin sin 8a B b A ∴==,sin π2sin sin 8a C c A ==,(步骤4)15ππππ2π1sin 2sin sin 2sin cos sin 28888242ABC S bc A =====△. (步骤5)18.(本题满分12分)如图,从()11,0,0A ,()22,0,0A ,()10,1,0B ,()20,2,0B ,()10,0,1C ,()20,0,2C 这6 个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积0V =).(1)求0V =的概率;(2)求V 的分布列及数学期望.第18题图【测量目标】几何概型.【考查方式】给出样本数据,求概率及其分布列和数学期望. 【难易程度】容易【试题解析】(1)从6个点中随机地选取3个点共有36C 20=种选法,选取的3个点与原点O在同一个平面上的选法有1334C C 12=种,因此0V =的概率()1230205P V ===.(步骤1) (2)V 的所有可能值为0,16,13,2343,因此V 的分布列为: V16 13 2343 P35120320320120(步骤2)由V 的分布列可得:31113234190562032032032040EV =⨯+⨯+⨯+⨯+⨯=(步骤3) 19.(本题满分12分)在三棱柱ABC —111A B C 中,已知15AB AC AA ===,4BC =,1A 在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱1AA 上存在一点E ,使得OE ⊥平面11BB C C ,并求出AE 的长; (2)求平面11A B C 与平面11BB C C 夹角的余弦值.第19题图【测量目标】线面垂直的判定,二面角.【考查方式】给出三棱柱的点、线、面之间的位置关系,求证线面垂直及二面角的余弦值. 【难易程度】较难【试题解析】(1)证明:连接AO ,在1AOA △中,作1OE AA ⊥于点E ,(步骤1)1AA ∥1BB ,1OE BB ∴⊥,(步骤2) 1A O ⊥平面ABC ,1A O BC ∴⊥,(步骤3)AB AC =,OB OC =,∴AO BC ⊥,(步骤4) BC ∴⊥平面1AA O ,BC OE ∴⊥,(步骤5) OE ∴⊥平面11BB C C , (步骤6)又221AO AB BO =-=,15AA =,2215AO AE AA ∴==.(步骤7) (2)如图所示,分别以OA ,OB ,1OA 所在的直线为x ,y ,z 轴建立空间直角坐标系,则()()()()11,0,0,0,2,0,0,0,2,0,2,0A C A B -,(步骤8)由(1)可知115AE AA =得点E 的坐标为42,0,55⎛⎫⎪⎝⎭,由(1)可知平面11BB C C 的法向量是 42,0,55⎛⎫⎪⎝⎭,设平面11A B C 的法向量(),,x y z =n ,(步骤9) 由100AB A C ⎧⨯=⎪⎨⨯=⎪⎩n n ,得200x y y z -+=⎧⎨+=⎩,(步骤10)令1y =,得2,1x z ==-,即()2,1,1=-n (步骤11)30cos ,OE OE OE ⨯∴==⨯n n n(步骤12) 即平面11A B C 与平面11BB C C 夹角的余弦值是3010.(步骤13)第19题图20. (本题满分13分)已知三点()()()0,0,2,1,2,1O A B -,曲线C 上任意一点(),M x y 满足()2MA MB OM OA OB +=++.(1) 求曲线C 的方程;(2)动点()()000,22Q x y x -<<在曲线C 上,曲线C 在点Q 处的切线为l :20024x x y x =-,是否存在定点()()0,0P t t <,使得l 与PA ,PB 都相交,交点分别为D ,E ,且QAB △与PDE △的面积之比是常数?若存在,求t 的值.若不存在,说明理由.【测量目标】平面向量的坐标运算,曲线与方程.【考查方式】给出三点坐标及曲线C 上的点所满足的等式,求曲线方程及动点问题的应用. 【难易程度】较难【试题解析】(1)依题意可得()()2,1,2,1MA x y MB x y =---=--,(步骤1) 由已知得()()()()()22222,,0,22MA MB x y OM OA OB x y y+=-+-⨯+=⨯=,22y =+,(步骤2)化简得曲线C 的方程:24x y = .(步骤3)(2)假设存在点()()0,0P t t <满足条件,则直线PA 的方程是12t y x t -=+,直线PB 的方 程是12ty x t -=+,曲线C 在点Q 处的切线l 的方程为20024x x y x =-,它与y 轴的交点为20,4x F ⎛⎫- ⎪⎝⎭,由于22x -<<,因此0112x -<<.(步骤4)①当10t -<<时,11122t --<<-,存在()02,2x ∈-,使得0122x t -=,即l 与直线PA 平 行,故当10t -<<时不符合题意(步骤5) ②当1t-时,01122x t --<,01122x t->,所以l 与直线PA ,PB 一定相交,分别联立 方程组2001224t y x t x x y x -⎧=+⎪⎪⎨⎪=-⎪⎩,2001224t y x t x x y x -⎧=+⎪⎪⎨⎪=-⎪⎩,(步骤6) 解得D ,E 的横坐标分别是()200421D x tx x t -=+-,()200421E x t x x t +=+-,(步骤7)则()2022041(1)E D x tx x t x t +-=---,(步骤8) 又204x FP t =--,有()22220411=28(1)PDE E D x t t S FP x x t x +-⨯-=⨯--△, (步骤9)又22004141242QABx x S ⎛⎫-=⨯⨯-=⎪⎝⎭△, 于是()()22242220000242220004(1)4(1)4(1)44118164QAB PDEx x t x t x t S S t t x tx t x t ⎡⎤⎡⎤+---+-+-⎣⎦⎣⎦=⨯=⨯--+++△△. (步骤10)对任意()02,2x ∈-,要使QAB △与PDE △的面积之比是常数,只需t 满足()()2224184116t t t t⎧---=⎪⎨-=⎪⎩,(步骤11) 解得1t =-,此时QAB △与PDE △的面积之比为2,故存在1t =-,使QAB △与PDE △的面积之比是常数2.(步骤12)21. (本小题满分14分) 若函数()h x 满足 (1)(0)1,(1)0h h ==;(2)对任意[]0,1a ∈,有(())h h a a =; (3)在()0,1上单调递减.则称()h x 为补函数.已知函数()11()1,01ppp x h x p x λλ⎛⎫-=>-<⎪+⎝⎭.(1)判函数()h x 是否为补函数,并证明你的结论;(2)若存在[]0,1m ∈,使得()h m m =,称m 是函数()h x 的中介元,记()1p n n+=∈N 时()h x 的中介元为i x ,且1nn i i S x ==∑,若对任意的n +∈N ,都有12n S <,求λ的取值范围; (3)当0λ=,()0,1x ∈时,函数()y h x =的图像总在直线1y x =-的上方,求P 的取值范围.【测量目标】函数单调性的判断,不等式恒成立问题.【考查方式】给出一个新函数的定义,证明函数()h x 是否为此类函数,再求解不等式恒成立问题.【难易程度】较难【试题解析】(1)函数()h x 是补函数.证明如下:①111011(0),(1)0101p ph h λ--⎛⎫⎛⎫===⎪ ⎪++⎝⎭⎝⎭;(步骤1)②()1111111(())(())11111ppp p pp pp p a a a a h h a h a aa a λλλλλλ⎛⎫-- ⎪⎛⎫+-+==== ⎪ ⎪-++ ⎪⎝⎭+⎪+⎝⎭;(步骤2)③令()(())pg x h x =,有()()()()()11122111()11p p p p p p p px x x px p x g x x x λλλλλ----+---+'==++,(步骤3)1,0p λ>->,∴当()0,1x ∈时,()0g x '<,()g x ∴在()0,1上单调递减,故函数()h x 在()0,1上单调递减.(步骤4)(2) 当()1p n n+=∈N ,由()h x x =,得:21210n n x x λ+-= ……(*)(步骤5)①当0λ=时,中介元12nn x ⎛⎫= ⎪⎝⎭; (步骤6)②当1λ>-且0λ≠时,由(*)可得()10,1nx =或()10,1n x =; (步骤7)得中介元n n x =,综上有对任意的1λ>-,中介元nn x =()n +∈N(步骤8)于是,当1λ>-时,有111inn nn i i i S x ==⎛⎫===-<⎪⎪⎭∑∑ (步骤9) 当n 无限增大时,n 无限接近于0,n Sn +∈N ,12n S <12,即 [)3,λ∈+∞.(步骤10)(3) 当0λ=时,()1()1p ph x x =-,中介元是112pp x ⎛⎫= ⎪⎝⎭(步骤11)①当01p <时,11p ,中介元为11122pp x ⎛⎫= ⎪⎝⎭,所以点(),()p p x h x 不在直线1y x =-的上方,不符合条件;(步骤12) ②当1p >时,依题意只须()111ppxx ->-在()0,1x ∈时恒成立,也即()11pppx x+-<在()0,1x ∈时恒成立,(步骤13)设()()1pppx x x ϕ=+-,[]0,1x ∈,则()11()1p p px p x x ϕ--⎡⎤'=--⎢⎥⎣⎦,(步骤14)由()0x ϕ'=可得12x =,且当10,2x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<;当1,12x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>, (步骤15) 又(0)(1)1ϕϕ==,∴当()0,1x ∈时,()1x ϕ<恒成立.(步骤16)综上:p 的取值范围为()1,+∞.(步骤17)。

江西省南昌市第二中学2024_2025学年高一物理上学期第三次月考试题

江西省南昌市第二中学2024_2025学年高一物理上学期第三次月考试题

江西省南昌市其次中学2024-2025学年高一物理上学期第三次月考试题(卷面分110分 考试时间100分钟)一、选择题(本题共12小题。

每小题4分,共48分,其中1-8为单选题,9-12题为多选题,全部选对的得4分,选不全的得2分,有选错或不答得得0分) 1.下列说法符合历史事实的是A .伽利略的“冲淡”重力试验,说明白自由落体运动是匀加速直线运动B .牛顿开创了以试验检验、猜想和假设的科学方法C .牛顿第肯定律是试验定律D .牛顿第肯定律是牛顿其次定律在合外力为零的状况下的一个特例2.本组照片记录了一名骑车人因自行车前轮突然陷入一较深的水坑而倒地的过程。

下列各选项是从物理的角度去说明此情境的,其中正确的是A .这是因为水坑里的水对自行车前轮的阻力太大,而使人和车一起倒地的B .因为自行车的前轮陷入水坑后,自行车还能加速运动,所以人和车一起倒地C .因为自行车的前轮陷入水坑后,自行车的惯性马上消逝,而人由于惯性将保持原有的运动状态,故人向原来的运动方向倒下了D .骑车人与自行车原来处于运动状态,车前轮陷入水坑后前轮马上静止,但人与车的后半部分由于惯性仍保持原来的运动状态,因此人和车摔倒3.“反向蹦极”是一项比蹦极更刺激的运动。

如图所示,弹性轻绳的上端固定在O 点,拉长后将下端固定在体验者的身上,并与固定在地面上的力传感器相连,传感器示数为1200N 。

打开扣环,人从A 点由静止释放,像火箭一样被“竖直放射”,经B 上升到最高位置C 点,在B 点时速度最大。

人与装备总质量60kg m (可视为质点)。

忽视空气阻力,重力加速度g 取210m/s 。

下列说法正确的是A .在C 点,人是处于超重状态B .在B 点,人是处于失重状态C .打开扣环瞬间,人的加速度大小为210m/sD.上升过程,人的加速度先减小再增大后不变4.农村在自建房时常用一些小型吊机来搬运建材,如图所示,一架小型吊机正吊着一垒砖块,AB 为吊臂,A处装有滑轮,C处有挂钩,D处为卷索轮和电机。

2023-2024学年高一数学第三次月考考试试题

2023-2024学年高一数学第三次月考考试试题

2023-2024学年高一数学第三次月考考试试题1.已知数据的平均数为10,方差为10,则的平均数和方差分别为()A.30,91B.31,91C.30,90D.31,902.已知复数为纯虚数,则实数()A.1B.2C.3D.43.如图所示,是的中线.是上的一点,且,若,其中,则的值为()A.B.C.D.4.已知,则()A.B.C.D.5.已知向量,在方向上的投影向量为,则()A.1B.2C.3D.46.已知是不同的直线,是不同的平面,则()A.若,则B.若,则C.若,则D.若,则7.已知圆台存在内切球(与圆台的上、下底面及侧面都相切的球),若圆台的上、下底面面积之和与它的侧面积之比为,设球的体积与圆台分别为,则()A.B.C.D.8.在锐角中,角的对边分别为,若,则()A.B.C.D.9.在中,角所对的边分别为,下列说法中正确的是()A.若,则B.若,则为等腰直角三角形C.,则此三角形有一解D.若,则为钝角三角形10.有6个相同的球,分别标有数字1,2,3,4,5,6,从中不放回地随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是奇数”,乙表示事件“第二次取出的球的数字是偶数”,丙表示事件“两次取出的球的数字之和是奇数”,丁表示事件“两次取出的球的数字之和是偶数”,则()A.乙发生的概率为B.丙发生的概率为C.甲与丁相互独立D.丙与丁互为对立事件11.如图,在棱长为2的正方体中,在线段上运动(包括端点),下列选项正确的有()A.B.C.直线与平面所成角的最大值是D.的最小值为12.已知i为虚数单位,复数z满足,则z的模为__________.13.已知向量满足,则与的夹角为______.14.已知过球面上三点的截面和球心的距离为球半径的一半,且,则球的表面积是______.15.如图,已知四棱锥中,底面是平行四边形,(1)若为侧棱的中点.求证:平面;(2)若过的平面与交于点,求证:;16.某场知识竞赛比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是,甲、丙两个家庭都回答错误的概率是,乙、丙两个家庭都回答正确的概率是,若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.17.2023年10月22日,汉江生态城2023襄阳马拉松在湖北省襄阳市成功举行,志愿者的服务工作是马拉松成功举办的重要保障,襄阳市新时代文明实践中心承办了志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.已知第一、二组的频率之和为0.3,第一组和第五组的频率相同.(1)估计这100名候选者面试成绩的平均数和第25百分位数;(2)现从以上各组中用分层随机抽样的方法选取20人,担任本市的宣传者.若本市宣传者中第二组面试者的面试成绩的平均数和方差分别为72和30,第四组面试者的面试成绩的平均数和方差分别为90和60,据此估计这次第二组和第四组所有面试者的面试成绩的方差.18.如图,在四棱锥中,平面平面,底面是直角梯形,,且为的中点.(1)求证:;(2)求二面角的余弦值;(3)在线段上是否存在点使得平面平面?若存在,请指明点的位置;若不存在,请说明理由.19.已知的内角的对边为,且.(1)求;(2)若的面积为;①已知为的中点,求边上中线长的最小值;②求内角的角平分线长的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省四校2012-2013学年高一第三次月考数学试题
命题人:林文光 时间:120分钟 总分:150分
一、选择题(共10小题,每小题5分,共50分)
1、集合{}0,,414|≠∈<-<-x N x x x 且的真子集的个数是( )
A 、32
B 、31
C 、16
D 、15 2、已知5.1348.029.01)21
(,8,4-===y y y ,则( )
A 、213y y y >>
B 、312y y y >>
C 、321y y y >>
D 、231y y y >> 3、设02l og 2l og <<b a ,则( )
A 、10<<<b a
B 、10<<<a b
C 、1>>b a
D 、1>>a b 4、由若干个相同的正方体叠成的一个物
体,它的主视图、左视图、俯视图从左到
右分别如图所示,则这个物体共有( )
个小正方体。

A 、7
B 、11
C 、12
D 、14
5、已知反比例函数x k y =
的图像如图所示,则二次函数2242k x kx y +-=的图像大致为( )
6、已知x x x f +=3)(,在],[b a 上满足0)()(<⋅b f a f ,则方程)(x f =0在),(b a 上( )
A 、有唯一解
B 、至少有一解
C 、至多有一解
D 、无解 7、下列关系中一定正确的是( )个
①x x a a log 2log 2=
②若01,1>>>>a y x ,则a a y x < ③若01,1>>>>a y x ,则y x a a 1
1< ④若⎪⎩⎪⎨⎧>-->≠>>0)1)(1(010,0log b a b a a b a
且则
A 、1
B 、2
C 、3
D 、
4
8、已知直线⊥l 平面α,直线m
平面β,给出下列命题 ①m l ⊥⇒βα//
②m l //⇒⊥βα ③βα⊥⇒m l // ④βα//⇒⊥m l A 、①③ B 、②③④ C 、②④ D 、①②③
9、把一个半径为R 的半圆卷成一个圆锥,则它的体积为( )
A 、3243
R π B 、383
R π C 、3245
R π D 、385
R π
10、已知a 、b 是异面直线,P 是空间一定点,下列命题中正确的个数为( ) ①过P 点总可以作一条直线与a 、b 都垂直
②过P 点总可以作一条直线与a 、b 都垂直相交
③过P 点总可以作一条直线与a 、b 之一垂直与另一条平行
④过P 点总可以作一个平面与a 、b 同时垂直
⑤过P 点总可以作一个平面与a 、b 之一垂直与另一条平行
A 、0
B 、1
C 、2
D 、3
二、填空题(共5小题,每题5分,共25分)
11、设方程012=+-mx x 的两根为α、β,且21,10<<<<βα,则实数m 的取值范围是 。

12、已知集合⎭⎬⎫⎩⎨⎧
≤-+058|
x x x ,非空集合{}121|-≤≤+=t x t x B ,若φ=⋂B A ,则实数t 的取值范围是 。

13、如果关于x 的不等式,|1|||||++<-x x a x 的解为一切实数,那么a 的取值范围是 。

14、在4,30890=⊥=∠==∠∆PC ABC ,PC ABC ,,AB C ,ABC 面中 ,P '是AB 上的一动点,则P P '的最小值为 。

15、已知函数),0[),10()(+∞∈≠>+=x b b c ab x f x 且,值域为)3,2[-,那么函数)(x f 的一个解析式可以是)(x f = 。

三、解答题(共75分)
16、(12分)求函数232)31(+-=x x y 的单调区间及值域。

17、(12分)已知集合{}{}{}1|),(,1|),(,1|),(2
2=+==+==+=y x y x C ay x y x B y ax y x A . (1)当a 为何值时,)()(C B C A ⋂⋃⋂为含有两个元素的集合.
(2)当a 为何值时,C B A ⋂⋃)(为含有三个元素的集合.
18、(12分)函数)0,(11lg
)(>∈--=k R k x kx x f 且.
(1)求函数的定义域. (2)若函数),10[)(+∞在x f 上单调递增,求k 的取值范围。

19、(12分)如图ABC ∆是正三角形,CD AE 和都垂直于平面
a CD a AB AE ABC ===,2,,BE F 为中点.
(1)求证:.//ABC DF 面
(2)求证:.BD AF ⊥
(3)求以E D B A ,,,为顶点的四面体体积.
20、(13分)已知kx x x x f ++-=22|1|)(.
(1)若.0)(,2==x f k 解方程
(2)若关于x 的方程)2,0(0)(在=x f 上有两个解2,1x x ,求k 的取值范围,并证明.411
21<+x x
21、(14分)设)(x f 是定义在R 上的函数,对任意的R y x ∈,,恒有)()()(y f x f y x f ⋅=+,且当.1)(00<<>x f ,x 时
(1)求).0(f
(2)证明:R x ∈时,恒有.0)(>x f
(3)求证:)(x f 在R 上是减函数.
(4)若x x f x f 求,1)2()(>+⋅的取值范围.
DF。

相关文档
最新文档