高一数学第三次月考试题
高一数学第一学期第三次月考试卷

18.(8 分)如果 y
1
的定义域为 R ,求实数 p 的取值范围.
( p 1) x 2 2 px +3 p 2
解:① p 1 时, f x 1 不合题意,舍去………………………………1 分
2x 1
2
f
t
t
1
3 的对称轴 t 1 [0,2 ] ,
2 4
2
当 t 1 时, f t 有最大值 3 ;当 t 2 时 f t 有最小值 3 ……………8 分
2
4
20.(8 分)10 辆货车从 A 站匀速驶往相距 10000 千米的 B 站,其时速都是 v 千米/时,为安
全起见,要求每两辆货车的间隔等于 k 2 v 2 千米( k 为常数,k 0 ,货车长度忽略不计).
(3)同理, f x 在 0,1 递增 x 0 时, f x f 1 4 ,
3
又 f x 为奇函数, x 0 时 f x 4 ,
3
综上所述,
f
x
的值域为 (
,
4
]
4 [
,
)
………………………11
分
33
22.(11 分)已知函数 f x | 1 1 |, x 0 .
20.(8 分)10 辆货车从 A 站匀速驶往相距 10000 千米的 B 站,其时速都是 v 千米/时,为安 全起见,要求每两辆货车的间隔等于 k 2 v 2 千米( k 为常数,k 0 ,货车长度忽略不计). (1)将第一辆货车由 A 站出发到最后一辆货车到达 B 站所需时间 t 表示成 v 的函数; (2)当 v 取何值时, t 有最小值.
2023-2024学年广东省广州大学附中高一(下)第三次月考数学试卷+答案解析

2023-2024学年广东省广州大学附中高一(下)第三次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知,,则()A.B.C. D.2.已知复数满足,则()A.B. C.D.3.某高校组织大学生知识竞赛,共设有5个版块的试题,分别是“中华古诗词”“社会主义核心价值观”“科学实践观”“中国近代史”及“创新发展能力”.某参赛队从中任选2个版块作答,则“创新发展能力”版块被该队选中的概率为()A.B. C.D.4.已知平面向量,其中,且与和与的夹角相等,则()A. B.1C.D.25.若,则()A. B.C.D.6.已知的外接圆的圆心为O ,半径为1,,在上的投影向量为,则()A.B.C.1D.7.为调查某地区中学生每天睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间均值为9小时,方差为1,抽取高中生1200人,其每天睡眠时间均值为8小时,方差为,则估计该地区中学生每天睡眠时间的方差为()A.B.C.D.8.已知三棱锥的四个顶点在球O 的球面上,,是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,,则球O 的体积为()A.B.C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.下列说法正确的是()A.数据1,3,5,7,9,11,13的第60百分位数为9B.为了了解某地参加计算机水平测试的5000名学生的成绩,从中抽取了200名学生进行调查分析.在这个问题中,被抽取的200名学生是样本C.用简单随机抽样的方法从51个个体中抽取2个个体,则每个个体被抽到的概率都是D.若样本数据,,⋯,的平均数为2,则,,⋯,的平均数为810.已知函数,若函数的部分图象如图所示,则关于函数,下列结论正确的是()A.函数的图象关于直线对称B.函数的图象关于点对称C.函数在区间上的减区间为D.函数的图象可由函数的图象向左平移个单位长度得到11.如图,在菱形ABCD中,,,将沿对角线BD翻折到位置,则在翻折的过程中,下列说法正确的()A.存在某个位置,使得B.存在某个位置,使得C.存在某个位置,使得P,B,C,D四点落在半径为的球面上D.存在某个位置,使得点B到平面PDC的距离为三、填空题:本题共3小题,每小题5分,共15分。
高一数学上学期第三次月考试题含解析2

卜人入州八九几市潮王学校宁县第二二零二零—二零二壹高一数学上学期第三次月考试题〔含解析〕一、选择题〔每一小题5分,一共60分〕 1.集合{}0,1,2A =,{}1,2B =-,那么=AB 〔〕A.∅B.{}2 C.{}1,2-D.1,0,1,2【答案】B 【解析】 【分析】利用集合交集的运算规律可得出A B .【详解】{}0,1,2A =,{}1,2B =-,{}2A B ∴=,应选B .【点睛】此题考察集合交集的运算,正确利用集合的运算律是解题的关键,考察计算才能,属于根底题. 2.{}{}10,2,1,0,1A x x B =+=--,那么()R C A B ⋂=〔〕A.{}2,1--B.{}2-C.{}1,0,1-D.{}0,1【答案】A 【解析】 A :,,,所以答案选A【考点定位】考察集合的交集和补集,属于简单题.【此处有视频,请去附件查看】3.集合{}{}12,23A x x x B x x x =->=+>,那么AB 等于〔〕A.{}31x x -<<-B.{}10x x -<< C.{}1x x <-D.{}3x x >-【答案】A 【解析】 因为集合{}12A x x x =->{}|1x x =<-,集合{}23B x x x =+>{}{}3,|31x x A B x x =-∴⋂=-<<-,应选A.4.设集合{}{}1,3,5,7,9,11,5,9==A B ,那么AB =〔〕A.{}5,9B.{}1,3,7,11C.{}1,3,7,9,11D.{}1,3,5,7,9,11【答案】B 【解析】 【分析】直接利用补集的定义求AB .【详解】由补集的定义得AB ={}1,3,7,11.应选B【点睛】此题主要考察补集的求法,意在考察学生对该知识的理解掌握程度和分析推理才能. 5.设I 是全集,集合,,M N P 都是其子集,那么以下列图中的阴影局部表示的集合为〔〕 A.()I M P C N ⋂⋂B.()I MN C P ⋂⋂ C.()I I MC N C M ⋂⋂D.()()MN M P ⋂⋃⋂【答案】B 【解析】观察图形得:图中的阴影局部表示的集合为()I M N C P ⋂⋂,应选B.6.设M={菱形},N={平行四边形},P={四边形},Q={正方形},那么这些集合之间的关系为 A.P N M Q ⊆⊆⊆ B.Q M N P ⊆⊆⊆ C.P M N Q ⊆⊆⊆D.Q N M P ⊆⊆⊆【答案】B 【解析】∵四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形, ∴正方形应是M 的一局部,M 是N 的一局部, ∵矩形形、正方形、菱形都属于平行四边形, ∴它们之间的关系是:Q M N P ⊆⊆⊆.应选B .7.以下各图形中,是函数的图象的是()A. B. C.D.【答案】D 【解析】 函数()y f x =中,对每一个x 值,只能有唯一的y 与之对应∴函数()y f x =的图象与平行于y 轴的直线最多只能有一个交点故,,A B C 均不正确故答案选D 8.假设()1f x x =+(3)f =〔〕A.2B.4C.±2D.2【答案】A 【解析】由题()32f ==选A9.以下函数中,既是偶函数又在区间(0,+∞)上单调递减的是() A.y =1xB.y =3x +1C.y =-x 2+1D.y =|x |【答案】C 【解析】 【详解】对于A ,函数y =1x为奇函数且在区间()0+∞,上单调递减,故A 不正确; 对于B ,函数31?y x +=既不是奇函数也不是偶函数,不满足条件,故B 不正确;对于C ,函数21y x =-+是偶函数且在区间()0+∞,上单调递减,故C 正确; 对于D ,函数y x=在区间()0+∞,上单调递增,不满足条件,故D 不正确; 故答案选C10.以下函数中,图像关于y 轴对称的是()A.y =1xB.y =C.y =x |x |D.43y x =-【答案】D 【解析】 【分析】 假设函数图象关于y 轴对称,那么函数为偶函数,那么判断选项是否为偶函数即可【详解】对于选项A,1y x=是奇函数;对于选项B,定义域为[)0,+∞,故y =对于选项C,()()f x x x x x f x -=--=-=-,是奇函数;对于选项D,43y x =-是偶函数,故图象关于y 轴对称, 应选:D【点睛】此题考察函数奇偶性的判断,考察偶函数的图象性质 11.函数()y f x =在R 上为增函数,且(2)(9)f m f m >-+,那么实数m 的取值范围是A (,3)-∞- B.(0,)+∞C.(3,)+∞D.(,3)(3,)-∞-⋃+∞【答案】C 【解析】因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3. 应选C.12.集合{A x y ==,{}Bx x a =≥,假设A B A =,那么实数a 的取值范围是()A.(],3-∞-B.(),3-∞- C.(],0-∞D.[)3,+∞【答案】A 【解析】 由得[]3,3A =-,由A B A =,那么A B ⊆,又[),B a =+∞,所以3a ≤-.应选A.第II 卷〔非选择题)二、填空题〔每一小题5分,一共20分〕 13.假设f (x )为R 上的奇函数,且满足(2)2f =-,那么f (0)+f (-2)=________.【答案】2 【解析】 【分析】根据奇函数的性质,当奇函数在0x=处有意义时,()00f =,又有()()22f f -=-,即可求解【详解】因为f (x )为R 上的奇函数,那么()00f =,()()222f f -=-=,所以()()022f f +-=故答案为:2【点睛】此题考察利用奇偶性求值,属于根底题 14.()f x 为奇函数且0x>时,()21f x x =+,当0x ≤时,解析式为___.【答案】()21,00,0x x f x x -<⎧=⎨=⎩【解析】 【分析】 令0x <,那么0x ->,代入()21f x x =+中,再根据奇函数()()f x f x -=-,求得解析式,同时,因为奇函数()f x 在0x =处有意义,那么()00f =【详解】当0x <时,0x ->,那么()21f x x -=-+,因为()f x 是奇函数,所以()()f x f x -=-,所以()()()2121f x f x x x =--=--+=-,且()00f =,那么当0x ≤时,()21,00,0x x f x x -<⎧=⎨=⎩故答案为:()21,00,0x x f x x -<⎧=⎨=⎩【点睛】此题考察利用奇偶性求函数解析式,注意:奇函数在0x =处有意义时,()00f =15.函数.【答案】[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1-考点:函数定义域【此处有视频,请去附件查看】16.函数21,02,0x x y x x ⎧+≤=⎨->⎩,假设()10f x =,那么x=___________【答案】3- 【解析】 【分析】 当0x>时,()2010f x x =-<≠,当0x ≤时,由()2110f x x =+=可得结果.【详解】因为函数()21,02,0x x f x x x ⎧+≤=⎨->⎩,当0x>时,()2010f x x =-<≠,当0x ≤时,()2110f x x =+=,可得3x =〔舍去〕,或者3x =-,故答案为3-.【点睛】此题主要考察分段函数的解析式,意在考察对根底知识掌握的纯熟程度,以及分类讨论思想的应用,属于简单题. 三、解答题 17.22{1,251,1}A a a a a =-+++,2A -∈,务实数a 的值.【答案】32- 【解析】 【分析】由2A -∈,有12,a -=-或者22512a a ++=-,显然212a +≠-,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为2A -∈,所以有12,a -=-或者22512a a ++=-,显然212a +≠-,当12a -=-时,1a =-,此时212512a a a -=++=-不符合集合元素的互异性,故舍去;当22512a a ++=-时,解得32a =-,1a =-由上可知不符合集合元素的互异性,舍去,故32a =-. 【点睛】此题考察了元素与集合之间的关系,考察了集合元素的互异性,考察理解方程、分类讨论思想. 18.集合,{|25},{|46}U R A x x B x x ==-≤≤=≤≤.求:〔1〕A B ;〔2〕()U C A B ⋂; 〔3〕()U C AB .【答案】〔1〕{}|45A B x x ⋂=≤≤〔2〕(){}U|56A B x x ⋂=<≤〔3〕(){U|2A B x x ⋃=<-或者}6x >【解析】 【分析】根据集合交集、并集、补集的定义求解即可 【详解】〔1〕由题,{}|45A B x x ⋂=≤≤〔2〕{U |2A x x =<-或者}5x >,那么(){}U |56A B x x ⋂=<≤〔3〕{}|26A B x x ⋃=-≤≤,那么(){U|2A B x x ⋃=<-或者}6x >【点睛】此题考察集合的交集、并集、补集的运算,属于根底题 19.假设函数()y f x =是定义在〔1,4〕上单调递减函数,且2()()0f t f t -<,求t 的取值范围.【答案】12t <<【解析】 【分析】整理不等式为()()2f t f t <,根据函数的单调性,即可得到221414t t t t ⎧<<⎪<<⎨⎪>⎩,求解即可【详解】由题,2()()0f t f t -<,∴()()2f t f t <,()f x 在()1,4上单调递减,221414t t t t ⎧<<⎪∴<<⎨⎪>⎩,解得12t << 【点睛】此题考察利用单调性解不等式,注意:对定义域的要求 20.函数1()32f x x =+-,[3,6]x ∈. 〔1〕试判断函数()f x 的单调性,并用定义加以证明; 〔2〕求函数()f x 的最大值和最小值. 【答案】〔1〕()f x 在[3,6]上单调递减,证明见解析〔2〕()max 4f x =,()min 134f x =【解析】 【分析】 〔1〕当[]12,3,6x x ∈,210x x x ∆=->,判断y ∆的符号即可;〔2〕由〔1〕可得()f x 在[3,6]上单调递减,那么()()max 3f x f =,()()min 6f x f =【详解】〔1〕()f x 在[3,6]上单调递减,证明:当[]12,3,6x x ∈,210x x x ∆=->,那么211220,20,0x x x x ->->-<,0y ∴∆<,()f x ∴在[3,6]上单调递减〔2〕由〔1〕,()f x 在[3,6]上单调递减,∴当3x =时,()()max 133432f x f ==+=-; 当6x=时,()()min11363624f x f ==+=-【点睛】此题考察定义法证明函数单调性,考察利用单调性求最值问题21.全集U =R ,集合A ={x |a -1<x <2a +1},B ={x |0<x <1}. (1)假设a =12,求A ∩B ; (2)假设A ∩B =A ,务实数a 的取值范围. 【答案】〔1〕{}01A B x ⋂=<<〔2〕2a ≤-【解析】 【分析】〔1〕当12a =时,122A x ⎧⎫=-<<⎨⎬⎩⎭,根据集合交集定义求解即可; 〔2〕由A B A =,可得A B ⊆,分别讨论A =∅和A ≠∅的情况,求解即可【详解】〔1〕当12a=时,集合122A x ⎧⎫=-<<⎨⎬⎩⎭,{}01A B x ∴⋂=<<〔2〕A B A =,A B ∴⊆,当A =∅时,121a a -≥+,2∴≤-a ;当A ≠∅时,12101211a a a a -<+⎧⎪≤-⎨⎪+≤⎩,无解;综上,2a ≤-【点睛】此题考察交集的运算,考察包含关系求参数,考察分类讨论思想 22.定义在非零实数集上的函数()f x 满足()()()f xy f x f y =+,且()f x 是区间()0+∞,上的递增函数. 〔1〕求()1f ,()1f -的值;〔2〕证明:函数()f x 是偶函数;〔3〕解不等式()1202f f x ⎛⎫+-≤ ⎪⎝⎭【答案】解:(1)f(1)=0,f(-1)=0(2)见解析(3)1{|02x x ≤<或者11}2x <≤ 【解析】【详解】试题解析:解:〔1〕令1xy ==,那么()()()111f f f =+()10f ∴= 令1x y ==-,那么()()()111f f f =-+-〔2〕令1y =-,那么()()()()1f x f x f f x -=+-= ()()f x f x ∴-=,()f x ∴∴()f x 为定义域上的偶函数. 〔3〕据题意可知,函数图象大致如下:()()122102f f x f x ⎛⎫+-=-≤ ⎪⎝⎭, 1210x ∴-≤-<或者0211x <-≤, 102x ∴≤<或者112x <≤ 考点:1函数的奇偶性;2函数的单调性.。
高一数学上学期第三次月考试题

高一数学上学期第三次月考试题(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:必修第一册第一章~第四章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}(){}1,2,3,,,,A B x y x A y A x yA ==∈∈-∈∣中所含元素的个数为( ) A .2B .4C .6D .82.已知命题2:,+2+3>0p x ax x ∀∈R .若命题p 为假命题,则实数a 的取值范围是( )A .13a a ⎧⎫<⎨⎬⎩⎭∣B .103a a ⎧⎫<≤⎨⎬⎩⎭∣C .13a a ⎧⎫≤⎨⎬⎩⎭∣D .13a a ⎧⎫≥⎨⎬⎩⎭∣ 3.已知函数()22132f x x +=+,则()3f 的值等于( )A .11B .2C .5D .1- 4.函数122x y ⎛⎫=- ⎪⎝⎭的定义域为( ) A .(],1-∞- B .[)1,-+∞ C .[]1,0- D .[]0,15.设3log 2a =,5log 3b =,23c =,则( ) A .a c b << B .a b c <<C .b<c<aD .c<a<b 6.函数22()log f x x x m =++在区间()2,4上存在零点,则实数m 的取值范围是( )A .(),18-∞-B .(5,)+∞C .(5,18)D .()18,5--7.美国生物学家和人口统计学家雷蒙德·皮尔提出一种能较好地描述生物生长规律的生长曲线,称为“皮尔曲线”,常用的“皮尔曲线”的函数解析式可以简化为()()0,1,01kx b P f x P a k a +=>><+的形式.已知()()613kx bf x x +=∈+N 描述的是一种果树的高度随着栽种时间x (单位:年)变化的规律,若刚栽种(x =0)时该果树的高为1.5m ,经过2年,该果树的高为4.5m ,则该果树的高度不低于5.4m ,至少需要( )A .3年B .4年C .5年D .6年 8.已知两个正实数x ,y 满足1x y +=,则4xy x y +的最大值是( ) A .16 B .19 C .6 D .9二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.若0a b >>,则下列不等式中一定不成立的是( )A .11b b a a +>+ B .11a b a b +>+ C .11a b b a +>+ D .22a b a a b b+>+ 10.在同一直角坐标系中,函数23y x ax a =++-与x y a =的图象可能是( )A .B .C .D .11.已知函数3()1f x x x =++,则( )A .()f x 在R 上单调递增B .()f x 是奇函数C .点(0,1)是曲线()y f x =的对称中心D .()f x 的值域为R12.已知函数()21,25,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,则下列说法正确的是( ) A .函数()y f x =在3,32⎡⎤-⎢⎥⎣⎦的值域为[]0,3 B .若实数,,a b c 满足a b c <<且()()()f a f b f c ==,则22a c b c +++的取值范围是()32,64C .∃实数()0,3m ∈,关于x 的方程()()()210f x m f x m +--=恰有五个不同实数根D .∀实数()2,3t ∈,关于x 的方程()()f f x t =有四个不同实数根第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分. 13.已知幂函数()y f x =的图象过点116,64⎛⎫ ⎪⎝⎭,则14f ⎛⎫= ⎪⎝⎭. 14.关于x 的不等式20ax bx c ++>的解集为()1,3,则二次函数()2f x cx bx a =++的单调增区间为 .15.已知函数3222022236()3x x x f x x +++=+,且()14f a =,则()f a -的值为 . 16.设函数()1,01,0x x x f x x x x ⎧+>⎪⎪=⎨⎪-<⎪⎩,则满足条件“方程()f x a =有三个实数解”的实数a 的一个值为 .程或演算步骤.17.计算下列各式.(1)212343270.000127()8--+ (2)74log 232327log lg 25lg 47log 3log 43++++⨯. 18.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数;(2)若B =∅,求m 的取值范围;(3)若A B ⊇,求m 的取值范围.19.已知21()f x ax x =+,其中a 为实数.(1)当2a =时,证明函数()y f x =在[]1,2上是严格增函数;(2)根据a 的不同取值,判断函数()y f x =的奇偶性,并说明理由.20.某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:()()212kt x b p --=,其中,k b 均为常数.当关税税率75%t =时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定,k b 的值.(2)市场需求量q (单位:万件)与市场价格x (单位:千元)近似满足关系式:2x q -=,当p q =时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.21.给出下面两个条件:①函数()f x 的图象与直线1y =-只有一个交点;②函数()f x 的两个零点的差的绝对值为2. 在这两个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定.已知二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,且______. (1)求()f x 的解析式;(2)若函数()()()213232x x g x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.22.已知函数44()log (1)log (3)f x x x =++-.(1)求f (x )的定义域及单调区间.(2)求f (x )的最大值,并求出取得最大值时x 的值.(3)设函数4()log [(2)4]g x a x =++,若不等式f (x )≤g (x )在(0,3)x ∈上恒成立,求实数a 的取值范围.。
高一数学下学期第三次月考试题

2017--2018学年第二学期高一第三次月考数学试卷第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每题5分,共60分。
在每小题只有一项是符合题目要求的、1。
假如向量,,那么( )A、 B。
C。
D、2、已知,则下列结论正确的是( )A、 B。
C、 D、3。
已知点,,向量,若,则实数的值为( )A、5 B、6D、84、在等比数列中,若,的值为( )A。
B。
4 D、645、某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:依照上表可得回归方程,则的值为( )A。
B、 C。
D、6。
变量满足,目标函数,则的最小值是( )A、ﻩB、C、D、7、在区间上随机取一个数,使得的概率为( )A、 B、 C、D、8、设,若的最小值为( )A、 C、 D、9。
我们把形如“”和“”形式的数称为“锯齿数"(即大小间隔的数),由,,,四个数组成一个没有重复数字的四位数,则该四位数恰好是“锯齿数”的概率为( )A、ﻩB、C。
ﻩ D、10.在数列中,,则数列的前项和的最大值是( )A。
B。
C。
D、11、在中,,,,则的值等于( )A。
B、C、 D、12。
在中,角为钝角,,,为边上的高,已知,则的取值范围为( )A、 B、 C。
D。
第II卷(共90分)二、选择题:本大题共4小题,每题5分,共20分、13、课题组进行城市空气质量调查,按地域把个城市分成甲、乙、丙三组,对应的城市数分别为,,、若用分层抽样从中抽取个城市,则丙组中应抽取的城市数为________、14、在等差数列中,,,则________、15。
数列中,,,则数列的通项公式、16、在中,内角的对边分别为,若,且,则的面积最大值为__________。
三、解答题:共70分,在答题卡上写出必要的解题过程或证明步骤才能得分17。
(本小题满分10分)已知关于的不等式的解集为、(1)求实数的值;(2)解关于的不等式:(为常数)。
18、(本小题满分12分)已知数列满足,且,(1)求证:数列是等比数列;(2)求数列的前项和、19。
高一数学上学期第三次月考试题 试题 3

卜人入州八九几市潮王学校二零二零—二零二壹高一数学上学期第三次月考试题 一. 选择题〔每一小题5分,一共60分〕1.设角θ的终边经过点(3,4)P -,那么sin 2cos θθ+=〔〕 A .15B .15-C .25-D .25U R =,集合{|}A x y x ==-,2{|1}B y y x ==-,那么集合()U C A B =〔〕A .(,0]-∞B .(0,1)C.(0,1]D .[0,1)3.5,7()(3),7x x f x f x x -≥⎧=⎨+<⎩〔x N ∈〕,那么(3)f 等于〔〕 A .2B .3C.-2D .44..函数是〔〕 A .周期为π的奇函数B . 周期为π的偶函数C .周期为2π的奇函数D . 周期为2π的偶函数 5.函数()sin tan 4cos 3f x a x b x π=-+,且()11f -=,那么()1f =〔〕A .3B .-3C .0D .431-6.cos(75°+α)=,那么sin(α-15°)+cos(105°-α)的值是().A.B .C .-D .-7、设0.2611log 7,,24a b c ⎛⎫=== ⎪⎝⎭,那么,,a b c 的大小关系是〔〕 A.a b c >> B.b c a << C.b c a >> D.a b c << 8.函数y =-x sin x 的局部图象是().9.以下各点中,能作为函数y =tan 的一个对称中心的点是()A .(0,0)B .C .(π,0)D .10.函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间[0,]2π上的最小值是()A .-lB .22C .22-D .011、函数62ln )(-+=x x x f 的零点所在的区间为〔〕A.)1,0(B.)2,1(C.)3,2(D.)4,3(12.设0a>且1a ≠.假设log sin 2a x x >对(0,)4x π∈恒成立,那么a 的取值范围是〔〕 A.(0,)4π B.(0,]4π C.(,1)(1,)42ππ⋃ D.[,1)4π 二.填空题〔每一小题5分,一共20分〕13.幂函数()y f x =的图象过点(2,2),(9)f =则______14.扇形的圆心角为,弧长为,那么该扇形的面积为_________. 15.是定义在上的偶函数,并且,当时,,那么的值是______.16.1sin sin 3x y +=,求2sin cos x y μ=-的取值范围_________.三.解答题〔一共70分〕17.函数f 〔α〕=.〔1〕化简f 〔α〕;〔2〕假设α是第三象限角,且cos 〔α﹣π〕=,求f 〔α〕.18扇形的周长为8cm,求这个扇形的面积获得最大值时圆心角的大小和弦长AB .19、关于x 的方程0)13(22=++-m x x 的两根为αsin 和αcos 且,)2,0(πα∈.(1)求ααααtan 1cos tan 11sin -+-的值; 〔2〕求m 的值;〔3〕求方程的两根及此时的α的值。
2022-2023学年安徽省阜阳市高一年级下册学期第三次月考数学【含答案】

2022-2023学年高一第三次月考数学考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.若全集{}1,2,3,4,5,6U =,{}1,4M =,{}2,3N =,则集合{}5,6等于()A.M N⋃ B.M N ⋂C.()()U U M N D.()()U U M N 2.“=1x -”是“20x x +=”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.复数()231i i +=A.2 B.-2 C.2i D.-2i4.如图所示,用符号语言可表达为()A.m αβ= ,n ⊂α,m n A= B.m αβ= ,n α∈,m n A = C.m αβ= ,n ⊂α,A m ⊂,A n ⊂ D.m αβ= ,n α∈,A m ∈,A n∈5.已知向量()1,2AB =- ,(),5BC x =- ,若7AB BC ⋅=- ,则AC = ()A.5B.42C.6D.52 6.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑.如图,在鳖臑A BCD -中,AB ⊥平面BCD ,且,BD CD AB BD CD ⊥==,则直线AC 与平面ABD 所成角的正切值是()A.2B.22 C.3 D.337.在ABC ∆中,已知222sin sin sin sin sin A B A B C +-=,且满足4ab =,则ABC ∆的面积为A.1B.2C.2D.38.将函数()sin 2f x x =的图象向右平移6π个单位长度后得到函数()y g x =的图象,则函数()()f x g x 的最大值为() A.224+ B.3 C.34 D.34二、多选题(本大题共4小题,共20.0分.每小题有多项符合题目要求)9.一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R 相等,则下列结论正确的是()A.圆柱的侧面积为22πR B.圆锥的侧面积为22πR C.圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3:1:210.下列命题正确的是()A 平面//α平面β,一条直线a 平行与平面α,则a 一定平行于平面βB.平面//α平面β,则面α内的任意一条直线都平行于平面βC.一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或异面直线11.下列说法正确的序号是()A.偶函数()f x 的定义域为[]21a a -,,则1=3a B.一次函数()f x 满足()()43f f x x =+,则函数()f x 的解析式为()1f x x =+C.奇函数()f x 在[]24,上单调递增,且最大值为8,最小值为1-,则()()24215f f -+-=-D.若集合2{|420}A x ax x =-++=中至多有一个元素,则2a ≤-12.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中,AC BC ⊥,且12AA AB ==.下列说法正确的是()A.四棱锥11B A ACC -为“阳马”B.四面体11AC CB 为“鳖臑”C.四棱锥11B A ACC -体积最大为23D.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F ,则1EF A B⊥三、填空题(本题共4小题,共20.0分)13.已知向量(1,2)a =- ,(,1)b m =r .若向量a b + 与a 垂直,则m =________.14.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为2143R π.设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,则12V V 的值是__.15.下列说法中,所有正确说法的序号是______.①终边落在y 轴上的角的集合是π,2k k θθ⎧⎫=∈⎨⎬⎩⎭Z ;②函数π2cos 4y x ⎛⎫=- ⎪⎝⎭图象的一个对称中心是3π,04⎛⎫ ⎪⎝⎭;③函数sin y x =在第一象限是增函数;④为了得到函数πsin 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需把函数cos y x =的图象向右平移π6个单位长度.16.函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图中实线所示,图中圆C 与()f x 的图象交于M 、N 两点,且M 在y 轴上,圆的半径为512π,则6f π⎛⎫= ⎪⎝⎭___________.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.已知z 为复数,2i z -和2iz +均为实数,其中i 是虚数单位.(1)求复数z ;(2)若复数12i z z m m =++对应的点在第四象限,求实数m 的取值范围.18.已知()22sin ,cos a x x = ,(3cos ,2)b x = ,()f x a b =⋅ .(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.19.已知四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB CD ,AD =CD =1,∠BAD =120°,3PA =,∠ACB =90°.(1)求证:BC ⊥平面PAC ;(2)求直线PC 与平面PAB 所成的角的正弦值.20.已知两个非零向量a 与b 不共线,(1)若,28,3()AB a b BC a b CD a b =+=+=- ,求证:A 、B 、D 三点共线;(2)试确定实数k ,使得ka b + 与k +a b 共线;(3)若(1,2),(1,1),a b c a b λ===+ ,且b c ⊥ ,求实数λ的值.21.如图所示,在四边形ABCD 中,∠D =2∠B ,且AD =1,CD =3,cos B =33.(1)求△ACD 的面积;(2)若BC =23,求AB 的长.22.如图,已知四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,H 在BD 上.(1)证明://AP GH ;(2)若AB 的中点为N ,求证://MN 平面APD .2022-2023学年高一第三次月考数学考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)【1题答案】【答案】D【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】C二、多选题(本大题共4小题,共20.0分.每小题有多项符合题目要求)【9题答案】【答案】CD【10题答案】【答案】BCD【11题答案】【答案】AC【12题答案】【答案】ABD三、填空题(本题共4小题,共20.0分)【13题答案】【答案】7【14题答案】【答案】2.【15题答案】【答案】②④【16题答案】【答案】4π四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)【17题答案】【答案】(1)42iz =+(2)41m -<<【18题答案】【答案】(1)最小正周期为π,单调减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)最大值为3,最小值为0.【19题答案】【答案】(1)证明见解析(2)34【20题答案】【答案】(1)证明见解析(2)1k =±(3)32λ=-【21题答案】【答案】(1)2;(2)4.【22题答案】【答案】(1)证明见解析;(2)证明见解析.。
高一下学期第三次月考数学试卷(附含答案)

高一下学期第三次月考数学试卷(附含答案)试卷满分150分(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.下列说法正确的是( ) A.经过三点有且只有一个平面 B.经过一条直线和一个点有且只有一个平面 C.四边形是平面图形D.经过两条相交直线有且只有一个平面2.在ABC △中,AC=1,AB =和BC=3,则ABC △的面积为( )D.3.设m ,n 是两条不同的直线,α和β是两个不同的平面( ) A.若m n ⊥ n α∥,则m α⊥B.若m β∥βα⊥,则m α⊥C.若m β⊥ n β⊥ n α⊥,则m α⊥D.若m n ⊥ n β⊥ βα⊥,则m α⊥4.在ABC △中4a = 3b = 2sin 3A =,则B =( ) A.6π B.3π C.6π或56π D.3π或23π5.如图 在长方体1111ABCD A B C D -中2AB = 11BC BB == P 是1A C 的中点,则直线BP 与1AD 所成角的余弦值为( )A.13C.36.某车间需要对一个圆柱形工件进行加工 该工件底面半径15cm 高10cm 加工方法为在底面中心处打一个半径为cm r 且和原工件有相同轴的圆柱形通孔.若要求工件加工后的表面积最大,则r 的值应设计为( )cmC.4D.57.已知在ABC △中2B A C =+ 2b ac =,则ABC △的形状是( ) A.直角三角形B.等边三角形C.等腰直角三角形D.钝角三角形8.与正三棱锥6条棱都相切的球称为正三棱锥的棱切球.若正三棱锥的底面边长为 侧棱长为3,则此正三棱锥的棱切球半径为( )22C.D.二、多项选择题(本大题共4小题 每小题5分 共计20分.在每小题给出的四个选项中至少有两个是符合题目要求的 请把答案填写在答题卡相应位置上)9.如图 已知正方体1111ABCD A B C D - M N 分别为11A D 和1AA 的中点,则下列四种说法中正确的是( )A.1C M AC ∥B.1BD AC ⊥C.1BC 与AC 所成的角为60°D.CD 与BN 为异面直线10.在ABC △中角A B C 的对边分别是a b c 下列关系式恒成立的是( ) A.cos cos c a B b A =⋅+⋅B.22sin1cos 2A BC +=+ C.()22cos cos a b c a B b A -=⋅⋅-⋅D.tan tan tan 1tan tan A BC A B+=-11.如图 在正四棱锥S ABCD -中E M N 分别是 BC CD SC 的中点 动点P 在线段MN 上运动时 下列四个结论恒成立的是( )A.EP AC ⊥B.EP BD ∥C.EP ∥平面SBDD.EP ⊥平面SAC12.如图 在正方体1111ABCD A B C D -中M 、N 分别为正方形ABCD 、11BB C C 的中心,则下列结论正确的是( )A.平面1D MN 与11B C 的交点是11B C 的中点B.平面1D MN 与BC 的交点是BC 的三等分点C.平面1D MN 与AD 的交点是AD 的三等分点D.平面1D MN 将正方体1111ABCD A B C D -分成的两部分的体积之比为1:1三、填空题(本大题共4小题 每小题5分 共计20分.请把答案填写在答题卡相应位置上)13.在ABC △中若4AB = 7AC = BC 边的中线72AD =,则BC =______.14.已知圆锥的顶点为P 底面圆心为O 高为1 E 和F 是底面圆周上两点 PEF △面积的最大值为______.15.正四棱台的上、下底面的边长分别为2 4 侧棱长为2,则其体积为______.16.过正方体1111ABCD A B C D -顶点A 作平面α 使α∥平面11A B CD 11A D 和11D C 的中点分别为E 和F ,则直线EF 与平面α所成角为______.四、解答题(本大题共6小题 共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本题满分10分)一个几何体由圆锥和圆柱组成 其尺寸如图所示. (1)求此几何体的表面积;(2)如图 点P Q 在几何体的轴截面上 P 为所在母线中点 Q 为母线与底面圆的交点 求在几何体侧面上 从P 点到Q 点的最短路径长.18.(本题满分12分)在ABC △中角A B C 的对边分别是a b c cos cos 3cos b A a B c A +=.(1)求cos A ;(2)若2a = 求ABC △面积的最大值.19.(本题满分12分)已知正三棱柱111ABC A B C -中2AB = M 是11B C 的中点. (1)求证:1AC ∥平面1A MB ;(2)点P 是直线1AC 上的一点 当1AC 与平面ABC 所成的角的正切值为2时 求三棱锥1P A MB -的体积.20.(本题满分12分)在ABC △中角A B C 的对边分别是a b c 已知cos cos b A a B b c -=-. (1)求A ;(2)若点D 在BC 边上 且2CD BD = cos B =求tan BAD ∠. 21.(本题满分12分)在四棱锥P ABCD -中90ABC ACD ∠=∠=︒ 30BCA CDA ∠=∠=︒ PA ⊥平面ABCD E F 分别为PD PC 的中点 2PA AB =. (1)求证:平面PAC ⊥平面AEF ; (2)求二面角E AC B --的余弦值.22.(本题满分12分)如图 在一条东西方向的海岸线上的点C 处有一个原子能研究所 海岸线北侧有一个小岛 岛上建有一个核电站.该岛的一个端点A 位于点C 的正北方向处 另一个端点B 位于点A 北偏东30°方向 且与点A 相距10km 研究所拟在点C 正东方向海岸线上的P 处建立一个核辐射监测站. (1)若4km CP = 求此时在P 处观察全岛所张视角APB ∠的正切值; (2)若要求在P 处观察全岛所张的视角最大 问点P 应选址何处?参考答案17.(1)由题设 此几何体是一个圆锥加一个圆柱 其表面积是圆锥的侧面积、圆柱的侧面积与圆柱的一个底面积之和.圆锥侧面积())21122S a a π=⨯⨯=;圆柱侧面积()()22224S a a a ππ=⨯=;圆柱底面积23S a π=∴几何体表面积为)222212345S S S S a a a a πππ=++=++=.(2)沿P 点与Q 点所在母线剪开圆柱侧面 展开如图.则PQ ===∴P 、Q 两点间在侧面上的最短路径长为. 18.(1)因为cos cos 3cos b A a B c A +=由正弦定理得sin cos cos sin 3sin cos B A B A C A += ∴()sin 3sin cos A B C A +=∴sin 3sin cos C C A =.在ABC △中sin 0C ≠ ∴1cos 3A =;(2)由(1)知1cos 3A =由22sin cos 1A A += A 为锐角 得sin A =由余弦定理可知222123b c a bc +-= 因为2a =∴2233122b c bc +-= ∴22212336bc b c bc +≥=+ 即3bc ≤ 当且仅当b c ==所以1sin 2ABC S bc A =≤△ ABC △. 19.(1)证明:连接1AB 交1A B 于点N 连接MN因为四边形11AA B B 为平行四边形 11AB A B N ⋂=,则N 为1AB 的中点 因为M 为11B C 的中点,则1MN AC ∥∵1AC ⊂/平面1A MB MN ⊂平面1A MB 故1AC ∥平面1A MB . (2)因为1CC ⊥平面ABC ∴1AC 与平面ABC 所成的角为1CAC ∠因为ABC △是边长为2的等边三角形,则2AC =∵1CC ⊥平面ABC AC ⊂平面ABC ∴1CC AC ⊥,则11tan 2CC CAC AC ∠==所以 124CC AC ==∵1AC ∥平面1A MB 1P AC ∈ 所以点P 到平面1A MB 的距离等于点1C 到平面1A MB 的距离因为M 为11B C 的中点,则11111211222A MC A B C S S ===△△则1111111111433A P A MB C A MB B A C M C M V V V BB S ---===⋅=⨯=△.20.(1)解:因为cos cos b A a B b c -=-由余弦定理可得22222222b c a a c b b a b c bc ac +-+-⋅-⋅=-化简可得222b c a bc +-= 由余弦定理可得2221cos 22b c a A bc +-==因为0A π<< 所以 3A π=.(2)解:因为cos B =,则B 为锐角 所以 sin 3B ===因为A B C π++= 所以 23C B π=-所以22211sin sin sin cos cos sin 333232326C B B B πππ⎛⎫=-=-=⨯+⨯=+⎪⎝⎭设BAD θ∠=,则23CAD πθ∠=-在ABD △和ACD △中由正弦定理得sin sin BD AD B θ==sin sin 3CD AD C πθ==⎛⎫- ⎪⎝⎭因为2CD BD =(3sin 3πθθ⎛⎫-=⎪⎝⎭(1sin 3sin 22θθθ⎫-=+⎪⎪⎭(2sin θθ=+所以tan tan BAD θ∠===21.(1)由题意 设AB a =,则2PA AC a == 4AD a =CD =∴PD == 又PA ⊥平面ABCD AC ⊂面ABCD∴PA AC ⊥,则在Rt PAC △中PC =在PCD △中222CD PC PD +=,则CD AC ⊥ 又CD ⊂面ABCD 有PA CD ⊥ 又AC PA A ⋂= 故有CD ⊥面P AC 又E F 分别为PD PC 的中点 即EF CD ∥ ∴EF ⊥面P AC 又EF ⊂面AEF ,则平面PAC ⊥平面AEF ;(2)过E 作EH AD ⊥ 易知H 为AD 中点 若G 是AC 中点 连接EH HG EG∴GH AC ⊥ EH AC ⊥ GH EH H ⋂= 故AC ⊥面EHG 即EGH ∠是二面角E AC D --的平面角∴由图知:二面角E AC B --为EGH π-∠易知EH PA ∥,则EH ⊥面ABCD GH ⊂面ABCD 所以EH GH ⊥在Rt EHG △中EH a = GH =,则2GE a =∴cos 2EGH ∠=,则二面角E AC B --的余弦值为()cos 2EGH π-∠=-.22.(1)设APB θ∠= 由题意知AC CP ⊥ AC = 4km CP = 30yAB ∠=︒ 所以tanCAP ∠==即30CAP ∠=︒ 8km AP = 1803030120PAB ∠=︒-︒-︒=︒ 在BAP △中10km AB =由正弦定理得 ()sin sin sin 60AB AP AP ABP θθ==∠︒- 即()108sin sin 60θθ=︒-化简得13sin θθ= 即tan θ=所以此时在P 处观察全岛所张视角APB ∠. (2)过点B 作BD CP ⊥于点D 设km CP x =由(1)得 当5x >时 点P 在点D 的右侧 ()5km PD x =-,则tan BD BPC PD ∠==当05x <<时 点P 在点D 的左侧 ()5km PD x =-,则tan 5BD BPC PD x ∠=-=-.又tan APC ∠=,则当0x > 且5x ≠时有())24tan tan 5108x BPC APC x x θ+=∠-∠==-+. 当5x =时 点P 与点D 重合tan tan CD CAD AC θ=∠== 满足上式所以)24tan 5108x x x θ+=-+.令4x t +=,则)tan 445410813t t t t t θ===>---++- ⎪⎝⎭因为14424t t +≥=,则0tan θ<≤= 当且仅当1444t t =>即12t = 8x =时取等号 此时tan θ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省长沙市浏阳一中2015-2016学年高一数学第三次月考试题
满分:150分 时量:120分钟 姓名:__________
一、选择题(每小题5分,共60分)
1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则)(B C A U ⋂=( )
A .{}2
B .{}2,3
C .{}3
D .{}1,3
2、 已知函数x
x x f 1+=)(,则函数()y f x =的大致图像为( )
3、函数f (x )=log 3x -8+2x 的零点一定位于区间( )
A .(5,6)
B .(3,4)
C .(2,3)
D .(1,2)
4、若6.03=a ,2.0log 3=b ,3
6.0=c ,则( ). A .b c a >> B .c b a >> C .a b c >> D .a c b >>
5、用一个平面去截正方体,则截面不可能是( )
A.正三角形
B.正方形
C.正五边形
D.正六边形
6、下列函数中,与函数y x =相同的函数是 ( )
A .x x y 2=
B .2y x =
C .ln x y e =
D .x y 22log =
7、点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为( )
A . 14π
B .7π
C .
72π D .7143π 8、函数y =x 2-4x +1,x ∈[1,5]的值域是( )
A .[-2,6]
B .(-∞,-3 ]
C .[-3,+∞)
D .[-3,6]
9、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )
A .π
B .π2
C .π3
D .π4
10、已知m ,n 是两条不重合的直线,γβα、、是三个两两不重合的平面,下列结论正确的是( )
(1)若m//n ,n//β,且βααα//,,则⊂⊂n m
(2)若,//,n m n =βα 则βα//,//m m
(3)若βαγβγα//,//,//则
(4)若n n //m ,,m ,//则且==βγαγβα
A .(1)(2)
B .(2)(3)
C .(3)(4)
D .(1)(4)
11、异面直线a ,b 所成的角60°,直线a ⊥c ,则直线b 与c 所成的角的范围为( ).
A .[30°,90°] B.[60°,90°] C .[30°,60°]
D .[30°,
120°] 12、对于函数()f x ,若在其定义域内存在两个实数(),a b a b <,当[],x ab ∈时,()f x 的值域也是[],a b ,则称函数()f x 为“科比函数”.若函数2)(++
=x k x f 是“科比函数”,则实数k 的取值范围( )
A .]2,4
9(-- B .]0,49(- C .]0,2[- D .),2[+∞-
二、填空题(每小题5分,共20分)
13、已知函数2()21
x f x a =-+是奇函数,则实数a 的值为______________. 14、方程0=27+•12-39x x 的解集是 . 15、一平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于 .
16、给出下列四个命题:
①函数x
y a =(0a >且1a ≠)与函数log x a y a =(0a >且1a ≠)的定义域相同; ②函数3y x =与3x
y =的值域相同; ③函数11221
x y =+-与2(12)2x x y x +=⋅都是奇函数; ④函数2(1)y x =-与12x y -=在区间[0,)+∞上都是增函数,
其中正确命题的序号是 (把你认为正确的命题序号都填上).
三、解答题(共70分)。