固体物理-能带理论
固体物理第五章_晶体的能带理论

e 1 iN1k1 a1
N1k1 a1 2l1 b1 a1 2
取
k1
l1 N1
b1
满足上式,得到
Байду номын сангаас(
a1
)
i
e
l1 N1
b1
a1
同理可以得到
k2
l2 N2
b2
( a2
)
ei
l2 N2
b2
a2
k3
l3 N3
b3
(
a3
)
i l3
e N3
b3 a3
11
具有波矢的意义
17
简约布里渊区
为了使本征函数与本征值一一对应,即使电子 的波矢k与本征值E(k)一一对应,必须把波矢的 取值限制在一个倒格原胞区间内
bi 2
ki
bi 2
i 1,2,3
这个区间为简约布里渊区或第一布里渊区。
18
b3 O b2
b1 简约布里渊区
19
简约布里渊区内,电子的波矢数目等于晶体的 原胞数目
第五章 晶体中电子能带理论
1.孤立原子中电子受原子束缚,处于分立能级; 晶体中的电子不再束缚于个别原子,而是在一 个周期性势场中作共有化运动。在晶体中该类 电子的能级形成一个带。 2. 晶体中电子的能带在波矢空间具有反演对 称性,且是倒格子的周期函数。 3. 能带理论成功的解释了固体的许多物理特 性,是研究固体性质的重要理论基础。
本征值
13
(3) 电子波函数是按晶格周期调幅的平面波
( r Rn ) eikRn ( r )
!构造波函数
黄昆 固体物理 讲义 第四章

KK
KK
KK K K K K T1ψ ( r ) = ψ ( r + a1 ) = eik ⋅a1ψ ( r )
ψ ( r ) 和ψ ( r + a1 ) 分别是相邻两个原胞中电子的波函数 —— 两者只相差一个位相因子 λ1 = eik ⋅a
K
K
K
K
KK
1
,不同的简 2)平移算符本征值量子数: k 称为简约波矢(与电子波函数的波矢有区别,也有联系) 约波矢,原胞之间的位相差不同。 3)如果简约波矢改变一个倒格子矢量: Gn = n1b1 + n 2 b2 + n3b3 , n1 , n 2 , n3 为整数。
-3-
CREATED BY XCH
固体物理学_黄昆_第四章 能带理论_20050404
由于存在对易关系,根据量子力学可以选取 H 的本征函数,使它同时成为各平移算符的本征函数。
有:
Hψ = Eψ T1ψ = λψ ψ = λ2ψ , T3ψ = λ3ψ 1 , T2
本征值的确定: λ1 , λ2 , λ3
KK ik ⋅a1
则平移算符 T1 , T2 , T3 的本征值可以表示为: λ1 = e
, λ2 = e ik ⋅a2 , λ3 = e ik ⋅a3
KK
KK
将 T ( Rm ) = T1 1 ( a1 )T2 2 ( a 2 )T3 3 ( a 3 ) 作用于电子的波函数ψ ( r )
m m m
K K K
K
K
K
( 2π ) 3 Ω
固体物理学_黄昆_第四章 能带理论_20050404
第四章 能带理论
能带理论是目前研究固体中电子运动的一个主要理论基础. 在二十世纪二十年代末和三十年代初期, 在量子力学运动规律确立以后,它是在用量子力学研究金属电导理论的过程中开始发展起来的.最 初的成就在于定性地阐明了晶体中电子运动的普遍性的特点。 —— 说明了固体为什么会有导体、非导体的区别 —— 晶体中电子的平均自由程为什么会远大于原子的间距……等 —— 能带论为分析半导体提供了理论基础,有力地推动了半导体技术的发展 —— 大型高速计算机的发展, 使能带理论的研究从定性的普遍性规律发展到对具体材料复杂能带结 构的计算 能带理论是一个近似的理论.在固体中存在大量的电子。它们的运动是相互关联着的,每个电子的 运动都要受其它电子运动的牵连,这种多电子系统严格的解显然是不可能的.能带理论是单电子近 似的理论,就是把每个电子的运动看成是独立的在一个等效势场中的运动.在大多数情况下,人们 最关心的是价电子,在原子结合成固体的过程中价电子的运动状态发生了很大的变化,而内层电子 的变化是比较小的,可以把原子核和内层电子近似看成是一个离子实.这样价电子的等效势场,包 括离子实的势场,其它价电子的平均势场以及考虑电子波函数反对称性而带来的交换作用.单电子 近似最早用于研究多电子原子,又称为哈特里(Hartree)-福克(ΦOK)自洽场方法。 能带理论的出发点是固体中的电子不再束缚于个别的原子,而是在整个固体内运动,称为共有化电 子.在讨论共有化电子的运动状态时假定原子实处在其平衡位置,而把原子实偏离平衡位置的影响 看成微扰,对于理想晶体,原子规则排列成晶格,晶格具有周期性,因而等效势场 V(r)也应具有周 期性.晶体中的电子就是在一个具有晶格周期性的等效势场中运动,
固体物理_第4章_能带理论

ik ( r R n ) u ( r Rn ) e u (r )
u ( r ) ,代入上式有:
(2 )
则:u (r Rn ) u (r )
即布洛赫波是振幅受到具有同晶格周期相同的周期性函数调制的平面 波。
ˆ ( R ) H HT ( R ) 0 ˆ ˆˆ T n n
根据量子力学知识可知:哈密顿量和平移算符有共同的本征态,可选 择哈密顿量的本征态 (r ) 为共同本征态。
采用波恩-卡曼周期性边界条件有: N ˆ ˆ ˆ ˆ (r ) (r N1a1 ) T ( N1a1 ) (r ) T (a1 )T (a1 )T (a1 ) (r ) 1 1 (r )
,而内层电子的变化较小,可以把内层电子和原子实近似看成离子实 这样价电子的等效势场包括离子实的势场,其他价电子的平均势场以 及电子波函数反对称性而带来的交换作用。 能带理论是单电子近似理论,即把每个电子的运动看成是独立的 在一个等效势场中的运动。单电子近似理论最早用于研究多电子原子
,又称为哈特里(Hartree)-福克(o )自洽场方法。 把多体问题简化为单电子问题需要进行多次简化。1、绝热近似: 原子核或者离子实的质量比电子大的多,离子的运动速度慢,在讨论 电子问题时可以认为离子是固定在瞬时位置上。这样多种粒子的多体 问题就简化为多电子问题;
能带理论取得相当的成功,但也有他的局限性。如过渡金属化 合物的价电子迁移率较小,相应的自由程和晶格常数相当,这时不 能把价电子看成共有化电子,周期场的描述失去意义,能带理论不 再适用。此外,从电子和晶格相互作用的强弱程度来看,在离子晶 体中的电子的运动会引起周围晶格畸变,电子是带着这种畸变一起 前进的,这些情况都不能简单看成周期场中单电子运动。
固体物理学:第四章 能带理论

能量本征值的计算 选取某个具有布洛赫函数形式的完全集合,晶体中
的电子的波函数按此函数集合展开。
将电子的波函数代入薛定谔方程,确定展开式中的 系数应满足的久期方程,求解久期方程得到能量本征 值。
电子波函数的计算
根据能量本征值确定电子波函数展开式中的系数, 得到具体的波函数。
在不同的能带计算模型和方法中,采取的理论框架相 同,只是选取不同的函数集合。
பைடு நூலகம்
(#) (#)中
能带理论是用量子力学研究固体中电子的运动规律,把原 本复杂的多体问题经过一定的近似处理后,转化为一个电子在 周期性势场中的运动,晶体中其它所有电荷的影响均可以用此 单电子的周期性势场来概括。有时也称能带理论为固体的单电 子理论。
单电子近似最早用于研究多电子原子,称为哈特里 ----福克自洽场方法。
E
2P 2S
1S
0
a
离子间距
能带重叠示意图
晶体中的一个电子只能处在某个能带中的 某一 能级上。
排布原则: 1. 服从泡里不相容原理(费米子) 2. 服从能量最小原理
设孤立原子的一个能级 Enl ,它最多能容纳 N(2l +1)个电子。
这一能级分裂成由 N条能级组成的能带后,能 带最多能容纳 2N(2l +1)个电子。
解定态薛定格方程,可以得出两点重要结论:
1.电子的能量是分立的能级; 2.电子的运动有隧道效应。
原子的外层电子(高能级), 势垒穿透概率 较大, 电子可以在整个晶体中运动, 称为 共有化电子。
原子的内层电子与原子核结合较紧,一般 不是共有化电子。
能带 (energy band)
晶体中的电子能级 有什么特点?
第四章 能带理论
固体物理第5章_能带理论_习题参考答案

第六章 能带理论 (习题参考答案)1. 一矩形晶格,原胞长10a 210m-=⨯,10b410m-=⨯(1)画出倒格子图(2)以广延图和简约图两种形式,画出第一布里渊区和第二布里渊区(3)画出自由电子的费米面(设每个原胞有2个电子)解:(1)因为a =a i=20A i b =b j=40A j倒格子基矢为12a iA*=, 014bj A*=以a *b *为基矢构成的倒格子如图。
由图可见,矩形晶格的倒格子也是矩形格子。
(2)取任一倒格子点O作为原点,由原点以及最近邻点A i,次近邻点B i的连线的中垂线可以围成第一,第二布里渊区,上图这就是布里渊区的广延图。
如采用简约形式,将第二区移入第一区,我们得到下图。
(3) 设晶体中共有N个原胞,计及自旋后,在简约布里渊区中便有2N个状态。
简约布里渊区的面积21()8A a bA ***-=⨯=而状态密度22()16()N g K N A A*==当每个原胞中有2个电子时,晶体电子总数为 22()216Fk FN g k kdk N k ππ=⨯=⎰所以1/211111()0.2()210()8F k A m π---=≈=⨯这就是费米圆的半径。
费米圆如下图所示2. 已知一维晶体的电子能带可写成()2271cos cos 2,88E k ka ka m a ⎛⎫=-+⎪⎝⎭式中a 是晶格常数。
试求: (i )能带的宽度;(ii )电子在波矢k 状态时的速度; (iii )能带底部和顶部电子的有效质量。
()()()()()()()()22222m in 2m ax 22m ax m in 22222m in 71cos cos 2,8811cos 24400,2;221sin 24sin 404k i E k ka ka m a ka m a k E k E am a E E E m am aii v E kv ka ka m aiii E k kk E E mπ⎛⎫=-+⎪⎝⎭⎡⎤=--⎢⎥⎣⎦====∆=-=∴=∇∴=--==+解:当时,当时,能带的宽度为:在能带底部,将在附近用泰勒级数展开,可得:()()()22m in 22m ax 22m ax 220342203k E mm m E k k E E k mk E mm m ππδδδ****=+∴===-=+∴=-在能带顶部,将在附近用泰勒级数展开,令k=+k 可得:aa3. 试证明:如果只计及最近邻的相互作用,用紧束缚方法导出的简单立方晶体中S 态电子的能带为()2cos 2cos 2cos 2s x y z E k E A J ak ak ak πππ⎡⎤=--++⎣⎦并求能带的宽度。
固体物理--能带理论

固体物理中关于能带理论的认识摘要:本文运用能带理论就晶体中的电子行为作一些讨论,以期对能带理论的概念更细致的把握。
关键词:能带理论电子共有化绝热近似平均场近似周期场假定引言能带理论(Energy band theory)是研究晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。
它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论,对于晶体中的价电子而言,等效势场包括原子核的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场。
能带理论认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动。
1 能带理论的假定能带理论是目前的固体电子理论中最重要的理论。
量子自由电子理论可作为一种零级近似而归入能带理论。
能带理论是一个近似理论,下面对该理论所作的假定作为一探讨。
实际晶体是由大量电子和原子核组成的多粒子体系。
如果不采用一些简化近似,从理论上研究固体的能级和波函数是极为困难的。
1.1 绝热近似考虑到电子与核的质量相差悬殊。
可以把核与电子的运动分开考虑,相当于忽略了电子——声子相互作用。
电子运动时,可以认为核是不动的。
电子是在固体不动的原子核产生的势场中运动。
1.2 平均场近似因为所有电子的运动是关联的。
可用一种平均场来代替价电子之间的相互作用,即假定每个电子所处的势场都相同。
使每个电子的电子间相互作用能仅与该电子的位置有关,而与其它电子的位置无关,在上述近似下,每个电子都处在同样的势场中运动,既所有电子都满足同样的薛定谔方程,只要解得方程,就可得晶体电子体系的电子状态和能量。
使多电子问题简化为一个单电子问题,所以上述近似也称单电子近似。
1.3 周期场假定薛定谔方程中势能项是原子实对电子的势能,具有与晶格相同的周期性。
代表一种平均势能,应是恒量。
因此,在单电子近似和晶格周期场假定下,就把多电子体系问题简化为在晶格周期势场的单电子定态问题,上述在单电子近似基础上的固体电子理论称能带论。
第二章能带理论

何力的作用,电子在运动过程中受到晶格中原子周 期势场的作用。
是什么原因决定了固体是导体,绝缘体,或者半导体?
固体的能带结构!
自由电子理论忽略了电子与原子和其它电子 的相互作用,有局限性。
能带理论认为电子要受到一个周期性势场的作用。
导体
104 107 m
108 m
半导体
绝缘体
它们的导电性能不同, 108 m 是因为它们的能带结构不同。
一般填充规律:
孤立原子的内层电子能级一般都是填满的, 在形成固体时,其相应的能带也填满了电子。
孤立原子的最外层电子能级可能填满了电子也可 能未填满电子。若原来填满电子的, 在形成固体时,其相应的能带也填满电子。
经典自由电子理论
正离子所形成的电场是均匀的;自由电子运动的规律遵循经典力学气体分子的运动 定律;自由电子与正离子之间的相互作用仅仅是类似于机械碰撞。
该理论认为,在没有外电场作用时,金属中的自由电子沿着各方向运动的几率相同, 故不产生电流。当施加外电场后,自由电子获得附加速度,于是便沿外电场方向发 生定向迁移,从而形成电流。自由电子在定向迁移过程中,因不断与正离子发生碰 撞,使电子的迁移受阻,因而产生了电阻。
核磁共振方法不仅在核物理研究中起着重要作用,而且在科学技术上也有 着广泛的应用。例如,核磁共振分析可以用来探测物质的微观结构和各种 相互作用;核磁共振人体成像有望成为诊断疾病的有力工具。
自由电子气 真实晶体中的电子
能带理论的基本假设
能带理论的基本出发点: 固体中的电子不是完全被束缚在某个原子周围,
绝缘体的电阻率 ~ 1014 1022 cm
固体物理学:能带理论1

但是:索末菲量子的自由电子气理论仍有对不少物理性质无 法解释。 如:有些金属霍尔系数为正;
固体分为导体、半导体和绝缘体的物理本质等。
回顾自由电子模型的假设,再对照上述与自由电子模型不 相符合的试验现象,自由电子模型的主要问题出在对于固定离 子与电子的相互作用的处理上。特鲁德的模型假设电子除碰撞 瞬间外,与离子晶格无关,也即假定晶体中的势能为零,因而 在其中运动的电子不受束缚而是自由的(自由电子假设);碰撞 后的状态与碰撞前无关(碰撞自由时间假设)。这是一个大的简 化,进一步固体理论的发展就从这里入手。
对于一维点阵(点阵常数为a),
电子的波函数 eikx若k远离BZ边界时
(即
k πn a
时),电子波不受Bragg
反射,从各原子散射的波没有确定的
位相关系,对入射波的传播无什么影
响,与x-ray在晶体中的传播是相同的。
14
但当 波
k
eikx满πa n足时B,ra如gg条k 件 a,,波此程时差平为面
19
= 2u
1 0
(
cos2 x
a
-
sin 2 x
a
)
cos
2
a
xdx
=u
20
实际的势场并非是上面的简单形式, 而是一个复杂函数,但可用倒易点阵矢 量展成付氏级数,展成余弦势的叠加, 在一级近似下,在Bz边界都有能量间隙。
u(x)
n
un
cos
2
a
nx
=
Eg un
实际上,晶体中的离子是有规律地排列的,电子也并不完全 自由,它们的运动要受到组成晶体的离子和电子共同产生的 晶格周期性势场的影响。因此,1928年,跟索末菲提出他的 自由电子气模型的同一年,布洛赫(F Bloch)首先运用量子力 学原理来分析晶体中外层电子的运动,阐明了周期场中运动 的电子所具有的基本特征,为固体能带理论奠定了基础。 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简约布里渊区的波矢数目
(2 )3
N
(2 )3
N
固体体积
04_02 一维周期场中电子运动的近自由电子近似 模型和微扰计算
近自由电子近似模型
—— 金属中电子受到原子 实周期性势场的作用
—— 假定势场的起伏较小
零级近似 —— 用势场平均值代替原子实产生的势场
V V (x)
—— 周期性势场的起伏量 可以作为微扰来处理
3 e N3
2 i l1
1 e N1
2 i l2
2 e N2
2 i l3
3 e N3
—— 引入矢量
k
l1 N1
b1
l2 N2
b2
l3 N3
b3
—— 倒格子基矢
满足 ai gb j 2ij
平移算符的本征值 1 eikga1 , 2 eik ga2 , 3 eikga3
平移算符的本征值 1 eik ga1 , 2 eik ga2 , 3 eikga3
—— V(x) 第n个傅里叶系数
二级修正项
E(2) k
k'
k H k 2 Ek0 Ek0'
E ( 2) k
n
'
Vn 2
h2 2m
k
2
k
n a
2
2
—— 电子的能量本征值
Ek
h2k2 V 2m
n
'
Vn 2
h2 2m
k
2
k
n a
2
2
微扰下电子的波函数
电子的波函数
k
非晶态固体 —— 非晶态固体和液态金属只有短程有序 两种物质的电子能谱 显然不是长程序的周期场的结果
电子与电子之间的作用
—— 从多体问题的角度 电子之间的相互作用不能简单地用平均场代替
—— 金属中的价电子系统__不能用电子气来描述了 必须把价电子系统看成量子液体
电子与晶格之间的作用
—— 电子和晶格相互作用 在离子晶体中电子的运动会引起周围晶格畸变 电子带着这种畸变一起前进的
电子波矢在
附近的能量和波函数
简并微扰 —— 波函数由简并波函数线性组合构成
状态 k n (1 )
a
0 —— 是一个小量
—— 主要影响的态
—— 只考虑影响最大的状态,忽略其它状态的影响
状态
对状态
的影响
k
k
简并波函数
(x)
a
0 k
b
0 k
薛定谔方程 H0 (x) H (x) E (x)
Ek0
Vn 2 Ek0 Ek0
Vn 2 Ek0 Ek0
—— 原来能级较高的k’提高 原来能级较低的k下压
E
1 2
Ek0
Ek0
Ek0 Ek0
2
4
Vn
2
2) Ek0 Ek0 Vn
k n (1 ) k n (1 )
a
a
波矢k非常接近
,k状态的能量和k’能量差别很小
将
按
展开
E
中掺入其它零级波函数
0 k
(x)
1 ei
k
n a
2
x
L
—— 能量差越小掺入部分越大
当
时
两个状态具有相同的能量 —— 导致了波函数的发散
电子能量的意义
二级能量修正
E(2) k
n
'
Vn 2
h2 2m
k
2
k
n a
2
2
当
E(2) k
—— 电子的能量是发散的 —— k和k’两个状态具有相同的能量____k和k’态简并
E
V
V
Tn Vn Tn Vn
2Tn
2
Tn Vn
2Tn
2
Tn Vn
1
1
2) 当 0 时
E V Tn Vn
E V Tn Vn
两种情形下完全对称的能级
—— A和B 两个状态作用后的能级
—— C和D 两个状态作用后的能级
3) 能带和带隙____禁带
—— 零级近似,电子能量曲线为抛物线
V (x) V V
零级近似下电子的能量和波函数 —— 空格子中电子的能量和波函数 金属的线度
零级近似下
薛定谔方程
波函数和能量本征值
0 k
(
x)
1 eikx L
Ek0
2k 2 2m
V
周期边界条件
—— l 为整数
电子的波矢取值 k l 2
Na
—— 能量
Ek0
2k 2 2m
V
满足正交归一化
L
0*
第四章 能带理论
能带理论 —— 研究固体中电子运动的主要理论基础 —— 定性阐明了晶体中电子运动的普遍性的特点
—— 说明了导体、非导体的区别 —— 晶体中电子的平均自由程为什么远大于原子的间距 —— 半导体理论问题的基础,推动了半导体技术的发展
能带理论 —— 单电子近似的理论
每个电子的运动 —— 看成是独立的 在一个等效势场中的运动
2a n
—— 布拉格反射条件在正入射时的结果
入射波波矢
散射波成份的振幅
Vn
h2 [k 2 (k n 2 )2 ]
2m
a
波函数一级修正项
1 eikx
Vn
i2 n x
e a
L
n
h2 2m
k
2
k
n a
2
2
—— 微扰法不再适用了
2) 电子波函数和不同态之间的相互作用
在零级波函数
—— 电子不再是在周期场中的运动
04_01 布洛赫定理
布洛赫定理 —— 势场 V (r)具有晶格周期性时
电子的波函数满足薛定谔方程
h2 2m
2
V
(r)
(r)
E
(r)
—— 方程的解具有以下性质
(r Rn ) eikRn (r) —— 布洛赫定理
(r Rn ) eikRn (r) —— 布洛赫定理
Ek0
2k 2 2m
V
—— 微扰情形,电子的k不在 n / a 附近
Ek0 Ek0 Vn
—— k状态不计二级能量修正
'
Vn 2
n
h2 2m
k
2
k
n a
2
2
3) 能带和带隙____禁带
Ek
h2k2 V 2m
n
'
Vn 2
h2 2m
k
2
k
n a
2
Vn 2 Ek0 Ek0
E
Ek0
Ek0
Vn 2 Ek0 Ek0
Vn 2 Ek0 Ek0
k和k’能级相互作用 —— 原来能级较高的k’提高 原来能级较低的k下压
量子力学中微扰作用 —— 两个相互影响的能级 总是原来较高的能量提高了 原来较低的能量降低了
—— 能级间“排斥作用”
E
Ek0
—— 势场的周期性反映了晶格的平移对称性
晶格平移任意矢量
势场不变
—— 在晶体中引入描述这些平移对称操作的算符
T1, T2 , T3
平移任意晶格矢量
对应的平移算符
T
(Rm
)
T m1 1
(a1 )T2m2
(a2
)T3m3
(a3
)
平移算符 的性质 作用于任意函数
——
平移算符作用于周期性势场
各平移算符之间对易 对于任意函数
为一矢量 —— 当平移晶格矢量 —— 波函数只增加了相位因子
电子的波函数 (r) eikruk (r)
—— 布洛赫函数
晶格周期性函数 uk (r R) uk (r)
布洛赫定理的证明
—— 引入平移算符 证明平移算符与哈密顿算符对易 两者具有相同的本征函数
—— 利用周期性边界条件 确定平移算符的本征值 给出电子波函数的形式
单电子近似 —— 最早用于研究多电子原子 —— 哈特里-福克自洽场方法
能带理论的出发点 —— 电子不再束缚于个别的原子 而在整个固体内运动
—— 共有化电子
共有化电子的运动状态
—— 假定原子实处在平衡位置 把原子实偏离平衡位置的影响看成微扰
理想晶体 —— 晶格具有周期性,等效势场具有周期性
—— 电子在晶格周期性的等效势场中运动
—— 本征值相同
为了使简约波矢 的取值和平移算符的本征值一一对应
—— 取值限制第一布里渊区
bj 2
kj
bj 2
简约波矢
k
l1 N1
b1
l2 N2
b2
l3 N3
b3
第一布里渊区体积
简约波矢
k
l1 N1
b1
l2 N2
b2
l3 N3
b3
—— 在 空间中第一布里渊区均匀分布的点
每个代表点的体积
状态密度 Vc
k
k0dx
kk
0
微扰下电子的能量本征值 哈密顿量
量子力学微扰理论 —— 电子的能量本征值
Ek
Ek0
E (1) k
E (2) k
.
能量本征值
Ek
Ek0
E (1) k
E (2) k
.
一级能量修正
E (1) k
L
0
1 eikxV (x) L
1
eikx
dx
V
0
L
二级能量修正
E(2) k
k
k H k 2 Ek0 Ek0
应用
H
0
0 k
Ek0