解三角形练习题三

合集下载

解三角形 习题含答案

解三角形 习题含答案

第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )A .A >B >C B .B >A >C C .C >B >AD .C >A >B解析 由正弦定理a sin A =b sin B ,∴sin B =b sin A a =32.∵B 为锐角,∴B =60°,则C =90°,故C >B >A . 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .43C .4 6 D.323解析 A =45°,由正弦定理,得b =a sin B sin A 答案 C4.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C等于( ) A.833 B.2393 C.2633 D .2 3解析 利用正弦定理及比例性质,得a +b +c sin A +sin B +sin C =a sin A =3sin60°=332=2 3. 答案 D 5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1: 3 :2C .1: 2 : 3 D. 2 : 3 :2 解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cos A =a 2+(3a )2-(2a )22·a ·3a=0, ∴A =90°. 设最小角为B ,则cos B =(2a )2+(3a )2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sin B =a sin A ,得sin B =b sin A a =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R (sin 2A -sin 2C )=(2a -b )sin B (其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b )·b 2R ,∴a 2-c 2=(2a -b )b ,∴a 2+b 2-c 2=2ab ,∴cos C =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析 由a sin A =b sin B =c sin C =2R ,又sin 2A +sin 2B -sin A sin B =sin 2C ,可得a 2+b 2-ab =c 2 ∴cos C =a 2+b 2-c 22ab =12,∴C =60°,sin C =32.∴S △ABC =12ab sin C = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )A.85B.58C.53D.35解析 由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sin B sin C =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32 km解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b 为( )A .2B .4+23C .4-2 3 D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A ,∵a =c ,∴0=b 2-2bc cos A =b 2-2b (6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22(32-12)=14(6-2),∴b 2-2b (6+2)cos75°=b 2-2b (6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =b sin C sin B =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sin B =sin(A +60°)=12sin A +32cos A .又由b =2a ,知sin B =2sin A .∴2sin A =12sin A +32cos A 即32sin A =32cos A .∵cos A ≠0,∴tan A =33.∵0°<A <180°,∴A =30°. 答案 30°15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =________,AB =________.解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sin B ∴10 3=12AB ×5×sin60°,∴AB =8.答案60° 816.在△ABC 中,已知(b +c ) : (c +a ) : (a +b )=8:9:10,则sin A :sin B :sin C=________.解析 设⎩⎪⎨⎪⎧ b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sin A :sin B :sin C =11:9:7. 答案 11:9:717.(10分)在△ABC 中,若a 2b 2=sin A cos B cos A sin B ,判断△ABC 的形状.解 依据正弦定理,得a 2b 2=a b ·cos B cos A ,所以a cos A =b cos B .再由正弦定理,得sin A cos A=sin B cos B ,即sin2A =sin2B ,因为2A,2B ∈(0,2π),故2A =2B ,或2A +2B =π.从而A =B ,或A +B =π2,即△ABC 为等腰三角形,或直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B )-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B )-3=0,得sin(A +B )=32.∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C=(a +b )2-3ab =12-6=6.∴c = 6.S △ABC =12ab sin C =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.分析 (1)要求AD 的长,在△ABD 中,AB =126,B =45°,可由正弦定理求解;(2)要求CD 的长,在△ACD 中,可由余弦定理求解.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =12 6,由正弦定理,得AD =AB sin B sin ∠ADB =126×2232=24(nmile). (2)在△ADC 中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC ·cos30°.解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,sin A =45.又由AB →·AC→=3,得bc cos A =3,∴bc =5. 因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5,又b +c =6,∴b =5,c =1,或b =1,c =5.由余弦定理,得a 2=b 2+c 2-2bc cos A =20.∴a =2 5.21.(12分)在△ABC 中,已知内角A =π3,边BC =23,设内角B =x ,周长为y .(1)求函数y =f (x )的解析式和定义域;(2)求y 的最大值.解 (1)△ABC 的内角和A +B +C =π,由A =π3,B >0,C >0,得0<B <2π3.应用正弦定理,得AC =BC sin A ·sin B =23sin π3·sin x =4sin x .AB =BC sin A sin C =4sin ⎝ ⎛⎭⎪⎫2π3-x . ∵y =AB +BC +CA ,∴y =4sin x +4sin ⎝ ⎛⎭⎪⎫2π3-x +23⎝ ⎛⎭⎪⎫0<x <2π3. (2)y =4(sin x +32cos x +12sin x )+2 3 =43sin(x +π6)+2 3. ∵π6<x +π6<5π6,∴当x +π6=π2,即x =π3时,y 取得最大值6 3.22.(12分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B,sin(B -A )=cos C . (1)求A ,C ;(2)若S △ABC =3+3,求a ,c .解 (1)因为tan C =sin A +sin B cos A +cos B, 即sin C cos C =sin A +sin B cos A +cos B, 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,得sin(C -A )=sin(B -C ).所以C -A =B -C ,或C -A =π-(B -C )(不成立),即2C =A +B ,得C =π3,所以B +A =2π3.又因为sin(B -A )=cos C =12,则B -A =π6,或B -A =5π6(舍去).得A =π4,B =5π12. 所以A =π4,C =π3.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即a 22=c 32. 得a =22,c =2 3.。

解三角形专项练习(含解答题)

解三角形专项练习(含解答题)

解三角形专练1.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为2.在ABC ∆中,若0120,2==A b ,三角形的面积3=S ,则三角形外接圆的半径为( )A.B .2 C..43.边长为8,7,5的三角形的最大角与最小角的和是( ) A . 120 B . 135 C . 90 D . 1504.在△ABC 中,已知a =4,b =6,C =120°,则边C 的值是( ) A .8 B. C. D.5.在三角形ABC 中,若1tan tan tantan ++=B A B A ,则C cos 的值是B. 22C. 21D. 21-6.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是( )A .直角三角形B .等腰或直角三角形C .不能确定D .等腰三角形7.在△ABC 中,角,,A B C 所对的边分别为,,a b c .若22265b c a bc+-=,则 sin()B C +=( )A .-45 B.45 C .-35 D.358.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形9.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若18=a ,24=b ,︒=45A ,则这样的三角形有( )A.0个 B. 两个 C. 一个 D. 至多一个10.已知锐角A 是ABC ∆的一个内角,,,a b c 是三角形中各角的对应边,若221sin cos 2A A -=,则下列各式正确的是( )A. 2b c a +=B. 2b c a +<C. 2b c a +≤D. 2b c a +≥11.在ABC ∆中,已知30,4,34=∠==B AC AB ,则ABC ∆的面积是A .34B .38 C.34或38D .312.在ABC ∆中,角角,,A B C 的对边分别为,,a b c ,若22a b -=且sin C B =,则A 等于A .6πB .4π C .3πD .23π13.若∆ABC 的三角A:B:C=1:2:3,则A 、B 、C 分别所对边a :b :c=( )A.1:2:3B.2 D. 1:2: 14.△ABC 的三个内角A,B,C 的对边分别a ,b ,c ,且a cosC,b cosB,c cosA 成等差数列,则角B 等于( )A 30B .60C 90 D.12015.在∆ABC 中,三边a ,b,c 与面积S 的关系式为2221()4Sa b c =+-,则角C 为( )A .30B 45C .60D .90 16.△ABC 中,a b sin B =2,则符合条件的三角形有( ) A .1个 B .2个 C .3个D .0个17.设∆ABC 的内角A,B ,C 所对边的长分别为a,b,c ,若b+c= 2a,.3sinA=5sinB ,则角C=( ) A .3πB .23πC .34π D.56π18.若三角形ABC 中,sin(A +B)sin(A -B)=sin 2C ,则此三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形19.已知两座灯塔A 、B 与C 的距离都是a ,灯塔A 在C 的北偏东20°,灯塔B 在C 的南偏东40°,则灯塔A 与灯塔B 的距离为 ( )A .a B.2aD20.在△ABC 中,若cos cos A bB a =,则△ABC 的形状( ) A .直角三角形 B .等腰或直角三角形C .不能确定D .等腰三角形21.已知ABC ∆的内角A B C ,,的对边分别为a b c ,,,且120c b B ==︒,则ABC ∆的面积等于________.22.在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<2sin b A =. 则角B 的大小为_______;23.在△ABC 中,sin :sin :sin 3:2:4A B C =,则cos C 的值为________. 24.在ABC ∆中.若1b =,c =23C π∠=,则a=___________。

解三角形练习题及答案

解三角形练习题及答案

解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。

高中数学解三角形精选题目(附答案)

高中数学解三角形精选题目(附答案)

高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。

解三角形经典练习题集锦(附答案)

解三角形经典练习题集锦(附答案)

A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角解三角形2. _______________________________________________ 在厶 ABC 中,若 a 2b 2bc c 2,则A _____________________________ 。

3. _____________________________________________________ 在厶 ABC 中,若 b 2,B 30°,C 135°,则a _______________________ 。

4. 在厶 ABC 中,若 si nA : sin B : si nC 7 : 8 : 13,贝UC _____________ 。

°5. 在厶ABC 中,AB .、62, C 30°,则AC BC 的最大值是。

三、解答题一、选择题1. 在厶 ABC 中,A: B: C 1:2:3,则 a:b:c 等于( )A . 1: 2:3B . 3:2:1C . 1: .3:2D . 2^ 3 :1 2.在厶ABC 中,若角B 为钝角,则si nB si nA 的值( ) A.大于零 B.小于零 C.等于零 D .不能确定 3. 在厶ABC 中,若A 2B ,则a 等于()A . 2b si nAB . 2b cosAC . 2bsi nBD . 2b cosB 4. 在厶 ABC 中,若 Ig si nA Ig cos B Ig sin C Ig 2,则△ ABC 的形状是( ) A.直角三角形B .等边三角形C .不能确定D .等腰三角形A B a b7.在厶ABC 中,若tan ,则△ ABC 的形状是( )2 a b形或直角三角形二、填空题解三角形一、选择题 1.在厶 ABC 中,若 C 900,a 6, B 300,则 c b 等于( )2.在厶ABC 中,求证:,cos B cos A 、A. 1B. 1C. 2.3D. 2.32. 若A ABC 的内角,则下列函数中一定取正值的是( ) 1 A. sin A B. cosA C . tanA D .- tan A3. 在厶ABC 中,角A, B 均为锐角,且cos A sinB,则厶ABC 的形 状是( ) A.直角三角形 B .锐角三角形C •钝角三角形D .等腰 三角形 4. 等腰三角形一腰上的高是 3,这条高与底边的夹角为 600,则底 边长为( )、,3 — A . 2 B . C . 3 D. 2.3 25. 在厶ABC 中,若b 2asin B ,则A 等于( )A . 300或60°B . 450或60° C . 120°或60° D . 30°或 150° 3.在锐角△ ABC 中,求证:si nA si nB sinC cosA cosB cosC 。

解三角形经典练习题集锦

解三角形经典练习题集锦

解三角形经典练习题集锦解三角形一、选择题1.在△ABC中,若C=90°,a=6,B=30°,则c-b等于()A.1B.-1C.2/3D.-2/32.若A为△ABC的内角,则下列函数中一定取正值的是()A.sinAB.cosAC.XXXD.1/tanA3.在△ABC中,角A,B均为锐角,且cosA>sinB,则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为60°,则底边长为()A.2B.3/2C.3D.2/35.在△ABC中,若b=2asinB,则A等于()A.30°或60°B.45°或60°C.120°或60°D.30°或150°6.边长为5,7,8的三角形的最大角与最小角的和是()A.90°B.120°C.135°D.150°二、填空题1.在Rt△ABC中,C=90°,则sinAsinB的最大值是1/2.2.在△ABC中,若a^2=b^2+bc+c^2,则A=120°。

3.在△ABC中,若b=2,B=30°,C=135°,则a=2√3.4.在△ABC中,若5.在△ABC中,AB=6-2,C=30°,则AC+BC的最大值是2√7.三、解答题1.在△ABC中,若acosA+bcosB=ccosC,则△ABC为等腰三角形。

2.在△ABC中,证明:a/b-cosBcosA/a-c=b/a-c。

3.在锐角△ABC中,证明:XXX>XXX。

4.在△ABC中,设a+c=2b,A-C=π/3,则sinB=1/2.5.在△ABC中,若(a+b+c)(b+c-a)=3bc,则A的度数为()A.90B.60C.135D.150解析:根据余弦定理,有$b^2+c^2-2bc\cos A=a^2$,代入$(a+b+c)(b+c-a)=3bc$中,整理得$\cos A=-\frac{1}{2}$,即$A=120^\circ$,选项B正确。

解三角形 综合测试题

解三角形 综合测试题

解三角形综合测试题一、选择题(每小题 5 分,共 60 分)1、在△ABC 中,角 A、B、C 所对的边分别为 a、b、c。

若 A =60°,a =√3,b = 1,则 c =()A 1B 2C √3D √22、在△ABC 中,若 a = 2,b =2√3,A = 30°,则 B 为()A 60°B 60°或 120°C 30°D 30°或 150°3、在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a = 1,c = 2,B = 60°,则 b =()A √3B √5C √7D 14、在△ABC 中,若 sin A : sin B : sin C = 3 : 4 : 5,则 cos C 的值为()A 1/5B 1/5C 1/4D 1/45、在△ABC 中,若 a = 5,b = 6,c = 7,则△ABC 的面积为()A 6√6B 10√3C 15√3D 20√36、在△ABC 中,若 A = 60°,b = 1,S△ABC =√3,则 a + b + c / sin A + sin B + sin C =()A 2√39 /3B 26√3 /3C 8√3 /3D 2√37、在△ABC 中,若 a = 7,b = 8,cos C = 13 / 14,则最大角的余弦值是()A 1/7B 1/8C 1/9D 1/108、在△ABC 中,若 a = 2,b = 3,C = 60°,则 c =()A √7B √19C √13D 79、在△ABC 中,若 A = 60°,a =4√3,b =4√2,则 B 等于()A 45°或 135°B 135°C 45°D 以上答案都不对10、在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,若 a cosA = b cos B,则△ABC 的形状为()A 等腰三角形B 直角三角形C 等腰直角三角形D 等腰三角形或直角三角形11、在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,若 a =1,b =√7,c =√3,则 B =()A 120°B 60°C 45°D 30°12、在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,若(a+ b + c)(a + b c)= 3ab,则角 C 的度数为()A 30°B 45°C 60°D 90°二、填空题(每小题 5 分,共 20 分)13、在△ABC 中,若 A = 30°,B = 45°,a = 2,则 b =______。

高中解三角形试题及答案

高中解三角形试题及答案

高中解三角形试题及答案一、选择题1. 若三角形ABC的三个内角A、B、C满足sinA = 2sinBcosC,则三角形ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形答案:A2. 在三角形ABC中,若a = 3, b = 4, c = 5,则三角形ABC的面积S是()A. 3√3B. 4√3C. 5√3D. 6√3答案:B二、填空题3. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数为______。

答案:75°4. 若三角形ABC的三边长分别为a = 2, b = 3, c = 4,则三角形ABC的外接圆半径R为______。

答案:√10/2三、解答题5. 已知三角形ABC的三边长分别为a = 5, b = 12, c = 13,求三角形ABC的面积。

答案:根据余弦定理,可得cosA = (b² + c² - a²) / (2bc) = (144 + 169 - 25) / (2 × 12 × 13) = 1/2,因此∠A = 60°。

根据正弦定理,S = 1/2 × b × c ×sinA = 1/2 × 12 × 13 × √3/2 = 39√3。

6. 已知三角形ABC中,∠A = 30°,∠B = 45°,求边长b和c的关系。

答案:根据三角形内角和定理,可得∠C = 180° - 30° - 45° = 105°。

设边长b = x,则根据正弦定理,有a/sinA = b/sinB,即a/sin30° = x/sin45°,解得a = x√2/2。

再根据正弦定理,有a/sinA = c/sinC,即x√2/2 / sin30° = c/sin105°,解得c = x√2/2 × (√6 + √2) / 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形练习题三
一、选择题
1. 在ABC中,,1,60,45cCB则最短边的边长等于 ( )

A. 36B. 26C. 21D.
2

3

2. 在ABC中,CcBbAacoscoscos,则ABC一定是 ( )
A. 直角三角形 B. 钝角三角形 C. 等腰三角形 D. 等边三角形
3. 在ABC中,,,602acbB,则ABC一定是 ( )
A. 直角三角形 B. 钝角三角形 C. 等腰三角形 D. 等边三角形
4. 已知O是ABC所在平面上一点,若OAOCOCOBOBOA,则点O是ABC的( )
A. 垂心 B. 重心 C. 外心 D. 内心
5. 在ABC中,已知35,22,18Aba,若求B,解的个数是( )
A.无解 B.一解 C.两解 D.三解

6. 在ABC中,内角CBA,,所对的边分别是cba,,,已知4,6,2CBb,则ABC的面积
为( )
A. 232 B. 13 C. 232 D. 13
7. ABC中,CBA,,所对的边分别为cba,,,若60,4,3Cba,则c的值等于()
A. 5 B. 13 C. 13 D.37
8.在ABC中,45,22,32Bba,则A为 ()
A. 30或150 B. 60 C. 60或120 D. 30

9. 钝角三角形ABC的面积是21,2,1BCAB,则AC( )
A. 5 B. 5 C. 2 D. 1
二、填空题
1. 在ABC中,30,150,350Bcb,则边长a .
2. 在钝角ABC中,2,1ba,则最大边c的取值范围是 .
3. ABC的一边长为14,这条边所对的角为60,另两边之比为58:,则这个三角形的面积
为 .
4.在ABC中,CBA,,所对的边分别为cba,,,且满足6:5:2sin:sin:sinCBA.若
ABC

的面积为4393,则ABC的周长为 .
三、解答题
1. 设ABC的内角CBA、、所对的边为cba、、,且cAbBa53coscos.

(1) 求BAtan1tan的值;
(2) 求)tan(BA的最大值.
2. ABC的内角CBA、、的对边分别为,cba、、己知BbCaCcAasinsin2sinsin.
(Ⅰ)求B;
(Ⅱ)若,2,75bA求ca,.
3. 证明:ABC是等边三角形的充要条件是bcacabcba222,这里cba,,是ABC的
三条边.

4. 在ABC中,54cos,135cosCB.
(Ⅰ)求Asin的值;
(Ⅱ)设ABC的面积233ABCS,求BC的长.
5. 已知,cba、、分别为ABC三个内角CBA、、的对边,3sincoscaCcA.
(Ⅰ)求A;
(Ⅱ)若2a,ABC的面积为3,求bc,.
6. 四边形ABCD的内角A与C互补,,3,1BCAB2CDDA.
(Ⅰ)求C和BD;
(Ⅱ)求四边形ABCD的面积.
7. ABC的内角CBA,,的对边分别为cba,,,已知BcCbasincos.
(Ⅰ)求B;
(Ⅱ)若2b,求ABC面积的最大值.

8. 在ABC中,552cos,10,45CACB,求
(1)BC的长
(2)若点D是AB的中点,求中线CD的长度.
9. 2005(理)ABC中,内角CBA,,的对边分别为cba,,,已知cba,,成等比数列,且
4

3
cosB

(1)求CAtan1tan1的值;
(2)若23BCBA,求ca的值
10. 设ABC的内角CBA,,的对边长分别为acbBCAcba2,23cos)cos(,,,,求B.

相关文档
最新文档