总第45课时 轴对称的坐标表示

合集下载

坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则b a的值为_______. 【思路点拨】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=-3,1-b=-1,再解方程可得a、b的值,进而算出b a的值.【答案】25【解析】解:∵点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),∴a+b=-3,1-b=-1,解得:b=2,a=-5,ba=25,【总结升华】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)【答案】A.2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2、4.4.(2016春•江西期末)如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S△ABO=3×4﹣×3×2﹣×4×1﹣×2×2=5;(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】(2014秋•宣汉县期末)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).。

用坐标表示轴对称

用坐标表示轴对称

结论:点(x,y)关于x 轴对称的点的坐标为.(x,-y.), 即横坐标相等,纵坐标互为相反数;
点(x,y)关于y轴对称的点的坐标为.(-x,y).,即横坐 标互为相反数,纵坐标相等;
点(x,y)关于原点对称的点的坐标为(. -x,-y.)即, 横 坐标互为相反数,纵坐标互为相反数。
25
51 54
1、在平面直角坐标系中,点P(-1,3)与点P1 (3,3)可以看成关于直线 X=1 轴对称;
2、在平面直角坐标系中,点P(-1,3)பைடு நூலகம்点P2 (-1,-5)可以看成关于 直线y=-1 轴对称;
x 13
·P1
2
y 3 (5) 2
P2·
如图,分别作出△PQR关于直线x=1(记为m)和直 线y=-1(记为n)对称的图形,你能发现它们的对应 点的坐标之间分别有什么关系吗?
·Q1 ·P1
·R1
R2
P2 Q2
结论:
1、点(x,y)关于直线x=m对称的点的坐标为(2m-
x,y),即若两点(x1,y1)、(x2,y2)关于直线x=m对 称,则m= x1 x2 ,y1=y2,
2 2、点(x,y)关于直线y=n对称的点的坐标为
(x,2n-y),即若两点(x1,y1)、(x2,y2)关于直 线y=n对称,则x1=x2, n= y1 y2
21
;/naotanjc 脑瘫检查项目有哪些 脑瘫的检查方法 脑瘫检查需要做哪些

大多数中国人旅游喜欢蜻蜓点水,而且“上车睡觉,下车拍照,定点尿尿,举旗报到,回家什么都不知道”。 ? 176、两支火把 两支火把,奉火神之命到世界各地去考察。两支火把中有一支没有点燃,另一支是点燃的,发出很亮的光芒。过了不久,两支火把都回来了,而且都向 火神提交了它们的考察报

《轴对称与坐标变化》教案

《轴对称与坐标变化》教案

《轴对称与坐标变化》教案《《轴对称与坐标变化》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容2017——2018八年级数学教学设计课题名称:轴对称与坐标变化姓名:吕欢工作单位:水城县比德中学学科年级:八年级教材版本:北师大版一、教学难点内容分析七年级上册同学们已经掌握了轴对称图形,那么再平面执教坐标系中关于两条“轴”对称的图形它们的顶点坐标有怎样的关系呢?同学们经过了前几节课的学习,已经学习了怎样确定物体的位置,系统的学习了平面直角坐标系的基本概念,并且能再直角坐标系中表示物体的位置,认识了点与左边之间的对应关系,同时能根据坐标描点,进而连线形成图形。

对于将相应的图顶点坐标按照一定的规律来变化后得到的图形与原图形的位置关系,从而学生自行的探索和发现图形的对称性与坐标变化的情况,本节课中“中心对称图形”作为本节课的拓展知识点与难点,因为同学们还没有认识“中心对称图形”,所以该拓展内容作为了本节课探索的难点。

同时,使用动态PPT演示关于“中心对称图形”成为了我设计的一个难点。

二、教学目标【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

用坐标表示轴对称ppt课件

用坐标表示轴对称ppt课件

B '(-4,-2)
你能说出点B 与点B'坐标的 x 关系吗?
学习探究
➢【自学】 自学教材P68-69页完成《学习任务单》的活动1、2(3分钟).
活动1:根据问题1、问题2、问题3,由此你能得到什么结论?
关于x轴对称的点的坐标的特点:
自学要求: (独立不讨论)
①圈点勾画; ②标记疑问.
关于y轴对称的点的坐标的特点:
(4分钟)
活动3:在平面直角坐标系中画出下列各点关于y轴的对称点。
y
展学要求:
(x , y)
关于
B(-4,2)
B '(-4,-2)
积极展示,自信大方。 ①组长主持,分工讲解; ②有没有补充和质疑的?
y轴 对称
O
x
( -x, y )
C '(3,4)
C (3,-4)
学习小结
知识要点
关于x轴对称的点的坐标的特点: 横坐标相等,纵坐标互为相反数。(简称:横轴横相等)
则点B关于x轴的对称点C的坐标是( D )
A.(-4,-2)
B.(2,2)
C.(-2,2)
D.(2,-2)
学以致用
3.设点M(x,y)在第二象限,且|x|=2,|y|=3,则点M关于y轴的对称点的坐标是
(A )
A.(2,3) B.(-2,3) C.(-3,2) D.(-3,-2)
4.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1
M
A N
学习探究
任务一 学习用坐标表示轴对称 问题2:如图,在平面直角坐标系中你能画出点A关于x轴的对称点吗?
y
A (2,3)
你能说出点A 与点A'坐标的 关系吗?

人教版数学八年级上册用坐标表示轴对称PPT完整版

人教版数学八年级上册用坐标表示轴对称PPT完整版
用坐标表示轴对称
新知引入
猜一 猜
一位外国游客在天安门广场询问小明西 直门的位置,但他只知道东直门的位置, 聪明的小明想了想,就准确的告诉了他, 你能猜到小明是怎么做的吗?
新知引入
如图,是一幅老北京城的示意图,其
中西直门和东直门是关于中轴线对称
的.如果以天安门为原点,分别以长安
街和中轴线为x轴和y轴建立平面直角
对称 y

图形
.
解:点A(-3,5),B(-4,1),C(-1,3), 关于y轴对称点的坐标分别为 A′(3,5),B′(4,1),C′(1,3). 依次连接A′B′ ,B′C′ ,C′A′ , 就得到△ABC关于y轴对称的△A′B′C′.
·A 5
·A′
·B
· · 4 3 C 2 C′
1
·B′
步骤:一找、二描、三连
-4 -3 -2 -1-O1
-2 -3 -4
12345x
人教版数学八年级上册13.1.1用坐标 表示轴 对称
人教版数学八年级上册13.1.1用坐标 表示轴 对称
新知应用
例3 四边形ABCD的四个顶点的坐标分别为 A(-5,1)、B(-2,1)、
C(-2,5) 、D(-5,4),分别作出四边形关于y轴与x轴对称的图形.
B.(2,2)
C.(-2,2)
D.(2,-2)
人教版数学八年级上册13.1.1用坐标 表示轴 对称
人教版数学八年级上册13.1.1用坐标 表示轴 对称
新知演练
【变式2】在平面直角坐标系中,已知点A(2,m)和点 B(n,-3)关于x轴对称,则m+n的值是( C ) A.-1 B.1 C.5 D.-5
O
坐标系.根据如图所示的东直门的坐标,

初中数学初中数学 轴对称的坐标表示

初中数学初中数学    轴对称的坐标表示

3.3 轴对称和平移的坐标表示第1课时 轴对称的坐标表示1.在平面直角坐标系中,探索关于x 轴、y 轴对称的点的坐标规律;(重点)2.利用关于x 轴、y 轴对称的点的坐标的规律,能作出关于x 、y 轴对称的图形.(难点)一、情境导入 在我们的生活中,对称是一种很常见的现象.把如图所示成轴对称的黄鹤楼图形放在平面直角坐标系中,其对称轴为某条坐标轴.那么,图形上对称的坐标会有什么关系呢?二、合作探究探究点一:关于x 轴、y 轴对称的点的坐标点A (2a -3,b )与点A ′(4,a +2)关于x 轴对称,求a ,b .解析:此题应根据关于x 轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a -3与4相等,b 与a +2互为相反数.解:由点A (2a -3,b )与点A ′(4,a +2)关于x 轴对称得2a -3=4,a +2=-b .所以a =72,b =-112. 方法总结:在平面直角坐标系中,关于坐标轴对称的点的坐标规律:若A (x ,y )与B (m ,n )关于x 轴对称,则有x =m ,y =-n ;若A (x ,y )与B (m ,n )关于y 轴对称,则有x =-m ,y =n ;若A (x ,y )与B (m ,n )关于原点对称,则有x =-m ,y =-n .探究点二:作图——轴对称变换如下图所示,△ABC 三个顶点的坐标分别为A (-1,4),B (-3,1),C (0,0),作出△ABC 关于x 轴、y 轴的对称图形.并写出对称点的坐标.解析:分别作点A ,B ,C 关于x 轴、y 轴的对称点即可.解:如图所示;A 1(1,4),B 1(3,1),A 2(-1,-4),B 2(-3,-1),C点关于x轴、y轴的对称点的坐标不变,均为(0,0).方法总结:作对称图形应先确定对称点,再顺次连接各点即可.探究点三:平面直角坐标系中的规律探究如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2015的坐标为________.解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称的坐标表示1.关于x轴对称的点横坐标不变,纵坐标互为相反数.点(x,y)关于x轴的对称点的坐标为(x,-y);2.关于y轴对称的点横坐标互为相反数,纵坐标不变.点(x,y)关于y轴的对称点的坐标为(-x,y).通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成2、训练学生良好的数学思维习惯和思维品质。

初二数学知识点详解之轴对称

初二数学知识点详解之轴对称

初二数学知识点详解之轴对称一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的'直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x,y)关于x轴对称的点的坐标为_(x,-y)_____.点(x,y)关于y轴对称的点的坐标为___(-x,y)___.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)理解:已知等腰三角形的一线就可以推知另两线。

《轴对称的坐标表示》PPT课件 湘教版

《轴对称的坐标表示》PPT课件 湘教版

1.已知P(2,-3)关于x轴对称的点P1,P1关于y轴对称的点 P2,则P2的坐标是( D ) A.(2,-3) B.(-2,-3) C.(2,3) D.(-2,3)
2.已知点A(2,-2),如果点A关于x轴的对称点是B,点B关 于原点的对称点是C,那么C点的坐标是( D ) A.(2,2) B.(-2,2) C.(-1,-1) D.(-2,-2)
思考:如果点(a, b)同时关于x轴和y轴,变化的结果如何? (-a, -b) 关于原点对称!
如图,在平面直角坐标系中, △ABC的顶点坐标分别为A(2,4), B(1,2),C(5,2). (1)作出△ABC关于y轴的轴对 称图形,并写出其顶点坐标. (2)作出△ABC关于x轴的轴对 称图形,并写出其顶点坐标.
A: (–7, –2)
D: (–3, –2) –1
A
D –2
1 23 45 678 x
D′: (3, –2)
A′: (7, –2)
D′
A′
–3
D′(3, -2)
B
B: (–7, –5)
–4
C
–5
C: (–3, –5) –6
C′
C′: (3, –5)B′B′: (7 Nhomakorabea –5)
3. (1)如果点A(-4,a)与点A′(-4,-2)关于x轴对称, 则a的值为____2____. (2)如果点B(-2,2b+1)与点B′(2,3)关于y轴对称, 则b的值为____1____. 【教材P97页】
作一个图形关于坐标轴的轴对 称图形,怎样画最简便呢?
A1(-2,4)
1.作出三角形三个顶点关于坐标
轴的对称点.
C1(-5,2) B1(-1,2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂作业
• 见学案
• 关于x轴对称,x相同;关于y轴对称,y相同。
自学检测2:
2.坐标平面内一点P(a,b)关于x轴对称的点的坐标 (a,-b) ;关于y轴对称的点的坐标______ (-a,b) . 为_______ 3.P97 第2题,画在图(1)平面直角坐标系中。
归纳步骤: ①先求出已知图形中顶点的对 应点的坐标 ②描出这些对称点 A B D C D’ · C’ · · A’ ·B’ ③依次连接各对称点就可以 得到这个图形的轴对称图形.
一展身手2:
2.根据下列点的坐标的变化情况,判断它们是关于 x轴对称,还是关于y轴对称 · · ⑴(-1,0)→(1,0); ⑵(-5,-4)→(-5,4); ⑶(3,4)→(-3,4); ⑷(2,5)→(-2,5)→(-2,-5) · 解:(1)关于y轴对称 (2)关于x轴对称 (3)关于y轴对称 (4)先关于y轴对称,再关于x轴对称. 也可以直接看作是关于原点对称
拓展提升• 2. 已知坐标平面一点A(-1,2), (1)若A、B两点关于x轴对称,则B( (2)若A、B两点关于y轴对称,则B( (3)若A、B两点关于原点对称,则B(
), ), )。
课堂小结
• 1、学习了在平面直角坐标系中,关于x轴和y轴 对称的点的坐标的特点。 关于x轴的对称,x相同y相反;关于y轴的对称, x相反y 相同;关于原点对称时,x、y坐标 都 相反 。 • 2、学习了在平面直角坐标系中如何画一个图形 关于x轴或y轴的对称图形 先求出已知图形中的一些特殊点(如多边形的 顶点)的对应点的坐标,描出并连接这些点,就可以 得到这个图形的轴对称图形.
自学指导:
• 看书:P95~ P96, 6分钟 ①动脑筋中,点A(3,2)关于x轴的对称点A′的坐 标是 A′(3,-2)与A点比较,x坐 相同 (相同、相 反)、y坐标 相反 (相同、相反);点A(3,2) A 〞 (-3,2) 关于y轴的对称点A〞的坐标是 ,与 A点 相反 比较,你发现x坐标 (相同、相反)、 y坐 相同 标 (相同、相反)。 • ②在图3—19中完成P95 做一做。 • ③在图3—21中完成例题1,并思考要在平面直 角坐标系中画一个轴对称图形,怎样画更简单?
挑战自我
• 若点A(a+2,4-b)与点B(2b+3,2a)关于x轴对称, 则ab= 6 .
拓展提升
• 1.在图(2)已知 点A(-4,2),B(-1,4), (1)横坐标保持不变,纵坐标分别乘以-1,所得 图案与原图案有什么变化? (2)横坐标和纵坐标都乘以-1,所得图案与原图 案相比有什么变化? (3)当A、B两个点,关于原点对称时,x、y坐标 都 。
A’(7,-2),B’(7,-5),C’(3,-5),D’ (3,-2)
一展身手1:
• 1、①点M(a, -5)与点N(-2, b)关于x轴对称,则 -2 5 a=_____, b =_____. • ②点M(a, -5)与点N(-2, b)关于y轴对称,则 2 a=_____, b =_____. -5
第3章 图形与坐标
—— 轴对称的坐标表示
学习目标:
• 1. 熟练写出坐标平面内关于x轴、y轴对称的点的 坐标; • 2. 能在平面直角坐标系中画出关于x轴、y轴对称 的图形。
复习引入
• 若平面直角坐标系内有一点M,过M向x轴引垂 线,垂足表示的数a为M的 横 坐标,过M向y轴 引垂线,垂足表示的数b为M的 纵 坐标,点M的 坐标记作 (a,b) 。
自学检测1:
• 1. 结合动脑筋,完成下表 已知点 A(2,-3) B(-1,2) C(-6,-5) •
关于x轴对称的点 A’( 2,3 ) B’(-1,-2 ) C’( -6,5 )
关于y轴对称的点 A’’( -2,-3 ) B’’( 1,-2 ) C’’( 6,-5 )
• 讲评:填写下表
关于x轴的对称点 关于y轴的对称点 x坐标 相同 相反 y坐标 相反 相同
相关文档
最新文档