化工原理 第九章3
化工原理-第九章-液体精馏

化⼯原理-第九章-液体精馏化⼯原理-第九章-液体精馏(⼀)测试⼀⼀.选择题1.蒸馏是利⽤各组分()不同的特性实现分离的⽬的。
CA 溶解度;B 等规度;C 挥发度;D 调和度。
2.在⼆元混合液中,沸点低的组分称为()组分。
CA 可挥发;B 不挥发;C 易挥发;D 难挥发。
3.()是保证精馏过程连续稳定操作的必不可少的条件之⼀。
AA 液相回流;B 进料;C 侧线抽出;D 产品提纯。
4.在()中溶液部分⽓化⽽产⽣上升蒸⽓,是精馏得以连续稳定操作的⼀个必不可少条件。
CA 冷凝器;B 蒸发器;C 再沸器;D 换热器。
5.再沸器的作⽤是提供⼀定量的()流。
DA 上升物料;B 上升组分;C 上升产品;D 上升蒸⽓。
6.冷凝器的作⽤是提供()产品及保证有适宜的液相回流。
BA 塔顶⽓相;B 塔顶液相;C 塔底⽓相;D 塔底液相。
7.冷凝器的作⽤是提供塔顶液相产品及保证有适宜的()回流。
BA ⽓相;B 液相;C 固相;D 混合相。
8.在精馏塔中,原料液进⼊的那层板称为()。
CA 浮阀板;B 喷射板;C 加料板;D 分离板。
9.在精馏塔中,加料板以下的塔段(包括加料板)称为()。
BA 精馏段;B 提馏段;C 进料段;D 混合段。
10.某⼆元混合物,进料量为100 kmol/h ,x F = 0.6,要求塔顶x D 不⼩于0.9,则塔顶最⼤产量为()。
(则W=0) BA 60 kmol/h ;B 66.7 kmol/h ;C 90 kmol/h ;D 100 kmol/h 。
11.精馏分离某⼆元混合物,规定分离要求为D x 、w x 。
如进料分别为1F x 、2F x 时,其相应的最⼩回流⽐分别为1min R 、2min R 。
当21F F x x >时,则()。
AA .2min 1min R R <;B .2min 1min R R =;C .2min 1min R R >;D .min R 的⼤⼩⽆法确定12.精馏的操作线为直线,主要是因为()。
化工原理第9章

反应速率的影响愈大;反应转化率愈高,反应混
合物中残余反应物浓度愈小,返混对反应速率的
影响也愈大。
5-2 以产率和选择性为优化目标
对于复杂反应以产率和选择性为优化目标, 应考虑物料返混对于反应产物分布的影响。 • 平行反应过程优化
• 串连反应过程优化
A R S
k1 k2
反应器选型
i 1
VR ,t VR ,t qV , 0 c A, 0
i 1 i 1
n
• 多釜串联反应器的总有效容积VR,t的逐级解析计算
过程也可以在坐标图上进行 。
§5 均相反应过程优化与反应器选择
5-1 以生产强度为优化目标
生产强度是指单位容积反应器的生产能力。 当处理物料量和要求达到的最终转化率一定时, 对于不同型式的反应器,所需容积的大小,也表 明了该反应器生产强度的大小。
• 活化能较大、反应温度较高的化学反应,对温度十分敏感, 为了强化传热,减少温差,宜采用全混流反应器。 • 当反应物浓度较高易发生剧烈反应时,宜采用全混流反应 器。 • 反应速率较慢、反应时间较长的化学反应,宜选用间歇操 作搅拌釜或连续操作搅拌釜反应器。 • 气相反应多采用管式反应器。 • 高压反应宜采用管式反应器(细长设备耐压高)。 • 在高温条件下进行的强吸热反应(如裂解),通常采用管 式反应器。
• 反应器有效容积VR:
日处理量 VR (t t ') 24
V VR
• 实际所需反应器体积
易起泡和在沸腾下操作的液体: =0.40.6; 不易起泡和不在沸腾条件下操作的液体: =0.70.85
§2 连续操作管式反应器
• 物料中的所有流体微元在反应器内以相同的速度、
化学工程基础(化工原理)第9章 课后答案【khdaw_lxywyl】

均相反应过程
设t1、t2分别为转化率达 90%、99%所需要的时间,
1 1 ln t 2 k 1 − 0.99 则: = =2 1 1 t1 ln k 1 − 0 .9
ww
w. kh d
t1 = (2)t2 = 0.99 = 1650 min 0.3 × 0.2 × (1 − 0.99)
1650 = 11 150 t 2 t1 =
2
t=
xA kc A,0 (1 − x A )
乙酸、丁醇和乙酸乙酯的摩尔质量Mr分别为 6.0×10−2、7.4×10−2和 0.116kg⋅mol−1 (1 × 6.0 + 4.97 × 7.4) × 10
ww
w. kh d
= 40.1min = 0.67h (2)计算反应器有效体积 每小时乙酸用量为:
同一反应, 当初始浓度CA,0、 反应温度、 转化率相同时, 在间歇操作搅拌釜反应器和PFR 中进行反应的时间相同,即也为 4.44min。 qV,0 =
q n ,o = 0.684 = 0.137 m 3 ⋅ min −1 5
3
c A ,0
aw
0.8 = 50 min
案
= 0.4m3 ⋅ kmol−1 ⋅ min−1 对于 CSTR,则有:
1
2、在间歇操作搅拌釜反应器中进行等温液相反应 A+B→R
k = 0.3L ⋅ mol −1 ⋅ min −1 , c A ,o = c B,O = 0.2mol ⋅ L−1 , 已知: (− rA ) = kc A c B mol ⋅ L−1 ⋅ min −1 ,
试计算反应物 A 的转化率分别达 90%和 99%所需要的时间,并作比较。 解: (1)因cA,0 = cB,0 故: (−rA) = kcA2 = kcA,02 (1 − xA)2,代入式(9-2)积分得: xA 0.9 = = 150 min kc A,0 (1 − x A ) 0.3 × 0.2 × (1 − 0.9)
化工原理课件第9章:蒸馏

2.1 理想物系的汽液相平衡
2.1.4 t ~ x( y) 图和 y ~ x图
1. t~x(y)图 在恒定的总压下,溶液的平衡温度随组成而变, 将平衡温度与液(汽)相的组成关系标绘成曲线图, 该曲线图即为t-x(y)图。
化工原理——精馏
汽相区 露点 泡点
两相区
露点线 x1 泡点线
y1 液相区
0.43
注:
• • 含再沸器 所需理论板数最少 • 仅适用于理想溶液
化工原理——精馏
9.4 双组分连续精馏塔的计算 4.9.2 最小回流比
挟点
相同物系,分离要求一定,q越小,Rmin越大; 相同物系,xF及q一定,xD越大,Rmin越大。 化工原理——精馏
最小回流比 三种特殊的进料状态
x y 1 ( 1) x
xF
化工原理——精馏
9.4 双组分连续精馏塔的计算 4.9.1 全回流和最少理论塔板数
y1
L L R D 0
xD
操作线的斜率和截距分别为:
R 1 R1
特点: 操作线方程为:
xD 0 R1
yn1 xn
化工原理——精馏
9.4 双组分连续精馏塔的计算 4.9.1 全回流和最少理论塔板数 Fenske方程:
化工原理——精馏
连续操作流程:
精馏段
提馏段
化工原理——精馏
9.4 双组分连续精馏的计算 4.1 计算的基本假定 1. 理论板的假定
• 离开该板的汽液两相组成互成平衡,温度相等; • 塔板上各处的液相组成均匀一致。
化工原理——精馏
9.4 双组分连续精馏的计算
4.1 计算的基本假定
2. 恒摩尔流假定 (1)恒摩尔汽流
斜率
化工原理-9章液体精馏-课件PPT

两相区特点:当两相温度相同时 y > x 当组成相同,t露点>t泡点
t/C
在总压一定的条件下,将组成为 xf
的溶液加热至该溶液的泡点 TA,产
2
9.1 概 述
工业乙醇的蒸馏(有机化学实验)
3
思考:混合物的分类? 均相混物:物系内部各处物料性质均匀而且不存在相界面的
混合物。 化工生产过程中所遇到的物料有许多是两个或两个以上 组分的均相混合物。
如:石油、空气、粗甲醇
4
蒸馏操作在工业生产中的应用
5
世界六大蒸馏酒的制备 白兰地(Brandy)、威士忌(Whisky)、伏特加(Vodka)、
N ——组分数 φ ——相数
一定压力下: 组成xA(yA)与温度t存在一一对应关系; 气液组成之间xA~yA存在一一对应关系。
21
二、 拉乌尔定律( Raoult’s Law)
法国物理学家拉乌尔在1887年研究含有非挥发性溶质的 稀溶液的行为时发现的,可表述为:“在某一温度下,稀溶 液的蒸气压等于纯溶剂的蒸气压乘以溶剂的摩尔分数”。
填料塔
规整填料 塑料丝网波纹填料
散装填料 塑料鲍尔环填料
19
9.2 双组分溶液的气液相平衡
9.2.1 双组分理想物系的气液相平衡
理想物系:液相为理想溶液,气相为理想气体且服从 道尔顿分压定律的物系。
理想液体:没有黏性、不可压缩的液体。 理想气体:严格遵从气体状态方程的气体 。 道尔顿分压定律:理想气体混合物的总压力为各组元
原料液 加热器 减压阀 Q
塔顶产品
yA
闪 蒸 罐 xA
特点:闪蒸是连续、稳定的单级蒸 馏程,生产能力大,不能得 到高纯产物,常用于只需粗 略分离的物料。
化工原理习题第九章 液体精馏

第九章液体精馏1 .精馏操作时,若F,x ,q,R均不变,而将塔顶产品量D增加,其结果是:()。
(A)x 下降,x 下降;(B)x 下降,x 上升;(C)x 下降,x 不变;(D)x 不变,x 下降。
2 .某真空操作情馏塔,因故真空度减小,而F,D,x ,q,加料位置,回流比R都不变。
则塔底残液x 变化为:()(A)变小(B)变大(C)不变(D)不确定3 .精馏操作时,若F,D,x ,q,加料板位置,R都不变,而将塔顶泡点回流改为冷回流,则塔顶产品组成x 变化为:()(A)变小(B)变大(C)不变(D)不确定4 .精馏的操作线是直线,主要基于如下原因:()(A)理论板假定(B)理想物系(C)塔顶泡点回流(D)恒摩尔流假定。
5 .操作中连续精馏塔,如采用回流比小于最小回流比,则()(A)x,x均增加(B)x,x均不变(C)不能操作(D)x减小,x增加6 .两组份的相对挥发度越接近于 1 ,则表示分离该物系越____________( A )容易;(B )困难;( C )完全;( D )不完全。
7 .精馏设计时,若回流比 R 增加并不意味产品 D 减小,精馏操作时也可能有类似情况。
此话 ___________ 。
( A )对( B )错8 .精馏设计时,采用相同的塔釜蒸发量,则冷液进料比热加料需要较少理论板数。
此话 _______( 1 )对( 2 )错9 .某精馏塔的设计任务为:原料为 F 、 x f ,塔顶为 x D ,塔底为 x W ,若塔釜上升蒸汽量不变,加料热状态由原来的饱和蒸汽改为饱和液体,则所需理论板 N T _____。
( A )增加(B )减少( C )不变( D )不确定10 .精馏中引入回流,下降的液相与上升的汽相发生传质,使上升汽相中的易挥发组分浓度提高,最恰当的说法是由于 ________ 。
(A) 液相中易挥发组分进入汽相; (B) 汽相中难挥发组分进入液相;(C) 液相中易挥发组分和难挥发组分同时进入汽相,但其中易挥发组分较多;(D) 液相中易挥发组分进入汽相和汽相中难挥发组分进入液相的现象同时发生。
《化工原理》第九章-特殊精馏

初选方案一般规则:
1.按进料组分摩尔分率接近0.5对0.5进行分离; 2.进料各组分摩尔分率相近且按挥发度排序两两 间相对挥发度相近时,可把组分逐一从塔顶取出; 3.进料各组分按挥发度排序两两间相对挥发度差 别较大时,可按相对挥发度递减的方向排流程;
4.进料各组分摩尔分率差别较大时,按摩尔分率 递减的方向排列流程;
通常, 进料F, xFi(i=1~n-1)均已确定
如:已知:xDh,xWl
求: D ,W
FF
及其它xDi,xWi
变量分析:
3n+3个变量,n+3个式子,已知n+2个,
缺n-2个。非关键组分在塔顶、塔底?
约束条件(R、N、αij)难以用简单方式表达 ③清晰分割法:
塔顶重组分含量为0,塔底轻组分含量为0
④由
N min1
log
x Dl x Dh
xFh xFl
log lh
算精馏段最少理论板数
由
N
1 N1
N
min 1
1
=
N N min N 1
算出加料板位置N1
本次讲课习题: 第九章 23, 24, 28
5.产品纯度要求高的留在最后分离
具体:多方案作经济比较,决定合理的流程 如:5组分4塔14流程 经上述原则筛选 精馏的关键组分和物料衡算 ①关键组分 多组分精馏(如A,B,C,D), 塔顶只能规定一个组分含量 塔底只能规定一个组分含量 其它组分含量由R、N、αij确定 关键组分—对多组分精馏分离起控制作用的
8.2 萃取精馏 加萃取剂S(挥发性小),改变A、B组分
相对挥发度 AB
萃取剂主要条件:
①选择性高, 少量加入, αAB大大提高 ②挥发性要小, 沸点S>>沸点A、B ③与原溶液有足够的互溶度. 流程特点:加吸收段
中山大学化工原理课件第9章-干燥

(4) 湿比容-温度线 (H - H)
总压 P = 101.325 kPa 时: v H 0 .00 0 .2 08 0 H t 3 4 2 5 7 5
若已知湿度和温度,即可由对应直线查得气体湿比容。
对于P = 101.325 kPa 的饱和空气:
c a H w c c a H ac w s c H
2019/7/18
tastcrH 0 (HasH)
tasf t,H是湿空气在绝热、冷却、增湿过程中达到
的极限冷却温度。
ta
是
s
湿
空
气
的
性
质水,的而状与态
无
关
对于空气~水系统,c H
kH
tas tw
注意:绝热饱和温度于湿球温度的区别和联系!
1、比热 c H kJ/(kg 干气K)
常压下,将湿空气1Kg绝干空气及相应水汽的温度升高 (或降低)1℃所需要(或放出)的热量,称为湿比热。
cH ca Hw c
c a 干 空 气 的 比 热 , 1.01kJ/(kg·K)
c v 水 气 的 比 热 , 1.88kJ/(kg·K)
2019/7/18
相同之处:
1、湿空气均为等焓变化、 2、均为空气状态(t、H)的函数 3、对于空气水体系, tw tas, 不同之处:
1、湿球温度:大量空气与少量水接触后的稳定的水温,空气的状态, (t , H)不变。
绝热饱和温度:少量空气与大量水经过接触后达到的稳定温度,空 气增湿、降温。 2、 湿球温度:传质、传热仍在进行,因此属动态平衡范畴。
湿度 H
解:tw = tas = 52℃;先确 定 tas = 52℃ 的绝热冷却