高一单元同步练习数学:指数与指数函数(附答案)[上学期] 江苏教育版
2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)
![2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)](https://img.taocdn.com/s3/m/21e77658302b3169a45177232f60ddccda38e668.png)
2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)2.2.2指数函数1.下列以某为自变量的函数中,是指数函数的序号是__________.+①y=(-4)某②y=π某③y=-4某④y=a某2(a>0且a≠1)⑤y=(a+1)某(a>-1且a≠0)1-2.方程3某1=的解是__________.93.指数函数y=f(某)的图象经过点(2,4),那么f(-1)·f(3)=__________.4.指数函数y=(2m-1)某是单调减函数,则m的取值范围是__________.5.设f(某)=3某+2,则函数f(某)的值域为__________.6.函数y=1-3某的定义域是__________.7.右图是指数函数①y=a某;②y=b某;③y=c某;④y=d某的图象,则a、b、c、d与1的大小关系是__________.-8.(1)已知函数f(某)=4+a某2(a>0,a≠1)的图象恒过定点P,则点P的坐标是__________.(2)函数f(某)=a某2+2某-3+m(a>1)恒过点(1,10),则m=__________.1-9.设y1=40.9,y2=80.48,y3=()1.5,则y1、y2、y3的大小关系为__________.21110.为了得到函数y=3某()某的图象,可以把函数y=()某的图象向__________平移33__________个单位长度.-11.函数y=2某1+1的图象是由函数y=2某的图象经过怎样的平移得到的?12.已知函数f(某)的定义域为[,4],求函数f(2某)的定义域.213.已知镭经过100年剩余的质量是原来质量的0.9576,设质量为1的镭经过某年后,剩留量是y,求y关于某的函数关系式.14.函数y=()3某-1的值域是__________.15.下列说法中,正确的序号是__________.函数y=-e某的图象:①与y=e某的图象关于y轴对称;②与y=e某的图象关于坐标原--点对称;③与y=e某的图象关于某轴对称;④与y=e某的图象关于y轴对称;⑤与y=e某-的图象关于坐标原点对称;⑥与y=e某的图象关于某轴对称.16.(1)已知指数函数f(某)=a某(a>0且a≠1)的图象经过点(3,π),则f(-3)的值为__________;(2)函数y=a某(a>0,且a≠1)在[1,2]上的最大值与最小值的和为6,则a的值为__________.17.一种单细胞生物以一分为二的方式进行繁殖,每三分钟分裂一次,假设将一个这种细胞放在一个盛有营养液的容器中,恰好一小时这种细胞充满容器,假设开始将两个细胞放入容器,同样充满容器的时间是__________分钟.a,某>1,18.(易错题)若函数f(某)=是R上的单调增函数,则实数a的取值a4-某+2,某≤12范围是__________.某19.下列四个图形中,是函数y=a|某|(a>1)的大致图象的序号是__________.1120.已知实数a,b满足等式()a=()b,下列五个关系式:23①0其中不可能成立的关系式有__________个.21.设函数f(某)定义在实数集上,它的图象关于直线某=1对称,且当某≥1时,f(某)=1233某-1,则f(),f(),f()的大小关系是__________.33222.已知函数f(某)=-m(m为常数)是奇函数,则m=__________.2+1某23.(1)已知02-1,某≤0,24.(1)设函数f(某)=1若f(某0)>1,则某0的取值范围是__________.某,某>0.211(2)若某1、某2为方程2某=()-+1的两个实数解,则某1+某2=.2某1125.(易错题)(1)函数f(某)=()某-()某+1,某∈[-3,2]的值域是__________;42(2)已知函数y=a2某+2a某-1(a>0,且a≠1)在区间[-1,1]上有最大值14,则a的值为__________.11326.已知函数f(某)=(某+)·某.2-12(1)求f(某)的定义域;(2)讨论f(某)的奇偶性;(3)证明f(某)>0.-某27.讨论函数f(某)=()某2-2某的单调性,并求其值域.528.分别比较函数f(某)=2某2-2某-1,g(某)=(2)某2-2某-1与函数y=某2-2某-1的单调性之间的关系.答案与解析基础巩固1.②⑤由指数函数的定义知①③④不是指数函数;②是;⑤∵a>-1且a≠0,∴a+1>0且a+1≠1.∴y=(a+1)某(a>-1且a≠0)是指数函数.1---2.-1由=32,知3某1=32,9∴某-1=-2,即某=-1.3.4设f(某)=a某,由题意f(2)=4,即a2=4.又a>0且a≠1,∴a=2.∴f(某)=2某.-∴f(-1)·f(3)=21·23=22=4.114.<m<1由指数函数的性质知0<2m-1<1,∴<m<1.225.(2,+∞)∵3某>0,∴3某+2>2,即f(某)>2,∴f(某)的值域为(2,+∞).6.(-∞,0]要使函数有意义,必须1-3某≥0,即3某≤1,3某≤30,∴某≤0.∴函数的定义域为(-∞,0].7.b<a<1<d<c直线某=1与四个指数函数图象交点的坐标分别为(1,a),(1,b),(1,c),(1,d).由图象可知纵坐标的大小关系,即得答案.8.(1)(2,5)(2)9(1)函数图象随变量a的变化而变化,但恒有当某=2时,f(2)=4+a0=5,∴P(2,5).(2)∵f(某)恒过点(1,10),∴把(1,10)点代入解析式得a12+2某1-3+m=10,即m+a0=10,∴m=9.某9.y2<y3<y1y1=(22)0.9=21.8,y2=(23)0.48=230.48=21.44,y3=21.5,∵y=2某为R上的单调增函数,且1.44<1.5<1.8,∴21.44<21.5<21.8,即y2<y3<y1.11-110.右1∵y=3某()某=()某1,∴把函数y=()某的图象向右平移1个单位长度便得3331-1到y=()某1的图象,即y=3某()某的图象.3311.解:∵指数函数y=2某的图象向右平移一个单位长度,就得到函数y=2某1的图象.再-向上平移一个单位长度,就得到函数y=2某1+1的图象.-∴函数y=2某1+1的图象是由函数y=2某的图象向右平移一个单位长度再向上平移一个单位长度而得到的.-12.解:∵f(某)的定义域为[,4],21-∴≤2某≤4,即21≤2某≤22.2又函数y=2某是R上的增函数,∴-1≤某≤2.故函数f(2某)的定义域为[-1,2].13.解:由题意知,一百年后质量为1的镭剩留量y1=1某0.9576=0.95761,二百年后质量为1的镭剩留量y2=y1某0.9576=0.9576某0.9576=0.95762,…,某百年后质量为1的镭剩留量y=(0.9576)某,某∴某年后,y=0.9576.100能力提升14.(0,1]方法一(单调性法):∵函数的定义域为[1,+∞),且u=某-1为增函数,y=()u为减函数,3∴由复合函数的单调性知,原函数为减函数.∴当某=1时yma某=1.又指数函数值域为y>0,。
苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )2(3x +1)的定义域为()A.-13,+∞B.-∞,C.-13D.-13,12.设a =log 42.4,b =log 32.9,c =log 32.4,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.c >b >aD.a >c >b3.已知0<m <n <1,则指数函数①y =m x 和②y =n x 的图象为()A.B. C. D.4.已知函数f (x )=log 3(x -1),若f (a )=2,则实数a 的值为()A.3B.8C.9D.105.函数y 2+2的增区间为()A.(-∞,0)B.(-∞,-1]C.[-1,+∞)D.[-2,+∞)6.不论a 为何值,函数y =(a -1)2x-2恒过一定点,则这个定点为()A.1,B.1C.-1,D.-17.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致是()A. B. C. D.8.春末夏初,南京玄武湖公园荷花池中的荷花枝繁叶茂,已知每天新长出的荷叶覆盖水面的面积是前一天的两倍,若荷叶20天可以完全长满荷花池水面,则当荷叶刚好覆盖水面面积18时,荷叶已生长了()A.4天B.15天C.17天D.18天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列函数中定义域和值域相同的是()A.y = 23B.y = 15C.y =-xD.y =3x10.已知函数f (x )=log 3( -2), >2,3 -1, ≤2,则下列各式正确的是()A.f (5)=1B.f (f (5))=1C.f (3)=9D.f (f (3))=1311.设函数f (x )=(3-2 ) -1, ≤1,, >1,其中a >0且a ≠1,下列关于函数f (x )的说法正确的是()A.若a =2,则f (log 23)=3B.若f (x )在R 上是增函数,则1<a <32C.若f (0)=-1,则a =32D.函数f (x )为R 上的奇函数12.已知函数f (x )=lo g 12x ,下列四个命题正确的是()A.函数f (|x |)为偶函数B.若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C.函数f (-x 2+2x )在(1,3)上为增函数D.若0<a <1,则|f (1+a )|<|f (1-a )|三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13.若幂函数y =f (x 2,则f .14.设函数f (x )=lg x ,若f (2x )<f (2),则实数x 的取值范围是.15.函数f (x )=a 2-x-1(a >0,a ≠1)恒过定点,当0<a <1时,f (x 2)的增区间为.16.已知函数f (x )=x 2+log 2|x |,则不等式f (x -1)-f (1)<0的解集为.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)比较下列各组数的大小:(1)1.8,2.2;(2)0.70.8,0.80.7.18.(12分)已知关于x 的方程5x=15- 有负根,求实数a 的取值范围.19.(12分)已知函数f (x )=log a (-x 2+2x +3)(其中a >0且a ≠1)的值域为[-2,+∞).(1)求实数a 的值;(2)求函数f (x )的单调区间.20.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数.(1)求实数a 的值;(2)求函数g (x )=f (x )+1-2 ( )在0.21.(12分)设函数f (x )=lg (ax )·lg2.(1)当a =0.1时,求f (1000)的值;(2)若f (10)=10,求实数a 的值;(3)若对一切正实数x 恒有f (x )≤98,求实数a 的取值范围.22.(12分)为了预防流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y (单位:mg )与t 时间(单位:h )成正比,药物释放完毕后,y 与t之间的函数关系式为y 2+0.9 +(a 为常数),其图象如图所示,根据图中提供的信息回答下列问题:(1)从药物释放开始,求每立方米空气中的含药量y 与时间t 之间的函数关系式.(2)据测定,当空气中每立方米的含药量降低到116mg 以下时,学生方可进入教室,那么从药物释放开始至少需要经过多少小时,学生才可以回到教室?(第22题)参考答案1.D2.A3.C4.D5.B6.C7.A8.C9.BC 10.ABD 11.AB 12.ABD 13.-214.(0,1)15.(2,0)[0,+∞)16.(0,1)∪(1,2)17.(1)1.82.2(2)0.70.8<0.80.718.方程5x=15- 有负根,即0<15-<1,解得a <4,即a ∈(-∞,4)19.(1)a =12(2)函数f (x )的减区间为(-1,1],增区间为[1,3)20.(1)a =0(2)g (x )=x +1-2 ,x ∈0t =1-2 ,t ∈[0,1],则g (t )=t +1- 22=-12(t -1)2+1,所以12≤g (t )≤121.(1)f (1000)=-14(2)f (10)=lg (10a )·lg 100=(1+lg a )(lg a -2)=(lg a )2-lg a -2=10,即(lg a )2-lg a -12=0,解得lg a =4或-3,即a =104或10-3(3)因为对一切正实数x 恒有f (x )≤98,所以lg (ax )·lg 2≤98在(0,+∞)上恒成立,即(lg a +lg x )(lg a -2lg x )≤98,即2(lg x )2+lg a ·lg x -(lg a )2+98≥0在(0,+∞)上恒成立.因为x >0,所以lg x ∈R .由二次函数的性质可知,Δ=(lg a )2-8-(lg )2+,所以(lg a )2≤1,则-1≤lg a ≤1,所以110≤a ≤1022.(1)当0≤t ≤1时,设y =kt ,将点(0.1,1)代入得k =10,所以y =10t ,再将点(0.1,1)代入y 2+0.9 +,得a =-0.1,所以y 0≤ ≤1,2+0.9 -0.1, >1(2)2+0.9 -0.1≤116,所以( 2+0.9 -0.1),所以5(t 2+0.9t -0.1)≥4,所以10t 2+9t -9≥0,所以t ≥35或t ≤-32(舍去),所以学生要在0.6h 后才可以进入教室。
高一数学苏教必修同步练习: 指数函数 含答案

3.1 指数函数 1、若12a <,则化简()2421a -的结果是( ) A. 21a -B. 21a --C. 12a -D. 12a --2、已知二次函数22y ax bx =+图象如图所示,则()44a b -的值为( )A. a b +B. ()a b -+C. a b -D. b a -3、如果12,12b bx y -=+=+,那么用x 表示y 等于( ) A.11x x +- B. +x 1xC. 11x x -+ D. 1x x - 404313630.06253)48π的值是( ) A. 0B. 12C. 1D. 32 5、当2x -有意义时,化简224469x x x x -+--+的结果是( ) A. 25x - B. 21x --C. 1?-D. x -526、已知函数()5x f x =,()()2g x ax x a R =-∈,若[](1)1f g =,则a 等于( ) A.1 B.2 C.3 D.-17、已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2x x f x g x a a-+=-+ (0a >且1a ≠),若(2)g a =,则(2)f 等于( )A. 2B.154C. 174D. 2a8、函数1(0,1)x y a a a a=->≠的图象可能是( ) A. B. C. D.9、当0x >时,函数()()21xf x a =-的值总大于1,则实数a 的取值范围是( ) A. 12a <<B. 1a <C. 1a >D. a >10、函数()f x 的图象向右平移一个单位长度所得图象与e xy =关于y 轴对称,则()f x 等于( )A. 1e x +B. e x -1C. e x --1D. e x -+111、函数21(0,x b y a a +=+>,且,)1a b R ≠∈的图象恒过定点()1,2,则b 的值为__________12、若函数()(0,1)x f x a a a =>≠ 在 [1,2]- 上的最大值为4,最小值为m ,且函数()(14g x m =-在 [)0,?+∞ 上是增函数,则a =__________.13、求函数y =________. 14、已知22133()()22x x a a a a -++>++则实数x 的取值范围________.15、一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3/?mg ml ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地交通规则规定:驾驶员血液中的酒精含量不得超过0.08/mg ml ,那么喝了少量酒后的驾驶员至少要经过几个小时才能开车?(精确到1小时).答案以及解析1答案及解析:答案:C解析: ∵12a <,∴210a -<,12a =-,=.2答案及解析:答案:D解析:由图象知0,1b aa <->-, 故b a >,即0a b -<,a b b a =-=-.3答案及解析:答案:D解析: 由1?2b x =+,得21b x =-. 所以112211111.b b x y x x -=+=+==--+4答案及解析: 答案:B解析:原式10.5.522123=-+-=5答案及解析:答案:C 解析:,所以20x -≥,即2x ≤.所以()23231x x x x ==---=---=-.6答案及解析:答案:A 解析:由已知条件可知()()()11151a f g f a -=-==,∴10a -=,得1a =. 故选A.7答案及解析:答案:B解析:8答案及解析:答案:D解析:函数1x y a a =-由函数x y a =的图象向下平移1a个单位长度得到,A 项显然错误;当1a >时, 101a <<,平移距离小于1,所以B 项错误;当01a <<时, 11a>,平移距离大于1,所以C 项错误.9答案及解析:答案:D解析:由指数函数的性质,可知()f x 在()0,+∞上是增函数,所以211a ->,22a >,a >.10答案及解析:答案:C解析:和x y e =关于y 轴对称的是x y e -=,将其向左移一个单位即1.x y e--=11答案及解析:答案:-2解析:因为函数21x b y a +=+的图象恒过定点()1,2,所以即2b =-.12答案及解析: 答案:14解析:解法一:当1a > 时,有214,a am -==,此时 12,2a m ==,此时()g x =为减函数,不合题意.若01a <<,则124,a a m -==,故11,,416a m ==检验知符合题意.解法二:由函数()(14g x m =-在[)0,?+∞上是增函数可知1140,4m m -><. 当1a > 时, ()x f x a = 在 [1,2]- 上的最大值为24a =,解得2a =,最小值为112m a -==,不符合题意,舍去;当 01a << 时, ()x f x a = 在 [1,2]-;上的最大值为14a -=,解得14a =,此时最小值为211164m a ==<,符合题意,故14a =. 13答案及解析: 答案:1[,)2-+∞解析:要使函数有意义,则x 应满足21130,9x --≥ 即21233.x --≥因为函数3x y =是增函数,所以212x -≥-,即1.2x ≥- 故所求函数的定义域为1[,)2-+∞.14答案及解析: 答案:1(,)2+∞解析: 因为2315()1,224a a a 2++=++> 即23()2x y a a =++在R 上为增函数, 所以11.2x x x >-⇒>15答案及解析:答案:至少要经过5个小时才能开车。
高中数学 2.2《指数函数》同步练习一 苏教版必修1

高一指数函数同步检测(一)选择题(每小题5分,共40分) 1.化简46394369)()(a a ⋅的结果为 ( )A .a 16B .a 8C .a 4D .a 22.设5.1344.029.01)21(,8,4-===y y y ,则 ( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.当x ∈[-2,2)时,y =3-x -1的值域是 ( )A .[-98,8]B .[-98,8]C .(91,9) D .[91,9]4.若集合S ={y |y =3x ,x∈R}T={y |y =x 2-1,x ∈R},则S∩T ()A .SB .TC .D .有限集5.下列说法中,正确的是 ( ) ①任取x ∈R 都有3x >2x ②当a >1时,任取x ∈R 都有a x >a -x③y =(3)-x 是增函数 ④y =2|x |的最小值为1⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴A .①②④B .④⑤C .②③④D .①⑤6.c <0,下列不等式中正确的是[ ]A c 2B cC 2D 2c cc c c c.≥.>.<.>()()()1212127.x ∈(1,+∞)时,x α>x β,则α、β间的大小关系是[ ]A .|α|>|β|B .α>βC .α≥0≥βD .β>0>α8.函数y =2-x 的图像可以看成是由函数y =2-x+1+3的图像平移后得到的,平移过程是[ ]A .向左平移1个单位,向上平移3个单位B .向左平移1个单位,向下平移3个单位C .向右平移1个单位,向上平移3个单位D .向右平移1个单位,向下平移3个单位(二)填空题(每小题6分,共30分)9.计算:210319)41()2(4)21(----+-⋅- = . 10.函数x a y =在]1,0[上的最大值与最小值的和为3,则=a . 11.不等式1622<-+x x 的解集是12.已知x >0,函数y=(a 2-8)x 的值恒大于1,则实数a 的取值范围是________.13.函数y=a x+2-3(a >0且a ≠1)必过定点________.(三)解答题(每小题10分,共30分)18.已知,32121=+-xx 求3212323++++--x x x x 的值.19.若函数y =a2x +b +1(a >0且a ≠1,b 为实数)的图象恒过定点(1,2),求b 的值.20.求函数y =3322++-x x 的定义域、值域和单调区间.(附加题)。
南京市高中数学苏教版必修1 第3章 指数函数、对数函数和幂函数 单元测试 Word版含解析

(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)log 2的值为________.1.2解析:log 2=log 22=log 22=.2121212答案:12已知a =(a >0),则log a =________.2.1249 23解析:由a =得a =()2=()4,12494923∴log a =log ()4=4. 23 2323答案:4已知x -1+x =2,且x >1,则x -x -1的值为________.3.2解析:由x -1+x =2平方得x -2+2+x 2=8,则x -2-2+x 2=4,∴(x -1-x )2=4,又2∵x >1,∴x -x -1=2.答案:2函数y =lg(x +5)+ln (5-x )+的定义域为________.4.x -1x -3解析:由得定义域为:[1,3)∪(3,5).{x +5>05-x >0x -1≥0x -3≠0)答案:[1,3)∪(3,5)函数y =()x 2-2x +3的值域为________.5.12解析:设y =()u ,u =x 2-2x +3≥2,所以结合函数图象知,函数y 的值域为(0,].1214答案:(0,]14方程2-x +x 2=3的实数解的个数为________.6.解析:画出函数y =2-x 与y =3-x 2图象(图略),它们有两个交点,故方程2-x +x 2=3的实数解的个数为2.答案:2若a =log 3π,b =log 76,c =log 20.8,则a ,b ,c 由大到小的顺序为________.7.解析:利用中间值0和1来比较:a =log 3π>1,0<b =log 76<1,c =log 20.8<0,故a >b >c .答案:a >b >c .设方程2x +x =4的根为x 0,若x 0∈(k -,k +),则整数k =________.8.1212解析:设y 1=2x ,y 2=4-x ,结合图象分析可知,仅有一个根x 0∈(,),故k =1.1232答案:1某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价9.付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元;现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________, .解析:出租车行驶不超过3 km ,付费9元;出租车行驶8 km ,付费9+2.15×(8-3)=19.75元;现某人乘坐一次出租车付费22.6元,故出租车行驶里程超过8 km ,且22.6-19.75=2.85,所以此次出租车行驶了8+1=9 km.答案:9已知0<a <1,x =log a +log a ,y =log a 5,z =log a -log a ,则x ,y ,z 由大10.2312213到小的顺序为________.解析:由对数运算法则知x =log a ,y =log a ,z =log a ,又由0<a <1知y =log a x 657在(0,+∞)上为减函数,∴y >x >z .答案:y >x >z已知函数f (x )满足:x ≥4,则f (x )=()x ;当x <4时,f (x )=f (x +1),则f (2+log 23)11.12=________.解析:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23),且3+log 23>4,∴f (2+log 23)=f (3+log 23)=()3+log 23=×()log 23=×()log =×=.1218121812 12131813124答案:124给定函数①y =x ,②y =log (x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上12.12 12单调递减的函数序号是________.解析:①是幂函数,由图象知其在(0,+∞)第一象限内为增函数,故此项不符合要求,②中的函数是由函数y =log x 向左平移一个单位而得到的,因原函数在(0,+∞)内为减函 12数,故此项符合要求,③中的函数图象是由函数y =x -1的图象保留x 轴上方,下方图象翻折到x 轴上方而得到的,故由其图象可知该图象符合要求,④中的函数为指数型函数,因其底数大于1,故其在R 上单调递增,不符合题意,所以②③正确.答案:②③13.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图象三等分,即有BM =M N =N A .那么,αβ=________.解析:因为M ,N 为A ,B 的三等分点,所以M (,),N(,),13232313∴=()α,∴α=log ,2313 1323同理β=log ,∴αβ=1. 2313答案:1某地区居民生活用电分为高峰和低谷两个时间段进行分时计价,该地区的电网销售14.电价表如下:高峰时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)50及以下的部分0.568超过50至200的部分0.598超过200的部分0.668低谷时间段用电价格表低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.288超过50至200的部分0.318超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为________元(用数字作答).解析:由题意知:高峰时间段用电时,f (x )=,{0.568x ,0≤x ≤500.568×50+0.598·(x -50),50<x ≤2000.568×50+0.598×150+0.668·(x -200),x >200)低谷时间段用时,g (x )=,{0.288x ,0≤x ≤500.288×50+0.318(x -50),50<x ≤2000.288×50+0.318×150+0.388(x -200),x >200)W =f (x )+g (x )=f (200)+g (100)=148.4(元).答案:148.4二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)(本小题满分14分)已知定义域为R 的函数f (x )=是奇函数.15.-2x +b2x +1+2(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是奇函数,所以f (0)=0,即=0⇒b =1,b -12+2∴f (x )=.1-2x 2+2x +1(2)由(1)知f (x )==-+,1-2x 2+2x +11212x +1设x 1<x 2,则f (x 1)-f (x 2)=-12x 1+112x 2+1=.2x 2-2x 1(2x 1+1)(2x 2+1)因为函数y =2x 在R 上是增函数且x 1<x 2,∴2x 2-2x 1>0.又(2x 1+1)(2x 2+1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-.13或k <(3t 2-2t )min ⇒k <-.13(本小题满分14分)(1)比较大小:0.70.8,0.80.7;16.(2)比较f (x )=log a (1-x ),g (x )=log a (1+x )(其中a >1)在公共定义域下的函数值的大小.解:(1)因为指数函数y =0.7x 在R 上是减函数,所以0.70.7>0.70.8,又幂函数y =x 0.7在(0,+∞)是增函数,所以0.80.7>0.70.7,故0.80.7>0.70.8.(2)函数f (x )=log a (1-x ),g (x )=log a (1+x )的公共定义域是(-1,1),因为f (x )-g (x )=log a (a >1),1-x 1+x 所以当-1<x <0时,>1,此时f (x )>g (x );1-x1+x 当x =0时,=1,此时f (x )=g (x );1-x 1+x 当0<x <1时,0<<1,此时f (x )<g (x ).1-x 1+x 综上,当-1<x <0时,f (x )>g (x );当x =0时,f (x )=g (x );当0<x <1时,f (x )<g (x ).(本小题满分14分)若奇函数f (x )在定义域(-1,1)上是减函数,17.(1)求满足f (1-a )+f (-a )<0的a 的取值集合M ;(2)对于(1)中的a ,求函数F (x )=log a [1-()2-x ]的定义域.1a 解:(1)不等式f (1-a )+f (-a )<0可化为f (1-a )<-f (-a ),而f (x )为奇函数,∴f (1-a )<f (a ),又f (x )在定义域(-1,1)上是减函数,∴解得0<a <,{-1<1-a <1,-1<-a <1,1-a >a ,)12∴M ={a |0<a <}.12(2)为使F (x )=log a [1-()2-x ]有意义,1a 必须1-()2-x >0,即()2-x <1.1a 1a 由0<a <得>2,121a ∴2-x <0,∴x >2.∴函数的定义域为{x |x >2}.(本小题满分16分)经市场调查,某超市的一种小商品在过去的近20天内的销售量18.(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-|t -10|(元).12(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.解:(1)y =g (t )·f (t )=(80-2t )·(20-|t -10|)12=(40-t )(40-|t -10|)={(30+t )(40-t ),(0≤t <10),(40-t )(50-t ),(10≤t ≤20).)(2)当0≤t <10时,y 的取值范围是[1 200,1 225],在t =5时,y 取得最大值为1 225;当10≤t ≤20时,y 的取值范围是[600,1 200],在t =20时,y 取得最小值为600.∴第5天,日销售额y 取得最大值,为1 225元;第20天,日销售额y 取得最小值,为600元.所以,日销售额y 最大为1 225元,最小为600元.(本小题满分16分)已知函数f (x -3)=log a (a >0,a ≠1).19.x6-x (1)判断f (x )的奇偶性,并且说明理由;(2)当0<a <1时,求函数f (x )的单调区间.解:令x -3=u ,则x =u +3,于是f (u )=log a (a >0,a ≠1,-3<u <3),3+u3-u 所以f (x )=log a (a >0,a ≠1,-3<x <3).3+x 3-x (1)因为f (-x )+f (x )=log a +log a =log a 1=0,所以f (-x )=-f (x ),3-x 3+x 3+x3-x所以f (x )是奇函数.(2)令t ==-1-在(-3,3)上是增函数,3+x3-x 6x -3当0<a <1时,函数y =log a t 是减函数,所以f (x )=log a (0<a <1)在(-3,3)上是减函数,即其单调递减区间是(-3,3).3+x3-x (本小题满分16分)已知函数f (x )=log 2(2x +1).20.(1)求证:函数f (x )在(-∞,+∞)内单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.解:(1)证明:任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 2,2x 1+12x 2+1∵x 1<x 2,∴0<2x 1+1<2x 2+1,∴0<<1,2x 1+12x 2+1∴log 2<0,2x 1+12x 2+1∴f (x 1)<f (x 2),即函数f (x )在(-∞,+∞)内单调递增.(2)法一:由g (x )=m +f (x )得m =g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 2=log 2(1-),2x -12x +122x +1当1≤x ≤2时,≤≤,2522x +123∴≤1-≤,1322x +135∴m 的取值范围是[log 2,log 2].1335法二:解方程log 2(2x -1)=m +log 2(2x +1),得x =log 2(),2m +11-2m ∵1≤x ≤2,∴1≤log 2()≤2,2m +11-2m 解得log 2≤m ≤log 2.1335∴m 的取值范围是[log 2,log 2].1335。
苏教版高中数学必修一3.1.2指数函数同步测试

苏教版高中数学必修一3.1.2指数函数同步测试共 24 题一、单选题1、若函数 (a>0,且a≠1)是R上的单调函数,则实数a的取值范围是( )A.(0, )B.( ,1)C.(0, ]D.[ ,1)2、设平行于x轴的直线l分别与函数和的图象相交于点A,B,若在函数的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.至少一条B.至多一条C.有且只有一条D.无数条3、函数y= 的大致图象为( )A. B.C. D.4、若a>0,且a≠1,则函数y=a x-1+1的图像一定过定点()A.(0,1)B.(1,1)C.(1,2)D.(0,-1)5、设a=,b=,c=,则a,b,c的大小关系是( )A.a>b>cB.c>a>bC.a<b<cD.b>c>a6、函数是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数7、函数f(x)=(a2-3a+3)a x是指数函数,则有()A.a=1或a=2B.a=1C.a=2D.a>0且a≠18、函数的图象大致是()A. B.C. D.9、如图,设a,b,c,d>0,且不等于1,y=a x, y=b x, y=c x, y=d x在同一坐标系中的图象如图,则a,b,c,d的大小顺序( )A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d二、填空题10、指数函数y=()x的图象如图所示,则二次函数y=ax2+bx的顶点的横坐标的取值范围是 ________.11、设,使不等式成立的的集合是________.12、 ________13、函数的值域是________,单调递增区间是________.14、已知函数,若,则 ________.15、定义区间的长度为,已知函数的定义域为[a,b],值域为[1,9],则区间[a,b]的长度的最大值为________,最小值为________.16、求不等式中的取值范围。
2023-2024学年江苏省高一上学期数学人教A版-指数函数与对数函数-同步测试-1-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年江苏省高一上学期数学人教A版-指数函数与对数函数-同步测试(1) 姓名:____________ 班级:____________ 学号:____________考试时间:120分钟 满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 若 ,则 的大小关系是( )A . B . C .D .11222. 已知函数f(x)=2x 的反函数为y=g(x),则g( )的值为( )A .B .C .D .3. 设 , , ,则( )A .B .C .D .4. ,则 的大小关系为( )A .B .C .D .40284027201420135. 设函数f(x)=alnx+blgx+1,则f(1)+f(2)+…+f(2014)+f( )+f( )+…+f( )=( )A .B .C .D .a<b<c a<c<b b<a<c b<c<a6. 已知a=, b= , c= ,则a,b,c的大小关系为( )A . B . C . D .7. 函数 的定义域是( )A .B .C .D .8. 已知 , , ,则( )A .B .C .D .9. 设 , , ,则 , , 的大小关系是A .B .C .D .10. 函数 的零点所在区间是A .B .C .D .11. 已知 且 ,则有( )A .B .C .D .12. 设 ,则 , , 的大小关系是( ).A .B .C .D .13. 已知函数 ( 且 )过定点P,且点P在角 的终边上.14. 已知是函数的一个零点,且 , , 则a的取值范围是 .15. 已知函数( , 且)的图象恒过定点A , 若点A在一次函数的图象上,其中 , 则的最小值为 .16. 某同学为研究函数 的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设 ,则 .请你参考这些信息,推知函数 的图象的对称轴是 ;函数 的零点的个数是 .阅卷人三、解答题(共6题,共70分)得分17. 已知函数f(x)= + .(1) 求f(x)的定义域A;(2) 若函数g(x)=x2+ax+b的零点为﹣1.5,当x∈A时,求函数g(x)的值域.18. 已知 , 求下列各式的值.(1) ;(2) .19. 完成下列计算:(1) 已知 , 求的值(2) 求的值20. 已知f(x)=9x﹣2×3x+4,x∈[﹣1,2].(1) 设t=3x , x∈[﹣1,2],求t的最大值与最小值;(2) 求f(x)的最大值与最小值.21.(1) ;(2) .答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)21.(1)(2)。
高一数学苏教版必修1同步练习3.1.1指数函数 Word版含解析

指数函数.下列以为自变量的函数中,是指数函数的序号是.①=(-);②=π;③=-;④=+(>且≠);⑤=(+)(>-且≠)..方程-=的解是..指数函数=(-)是单调减函数,则的取值范围是..设()=+,则函数()的值域为..函数=-+的图象是由函数=的图象经过怎样的平移得到的?课堂巩固.指数函数=()的图象经过点(),那么(-)·()=..函数=的定义域是..右图是指数函数①;②;③;④的图象,则、、、与的大小关系是..()已知函数()=+-(>,≠)的图象恒过定点,则点的坐标是.()函数()=+-+(>)恒过点(),则=..设=,=,=()-,则、、的大小关系为..为了得到函数=×()的图象,可以把函数=()的图象向平移个单位长度..已知镭经过年剩余的质量是原来质量的,设质量为的镭经过年后,剩留量是,求关于的函数关系式..函数=()的值域是..下列说法中,正确的序号是.函数=-的图象:①与=的图象关于轴对称;②与=的图象关于坐标原点对称;③与=的图象关于轴对称;④与=-的图象关于轴对称;⑤与=-的图象关于坐标原点对称;⑥与=-的图象关于轴对称..()已知指数函数()=(>且≠)的图象经过点(,π),则(-)的值为;()函数=(>,且≠)在[]上的最大值与最小值的和为,则的值为..一种单细胞生物以一分为二的方式进行繁殖,每三分钟分裂一次,假设将一个这种细胞放在一个盛有营养液的容器中,恰好一小时这种细胞充满容器,假设开始将两个细胞放入容器,同样充满容器的时间是分钟..(易错题)若函数()=(\\(,>,,(-())+,≤))是上的单调增函数,则实数的取值范围是..下列四个图形中,是函数=(>)的大致图象的序号是..已知实数,满足等式()=(),下列五个关系式:①<<;②<<;③<<;④<<;⑤=.其中不可能成立的关系式有个..设函数()定义在实数集上,它的图象关于直线=对称,且当≥时,()=-,则(),(),()的大小关系是..已知函数()=-(为常数)是奇函数,则=..()已知<<,<-,则函数=+的图象不经过第象限.()已知函数()满足:对任意实数<,有()<()且(+)=()·(),请你写出满足这些条件的一个函数为..()设函数()=(\\(--,≤,(),>.))若()>,则的取值范围是.()若、为方程=()-+的两个实数解,则+=..(易错题)()函数()=()-()+,∈[-]的值域是;()已知函数=+-(>,且≠)在区间[-]上有最大值,则的值为..已知函数()=(+)·.()求()的定义域;()讨论()的奇偶性;()证明()>..讨论函数()=()-的单调性,并求其值域.答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一(上)数学单元同步练习及期末试题(四)(第四单元 指数与指数函数)一、选择题 1.化简(1+2321-)(1+2161-)(1+281-)(1+2-41)(1+221-),结果是( )(A )21(1-2321-)-1 (B )(1-2321-)-1 (C )1-2321-(D )21(1-2321-)2.(369a )4(639a )4等于( )(A )a16(B )a8(C )a4(D )a 23.若a>1,b<0,且a b+a -b=22,则a b-a -b的值等于( )(A )6 (B )±2 (C )-2 (D )24.函数f (x )=(a 2-1)x在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2<a (C )a<2 (D )1<2<a5.下列函数式中,满足f(x+1)=21f(x)的是( ) (A)21(x+1) (B)x+41 (C)2x (D)2-x6.下列f(x)=(1+a x )2xa-⋅是( )(A )奇函数 (B )偶函数(C )非奇非偶函数 (D )既奇且偶函数7.已知a>b,ab 0≠下列不等式(1)a 2>b 2,(2)2a>2b,(3)ba 11<,(4)a 31>b 31,(5)(31)a <(31)b中恒成立的有( )(A )1个 (B )2个 (C )3个 (D )4个8.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数(C )既奇又偶函数 (D )非奇非偶函数 9.函数y=121-x的值域是( )(A )(-1,∞) (B )(-,∞0)⋃(0,+∞) (C )(-1,+∞) (D )(-∞,-1)⋃(0,+∞)10.下列函数中,值域为R +的是( ) (A )y=5x-21 (B )y=(31)1-x(C )y=1)21(-x(D )y=x 21-11.函数y=2xx e e --的反函数是( )(A )奇函数且在R +上是减函数 (B )偶函数且在R +上是减函数(C )奇函数且在R +上是增函数 (D )偶函数且在R +上是增函数 12.下列关系中正确的是( )(A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32(C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(21)3113.若函数y=3+2x-1的反函数的图像经过P 点,则P 点坐标是( )(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)14.函数f(x)=3x +5,则f -1(x)的定义域是( ) (A )(0,+∞) (B )(5,+∞) (C )(6,+∞) (D )(-∞,+∞)15.若方程a x-x-a=0有两个根,则a 的取值范围是( ) (A )(1,+∞) (B )(0,1) (C )(0,+∞) (D )φ16.已知函数f(x)=a x +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x +4 (D)f(x)=4x+3 17.已知三个实数a,b=a a ,c=aaa ,其中0.9<a<1,则这三个数之间的大小关系是( )(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b18.已知0<a<1,b<-1,则函数y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 19.F(x)=(1+)0)(()122≠⋅-x x f x 是偶函数,且f(x)不恒等于零,则f(x)( ) (A )是奇函数 (B )可能是奇函数,也可能是偶函数 (C )是偶函数 (D )不是奇函数,也不是偶函数20.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为( )(A )na(1-b%) (B )a(1-nb%) (C )a[(1-(b%))n (D )a(1-b%)n二、填空题 1.若a 23<a2,则a 的取值范围是 。
2.若10x=3,10y=4,则10x-y= 。
3.化简⨯53xx 35xx ×35xx = 。
4.函数y=1151--x x 的定义域是 。
5.函数y=(31)1822+--x x (-31≤≤x )的值域是 。
6.直线x=a(a>0)与函数y=(31)x ,y=(21)x ,y=2x ,y=10x的图像依次交于A 、B 、C 、D 四点,则这四点从上到下的排列次序是 。
7.函数y=3232x -的单调递减区间是 。
8.若f(52x-1)=x-2,则f(125)= .9.函数y=m 2x +2m x-1(m>0且m ≠1),在区间[-1,1]上的最大值是14,则m 的值是 . 10.已知f(x)=2x,g(x)是一次函数,记F (x )=f[g(x)],并且点(2,41)既在函数F (x )的图像上,又在F -1(x )的图像上,则F (x )的解析式为 . 三、解答题1. 设0<a<1,解关于x 的不等式a1322+-x x >a522-+x x 。
2. 设f(x)=2x ,g(x)=4x,g[g(x)]>g[f(x)]>f[g(x)],求x 的取值范围。
3. 已知x ∈[-3,2],求f(x)=12141+-x x 的最小值与最大值。
4. 设a ∈R,f(x)= )(1222R x a a xx ∈+-+⋅,试确定a 的值,使f(x)为奇函数。
5. 已知函数y=(31)522++x x ,求其单调区间及值域。
6. 若函数y=4x -3·2x+3的值域为[1,7],试确定x 的取值范围。
7. 若关于x 的方程4x+2x·a+a+a=0有实数根,求实数a 的取值范围。
8. 已知函数f(x)=)1(11>+-a a a xx , (1)判断函数的奇偶性;(2)求该函数的值域;(3)证明f(x)是R 上的增函数。
第四单元 指数与指数函数二、填空题 1.0<a<1 ; 2.43; 3.1 ; 4.(-∞,0)⋃(0,1) ⋃(1,+ ∞) ⎪⎩⎪⎨⎧≠-≠--015011x x x ,联立解得x ≠0,且x ≠1;5.[(31)9,39] 令U=-2x 2-8x+1=-2(x+2)2+9,∵ -399,1≤≤-∴≤≤U x ,又∵y=(31)U 为减函数,∴(31)9≤y ≤39;6、D 、C 、B 、A ;7.(0,+∞)令y=3U,U=2-3x 2, ∵y=3U为增函数,∴y=32323x -的单调递减区间为[0,+∞)。
8.0 f(125)=f(53)=f(52×2-1)=2-2=0;9.31或3。
Y=m 2x+2m x-1=(mx+1)2-2, ∵它在区间[-1,1]上的最大值是14,∴(m -1+1)2-2=14或(m+1)2-2=14,解得m=31或3。
10.2710712+-x11.∵ g(x)是一次函数,∴可设g(x)=kx+b(k ≠0), ∵F(x)=f[g(x)]=2kx+b。
由已知有F (2)=41,F (41)=2,∴ ⎪⎩⎪⎨⎧=+-=+⎪⎩⎪⎨⎧==++1412222412412b k b k b k b k 即,∴ k=-712,b=710,∴f(x)=2-710712+x 三、解答题1.∵0<a<2,∴ y=a x在(-∞,+∞)上为减函数,∵ a1322+-x x >a522-+x x , ∴2x 2-3x+1<x 2+2x-5,解得2<x<3, 2.g[g(x)]=4x4=4x22=2122+x ,f[g(x)]=4x2=2x22,∵g[g(x)]>g[f(x)]>f[g(x)], ∴2122+x >212+x >2x22,∴22x+1>2x+1>22x,∴2x+1>x+1>2x,解得0<x<13.f(x)=43)212(12124121412+-=+=+-=+-----xx x x xx , ∵x ∈[-3,2], ∴8241≤≤-x .则当2-x =21,即x=1时,f(x)有最小值43;当2-x =8,即x=-3时,f(x)有最大值57。
4.要使f(x)为奇函数,∵ x ∈R,∴需f(x)+f(-x)=0, ∴f(x)=a-122)(,122+-=-+-x x a x f =a-1221++x x ,由a-1221221+-+++x x x a =0,得2a-12)12(2++x x =0,得2a-1,012)12(2=∴=++a x x 。
5.令y=(31)U ,U=x 2+2x+5,则y 是关于U 的减函数,而U 是(-∞,-1)上的减函数,[-1,+∞]上的增函数,∴ y=(31)522++x x 在(-∞,-1)上是增函数,而在[-1,+∞]上是减函数,又∵U=x 2+2x+5=(x+1)2+4≥4, ∴y=(31)522++x x 的值域为(0,(31)4)]。
6.Y=4x-33232322+⋅-=+⋅x xx ,依题意有⎪⎩⎪⎨⎧≥+⋅-≤+⋅-1323)2(7323)2(22x x x x 即⎪⎩⎪⎨⎧≤≥≤≤-1222421xx x或,∴ 2,12042≤<≤≤xx 或 由函数y=2x的单调性可得x ]2,1[]0,(⋃-∞∈。
7.(2x)2+a(2x)+a+1=0有实根,∵ 2x>0,∴相当于t 2+at+a+1=0有正根,则⎪⎩⎪⎨⎧>+>-≥∆⎩⎨⎧≤+=≥∆010001)0(0a a a f 或 8.(1)∵定义域为x R ∈,且f(-x)=)(),(1111x x f a a a a xxxx ∴-=+-=+---是奇函数; (2)f(x)=,2120,11,121121<+<∴>++-=+-+xxx x x a a a a a ∵即f(x)的值域为(-1,1); (3)设x 1,x 2R ∈,且x 1<x 2,f(x 1)-f(x 2)=0)1)(1(2211112121221<++-=+--+-xx x x x x x x a a a a a a a a (∵分母大于零,且a 1x<a2x ) ∴f(x)是R 上的增函数。