第四章 物态变化知识归纳总结

合集下载

最新-八年级物理上册 第四章物态变化笔记整理 人教新

最新-八年级物理上册 第四章物态变化笔记整理 人教新

第四章:物态变化笔记整理注意点(理解部分)一、探究固体熔化时温度的变化规律、沸腾图像分析:图1为某晶体的熔化图像,AB阶段该物质吸收热量,温度逐渐上升,处于固态;当温度升到t0时,开始熔化,t0为该晶体的熔点,整个BC阶段为熔化过程,虽继续吸收热量,但温度保持不变,整个熔化过程为固液混合态;CD阶段该物质已熔化为液态,继续加热,温度再次逐渐上升。

图2为某非晶体的熔化图像,整个过程一直吸热,温度持续上升,没有温度保持不变的过程,即没有熔点。

可以比较出,晶体与非晶体的区别是晶体有熔点,而非晶体没有熔点。

图3为某晶体的凝固图像,初始DE阶段该物质放出热量,温度逐渐下降,整个阶段该物质处于液态;当温度下降到t0时,开始凝固,t0为该晶体的凝固点,EF阶段为凝固过程,虽继续放出热量,但温度保持不变,整个凝固过程为固液混合态;FG阶段该物质已凝固为固态,继续放热,温度再次下降。

对于同一晶体而言,熔点和凝固点相同。

图4为某非晶体的凝固图像,整个过程一直放热,温度持续下降,没有温度保持不变的过程,即没有凝固点。

图5为某液体的沸腾图像,液体在加热的过程中温度逐渐上升,达到t0时开始沸腾,温度t0为该液体的沸点,液体沸腾后虽不断吸热但温度却保持不变。

二、沸点的知识:1、液态氧的沸点-183℃,固态氧的熔点时-218℃.-182℃时,氧为气态。

-184℃时,氧为液态。

-183℃时,氧可以是液态、气态或气夜共存状态。

以水为例:固态 0℃液态 100℃气态2、可用纸锅将水烧至沸腾。

(水沸腾时,温度保持在100℃不变,低于纸的着火点)三、蒸发吸热。

有致冷作用:1、刚从水中出来,感觉特别冷。

(风加快了身上水的蒸发,蒸发吸热)2、一杯40℃的酒精,敞口不断蒸发,留在杯中的酒精的温度低于40℃.(蒸发要从周围环境和液体自身吸热)3、在室内,将一只温度计从酒精中抽出,示数会先下降再升高。

(酒精蒸发吸热。

使温度计中液体温度下降,蒸发结束后温度回升到室温。

物态变化详细知识点总结

物态变化详细知识点总结

物态变化详细知识点总结一、固态、液态和气态的基本特征1. 固态:固态是指物质的分子或原子之间结合非常紧密,无法自由流动,因此呈现出一定的形状和体积。

此外,固态物质具有相对较大的密度和较小的分子间距,分子或原子在固态内部做微小的振动运动。

常见的固态物质包括金属、石英、盐类、冰等。

2. 液态:液态是指物质分子或原子之间的相互作用比较松散,可以自由流动,但却不能忽略其相互吸引作用。

液态物质的形状和体积可以任意改变,但是体积和形状又受容器的限制。

此外,液态物质的密度比固态小,分子或原子的运动也比固态活跃。

常见的液态物质包括水、酒精、石油等。

3. 气态:气态是指物质分子或原子之间的相互作用非常弱,可以自由流动,同时没有固定的形状和体积。

气态物质分子或原子间距离很大,分子或原子的运动非常活跃,体积和形状受到容器限制。

常见的气态物质包括氧气、氮气、二氧化碳等。

二、物态变化的条件物态变化的条件主要包括温度和压强两个因素。

温度是指物质内部分子或原子的平均运动速度,温度升高会使分子或原子的运动速度增加,从而使物质的相态发生改变;压强则是指物质分子或原子之间的相互作用力,压强增大会使分子或原子之间的距离变短,从而使物质的相态发生改变。

1.气体的状态方程通常情况下,气体状态方程可以写作 PV=nRT,其中P代表气体的压强,V代表气体的体积,n代表气体的摩尔数,R为气体常数,T代表气体的温度。

在等温过程中,当气体的温度不变时,压强和体积成反比,当气体的压强增大,则体积减小;当气体的压强减小,则体积增大。

在等压过程中,当气体的压强不变时,体积和温度成正比,当气体的温度增加,则体积增大;当气体的温度减小,则体积减小。

在等容过程中,当气体的体积不变时,压强和温度成正比,当气体的温度增加,则压强增大;当气体的温度减小,则压强减小。

2. 熔化与凝固熔化是指物质由固态变成液态的过程,其过程需要吸收热量。

当物质处于熔化点时,会出现熔化现象。

第四章物态变化知识点归纳

第四章物态变化知识点归纳

第四章物态变化一、温度1、温度:温度是用来表示物体冷热程度的物理量;注:热的物体我们说它的温度高,冷的物体我们说它的温度低,若两个物体冷热程度一样,它们的温度亦相同;我们凭感觉判断物体的冷热程度一般不可靠;2、摄氏温度:(1)我们采用的温度是摄氏温度,单位是摄氏度,用符号“℃”表示;(2)摄氏温度的规定:把一个大气压下,冰水混合物的温度规定为0℃;把一个标准大气压下沸水的温度规定为100℃;然后把0℃和100℃之间分成100等份,每一等份代表1℃。

(3)摄氏温度的读法:如“5℃”读作“5摄氏度”;“-20℃”读作“零下20摄氏度”或“负20摄氏度”二、温度计1、常用的温度计是利用液体的热胀冷缩的原理制造的;2、温度计的构成:玻璃泡、均匀的玻璃管、玻璃泡总装适量的液体(如酒精、煤油或水银)、刻度;3、温度计的使用:使用前要:观察温度计的量程、分度值(每个小刻度表示多少温度),并估测液体的温度,不能超过温度计的量程(否则会损坏温度计)测量时,要将温度计的玻璃泡与被测液体充分接触,不能紧靠容器壁和容器底部;读数时,玻璃泡不能离开被测液、要待温度计的示数稳定后读数,且视线要与温度计中夜柱的上表面相平。

三、体温计1、用途:专门用来测量人体温的;2、测量范围:35℃~42℃;分度值为0.1℃;3、体温计读数时可以离开人体;4、体温计的特殊构成:玻璃泡和直的玻璃管之间有极细的、弯的细管叫做缩口;物态变化:物质在固、液、气三种状态之间的变化;固态、液态、气态在一定条件下可以相互转化。

物质以什么状态存在跟物体的温度有关。

四、熔化和凝固1、物质从固态变为液态叫熔化;从液态变为固态叫凝固;熔化和凝固是可逆的两物态变化过程;熔化要吸热,凝固要放热;2、固体可分为晶体和非晶体;晶体:熔化时有固定温度(熔点)的物质;非晶体:熔化时没有固定温度的物质;晶体和非晶体的根本区别是:晶体有熔点(熔化时温度不变继续吸热),非晶体没有熔点(熔化时温度升高,继续吸热);(熔点:晶体熔化时的温度);同一晶体的熔点和凝固点相同;3、晶体熔化的条件:温度达到熔点;继续吸热;晶体凝固的条件:温度达到凝固点;继续放热;4、晶体的熔化、凝固曲线:注意:1、物质熔化和凝固所用时间不一定相同;2、热量只能从温度高的物体传给温度低的物体,发生热传递的条件是:物体之间存在温度差;五、汽化和液化1、物质从液态变为气态叫汽化;物质从气态变为液态叫液化;汽化和液化是互为可逆的过程,汽化要吸热、液化要放热;2、汽化的方式为沸腾和蒸发;(1)蒸发:在任何温度下都能发生,且只在液体表面发生的缓慢的汽化现象;注:蒸发的快慢与A、液体温度高低有关:温度越高蒸发越快(夏天洒在房间的水比冬天干的快;在太阳下晒衣服快干);B、跟液体表面积的大小有关,表面积越大,蒸发越快(凉衣服时要把衣服打开凉,为了地下有积水快干要把积水扫开);C、跟液体表面空气流速的快慢有关,空气流动越快,蒸发越快(凉衣服要凉在通风处,夏天开风扇降温);(2)沸腾:在一定温度下(沸点),在液体表面和内部同时发生的剧烈的汽化现象;注:沸点:液体沸腾时的温度叫沸点;不同液体的沸点一般不同;同种液体的沸点与压强有关,压强越大沸点越高(高压锅煮饭);液体沸腾的条件:温度达到沸点还要继续吸热;(3)沸腾和蒸发的区别和联系:它们都是汽化现象,都吸收热量;沸腾在一定温度下才能进行;蒸发在任何温度下都能进行;沸腾在液体内部、外部同时发生;蒸发只在液体表面进行;沸腾比蒸发剧烈;(4)蒸发可致冷:夏天在房间洒水降温;人出汗降温;发烧时在皮肤上涂酒精降温;(5)不同物体蒸发的快慢不同:如酒精比水蒸发的快;4、液化的方法:(1)降低温度(2)压缩体积(增大压强,提高沸点)如:氢的储存和运输;液化气;六、升华和凝华1、物质从固态直接变为气态叫升华;物质从气态直接变为固态叫凝华;升华吸热,凝华放热;2、升华现象:樟脑球变小;冰冻的衣服变干;人工降雨中干冰的物态变化;3、凝华现象:雪的形成;北方冬天窗户玻璃上的冰花(在玻璃的内表面)七、云、霜、露、雾、雨、雪、雹、“白气”的形成温度高于0℃时,水蒸汽液化成小水滴成为露;附在尘埃上形成雾;温度低于0℃时,水蒸汽凝华成霜;水蒸汽上升到高空,与冷空气相遇液化成小水滴,就形成云,大水滴就是雨;云层中还有大量的小冰晶、雪(水蒸汽凝华而成),小冰晶下落可熔化成雨,小水滴再与0℃冷空气流时,凝固成雹;“白气”是水蒸汽遇冷液化而成的第十六章热和能一、分子热运动1、分子运动理论的 (1)物质由分子组成的。

第四章《物态变化》知识小结

第四章《物态变化》知识小结

第四章《物态变化》知识小结一、温度1、 定义:温度表示物体的冷热程度。

2、 单位:① 国际单位制中采用热力学温度。

(单位:开尔文 K )② 常用单位是摄氏度(℃) 规定:在一个标准大气压下冰水混合物的温度为0度,沸水的温度为100度,它们之间分成100等份,每一等份叫1摄氏度例:某地气温-3℃读做:零下3摄氏度或负3摄氏度③换算关系T=t + 273K3、测量——温度计(常用液体温度计)① 温度计构造:下有玻璃泡,里盛水银、煤油、酒精等液体;内有粗细均匀的细玻璃管,在外面的玻璃管上均匀地刻有刻度。

② 温度计的原理:利用液体的热胀冷缩的性质。

③ ④ 常用温度计的使用方法:使用前:观察它的量程,判断是否适合待测物体的温度;并认清温度计的分度值,以便快速准确读数。

使用时:温度计的玻璃泡全部浸入被测液体中,不要碰到容器底或容器壁;温度计玻璃泡浸入被测液体中稍候一会儿,待温度计的示数稳定后再读数;读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。

说明:温度计的玻璃泡要做大目的是:温度变化相同时,体积变化大;上面的玻璃管做细的目的是:液体体积变化相同时液柱变化大;两项措施的共同目的是:读数准确。

二、物态变化物态变化的名称及吸热放热情况: 1、熔化和凝固 ① 熔化:定义:物体从固态变成液态的过程叫熔化。

晶体物质:海波、冰、石英水晶、食盐、 非晶体物质:松香、石蜡玻璃、沥青、蜂蜡等熔化图象: 熔化图象:熔化特点:固液共存,吸热,温度不变 熔化特点:吸热,温度不断上升,硬-软-黏-稠-稀,最后 变为液态。

熔点 :晶体熔化时的温度。

熔化的条件:⑴ 达到熔点。

⑵ 继续吸热。

气 熔化 吸热 汽化 吸热 凝华 放热② 凝固 :定义 :叫凝固。

凝固图象: 凝固图象:凝固特点:固液共存,放热,温度不变 凝固特点:放热,逐渐变稠、变黏、变硬、最后 凝固点 :液体凝固成晶体时的温度。

成固体,温度不断降低。

同种物质的熔点凝固点相同。

物态变化知识点总结及举例

物态变化知识点总结及举例

物态变化知识点总结及举例一、物态变化的基本概念物态变化是物质从一种物态转变为另一种物态的过程。

物质的物态由分子之间的相互作用力决定,当这些相互作用力受到外部条件的改变时,物态也会发生变化。

物态变化通常包括固态到液态、液态到气态、固态到气态等多种情况。

1. 固态到液态的变化当物质受到足够的热量作用时,其分子内部的相互作用力会减弱,导致分子之间的距离增加,从而使其固态转变为液态。

比如,将固态的冰块受热后会融化成液态的水。

2. 液态到气态的变化将液态的物质受热后,其分子的动能增加,相互作用力减弱,从而使分子能够克服表面张力和重力,蒸发成气态。

比如,将水受热后会蒸发成水蒸气。

3. 固态到气态的变化当物质受到极端的高温和压力时,其分子之间的相互作用力几乎被完全消除,使得固态物质直接转变为气态。

比如,地球内部的高温高压环境可以使岩石中的矿物直接升华成气态。

二、物态变化的影响因素物态变化受到多种因素的影响,包括温度、压力、表面张力等。

这些因素会直接影响物质内部分子之间的相互作用力,从而影响物态的变化。

1. 温度温度是影响物质物态变化的主要因素之一。

一般情况下,提高温度可以增加物质分子的动能,减弱分子之间的相互作用力,促使物质由固态转变为液态或气态。

举例:将冰块受热后会融化成液态的水,温度继续升高会使水蒸发成水蒸气。

2. 压力压力对物态变化同样有重要的影响。

在高压环境下,物质的分子之间的距离会缩小,相互作用力增强,从而使得物质能够在较低温度下转变为液态或固态。

举例:将气态的二氧化碳受到一定的压力后会液化成液态二氧化碳。

3. 表面张力表面张力是液体分子之间的作用力,决定了液体的表面形状和液滴形成的条件。

表面张力对于物态的变化过程也具有重要影响。

举例:液态金属在高温高压下可以形成微粒状的金属固体,表面张力使得液态金属能够形成不规则的固态结构。

三、常见的物态变化过程物态变化是物质在不同环境下的状态转变过程,常见的物态变化包括融化、汽化、凝固、升华等。

物态变化知识点总结归纳

物态变化知识点总结归纳

物态变化知识点总结归纳一、物态变化的基本概念1. 物态的概念:物质存在的形态可以分为气态、液态和固态三种。

在不同的温度和压强条件下,物质可以呈现不同的物态状态。

2. 物态变化的概念:当物质的温度、压强等外界条件发生改变时,物质的物态状态也会发生变化,称为物态变化。

3. 物态变化的分类:根据物质在不同温度和压强下的状态变化,可以分为升华、凝固、熔化、气化和凝结等不同类型的物态变化。

二、物态变化的规律1. 温度对物态变化的影响:温度是物态变化的重要影响因素,不同温度下物质的相变形式和性质都会发生变化。

一般来说,物质的熔点、沸点和融化热、汽化热与温度有一定的关系。

2. 压强对物态变化的影响:压强也是物态变化的重要影响因素,对于气体和液体的相变过程影响较大。

压强的增加会使气体变为液体,降低压强会使液体变为气体。

三、物态变化的重要性1. 应用价值:物态变化的过程在人类生产和生活中具有非常重要的应用价值,如利用物态变化制冷、制热、净化和分离物质等。

2. 理论意义:通过研究物态变化的规律和原理,可以帮助我们深入理解物质的本质和性质,揭示出物质在不同条件下的特性和行为。

四、常见物态变化过程1. 升华:固体直接转变为气体的过程,不经过液体状态。

常见升华的物质有干冰(二氧化碳)、氯化铵等。

2. 凝固:液体转变为固体的过程,是一种凝结过程的特例。

凝固时,液体变为固体,释放出一定的凝固热。

常见凝固的物质有水、冰等。

3. 熔化:固体转变为液体的过程,是一种熔解过程的特例。

在熔化过程中,固体吸收一定的熔化热,转变为液体。

常见熔化的物质有冰、蜡等。

4. 气化:液体直接转变为气体的过程,不经过固体状态。

气化时,液体变为气体,吸收一定的气化热。

常见气化的物质有水、酒精等。

5. 凝结:气体转变为液体或固体的过程。

大气中的水蒸气冷凝成液态水或固态水(雾凇、冰雹)等现象都是凝结过程的体现。

五、常见物质物态变化的实验及示意1. 水的物态变化实验(1)冰的熔化实验:将一块冰放在温度较高的环境中,观察冰的表面逐渐出现水滴,最终冰完全融化为水的过程。

物态变化现象知识点总结

物态变化现象知识点总结

物态变化现象知识点总结物态变化是物质由一种物态转换成另一种物态的过程,主要包括固态、液态和气态之间的相互转化。

在日常生活和工业生产中,我们经常会遇到物态变化现象,因此了解物态变化的知识是非常重要的。

本文将从物态变化的基本概念、分类、影响因素和应用等方面对物态变化进行详细的介绍。

一、基本概念物态是指物质所处的状态,主要包括固态、液态和气态。

固态是物质分子间距离较小,分子运动范围有限,分子只能作微小的振动运动,具有一定的形状和体积。

液态是物质分子间距离较大,分子间仍有一定的吸引力,分子运动范围较大,具有一定的形状但无一定的体积。

气态是物质分子间距离很大,分子间几乎无相互作用力,分子运动范围很大,无一定的形状和体积,能扩散填充整个容器。

物态变化是指物质由一种物态转换成另一种物态的过程。

固液相变是指固态物质转变成液态物质的过程,液气相变是指液态物质转变成气态物质的过程,固气相变是指固态物质转变成气态物质的过程。

物态变化是由于物质内部的分子或原子之间的相互作用的变化而发生的,是一种内部结构的改变。

而物态变化过程中,虽然物质的物态发生了改变,但物质的化学成分和质量是不发生变化的。

二、分类1. 固液相变固液相变是指固态物质转变成液态物质的过程,主要包括熔化和凝固两种过程。

熔化是指固态物质受热增加分子内能,使分子的振动增强,分子间距离增大,固体结构逐渐瓦解,最终转变成液态;凝固是指液态物质受冷使分子内能减小,分子的振动减弱,分子间距离减小,液体结构逐渐变得有序,最终转变成固态。

2. 液气相变液气相变是指液态物质转变成气态物质的过程,主要包括汽化和液化两种过程。

汽化是指液态物质受热增加分子内能,从液体中脱离出来,蒸发成气体;液化是指气态物质受冷使分子内能减小,从气体中凝聚下来,凝结成液体。

3. 固气相变固气相变是指固态物质转变成气态物质的过程,主要包括升华和凝华两种过程。

升华是指固态物质受热增加分子内能,从固体中直接脱离出来,转变成气态;凝华是指气态物质受冷使分子内能减小,直接从气体中凝聚下来,转变成固态。

物态变化知识点总结画图

物态变化知识点总结画图

物态变化知识点总结画图一、物态变化的基本概念物态变化指的是物质由一种状态变为另一种状态的过程。

常见的物态变化有固态到液态的熔化、液态到气态的汽化、气态到液态的凝结、液态到固态的凝固等。

在物态变化过程中,物质的分子间距离和运动状态发生变化,伴随着热量的吸收或释放。

二、固液相变1. 熔化:固体升温到一定温度时,分子间的排列结构开始变松弛,分子间的引力逐渐克服,导致固体变为液体。

熔化涉及的过程有熔化热和熔点,熔化点是指物质从固态变为液态的温度,熔化热是指单位质量物质在其熔化点时从固态变为液态所吸收的热量。

熔化是吸热过程,能量吸收使固体内能增加,分子运动加快,据此进行的表格示例如下图所示:2. 凝固:液体冷却到一定温度时,分子间的排列结构开始逐渐密排,分子间的引力逐渐压倒分子的热运动,导致液体变为固体。

凝固是熔化的逆过程,也涉及着凝固点和凝固热的概念。

凝固是放热过程,能量放出导致液态内能减少,分子运动减慢。

如下图所示:三、液气相变1.汽化:液体升温到一定温度时,分子热运动增大,使液体表面上的分子具有较大的动能,能够克服液态表面张力形成气泡,液体表面的一部分液体分子脱离液相变为气体。

汽化包括汽化热和饱和蒸气压两个重要概念。

汽化是吸热过程,能量吸收使液体内能增加,分子逃逸速度增大,据此进行的表格示例如下图所示:2.凝结:气体冷却到一定温度时,分子的热运动减小,使气体的分子逐渐被液态引力束缚在一起形成液体,凝结是汽化的逆过程,也涉及着凝结的点和凝结热。

凝结是放热过程,能量放出导致气体内能减少,分子运动减慢。

如下图所示:四、物态变化的实际应用物态变化在生产和生活中有着广泛的应用。

例如,在冷冻食品过程中,凝固作为重要的物态变化过程;在汽车发动机中,燃料的汽化和燃烧是物态变化的典型应用;在家庭生产中,水的煮沸和冷却过程也是物态变化的实例。

总之,物态变化是我们日常生活中常见的现象,在化学、物理领域也有着重要的理论和实践意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章物态变化知识归纳总结
一、温度计
温度:物体的冷热程度叫温度
(一)摄氏温度(t):把冰水混合物的温度规定为0度,把1标准大气压下沸水的温度规定为100度。

1、摄氏温度的单位:摄氏度(℃)
2、1℃的规定:
在1标准大气压下,把冰水混合物的温度规定为零度,把沸水的温度规定为一百度,在它们之间均匀分成100等份,每一等份叫做1摄氏度.
3、摄氏温度的读法:
36℃,读做“36摄氏度;-5.9℃读做“负5.9摄氏度”或“零下5.9摄氏度”
4、原理:液体的热胀冷缩的性质制成的
5、构造:玻璃壳、毛细管、玻璃泡、刻度及液体
6、使用:使用温度计以前,要注意观察量程和认清分度值
使用温度计做到以下三点:
①温度计与待测物体充分接触,且不要碰到容器底或容器壁。

②待示数稳定后再读数;
③读数时,温度计的玻璃泡要继续留在液体中,视线要与液面上表面相平。

7、体温计:
(1)特殊构造:玻璃泡上方有段很细的细管,离开人体时,细管断开,不会影响读数。

(2)特殊用法:(a)用体温计前必须用力往下甩。

(b)可离开人体读数。

例.一体温计的示数为38 ℃,如果不甩直接测正常人,示数为多少?直接去测体温为39.5 ℃的病人,示数为多少?(人的正常体温是36.0℃—37.4℃,所以答案是38℃,39.5 ℃)
(二)热力学温度(国际温度)T
①宇宙温度的下限--绝对零度,以绝对零度为起点的温度计量方法叫热力学温度.
②热力学温度的单位:开尔文(开)K
③热力学温度和摄氏温度的关系: T=t+273K
二、熔化和凝固
熔化:物质从固态变成液态叫熔化,熔化要吸热。

凝固:物质从液态变成固态叫凝固,凝固要放热。

固体的分类:晶体和非晶体。

熔点:晶体都有一定的熔化温度,叫熔点。

凝固点:晶体有一定的凝固温度,叫凝固点。

同一种物质的凝固点跟它的熔点相同
晶体和非晶体的熔化特点:
A、晶体和非晶体熔化时都要从外界吸热。

B、晶体是在一定温度下熔化的,晶体熔化时的温度叫熔点(melting point)
非晶体没有一定的熔化温度(非晶体没有熔点)。

C、晶体从开始熔化到完全熔化处于固液共存的状态,非晶体熔化时不存在固液共存的状态。

物质的凝固
1、凝固是熔化的逆过程。

2、物质凝固时都要放热。

3、晶体凝固过程中温度保持不变,这个温度叫做晶体的凝固点(freezing).同一晶体的凝固点与熔点相同,非晶体没有凝固点。

例:物体在吸收热后,它的温度将( c ):
A.一定上升
B.一定不变
C.有可能上升,也有可能不变
D.以上说法都不对
三、汽化和液化
汽化:物质从液态变为气态叫汽化;汽化有两种不同的方式:蒸发和沸腾,这两种方式都要吸热。

蒸发:(1)定义:蒸发是液体在任何温度下都能发生的,并且只在液体表面发生的较缓慢的汽化现象。

(2)影响蒸发快慢的因素:液体温度高低,液体表面积大小,液体表面空气流动的快慢,液体的性质。

(3)液体蒸发吸热,有致冷作用。

沸腾:(1)定义:沸腾是在一定温度下,在液体内部和表面同时进行的剧烈的汽化现象。

(2)液体沸腾的条件:①温度达到沸点②继续吸收热量。

沸点:液体沸腾时的温度。

水沸腾时现象:剧烈的汽化现象,大量的气泡上升、变大,到水面破裂,里面的水蒸气散发到空气中。

虽继续加热,它的温度不变。

液化:物质从气态变成液态的现象。

液化放热。

液化的方法:1、降低温度(都可液化)。

2、压缩体积。

液化的好处:体积缩小,便于储存和运输。

四、升华和凝华
升华:物质从固态直接变成气态叫升华。

例子:冬天冰冻的衣服干了,灯丝变细,卫生球变小。

凝华;物质由气态直接变成固态的现象。

例子:霜,树挂、窗花
升华吸热,凝华放热。

五、物态变化情况
例:云,雾,霜,雪,露,雨,雹的形成各具有什么物质变化?雨:水蒸气凝华成小冰晶和小冰晶下降时熔化成小液滴
雪:空气中的水蒸气遇冷凝华成小冰晶(下降时未熔化)。

云:空气中的水蒸气遇冷液化成小液滴
雾:夜间气温下降,空气中的水蒸气液化成小液滴,形成雾。

露:夜间气温下降,空气中的水蒸气液化成小液滴
霜:气温骤降,空气中的水蒸气凝华成小冰晶,形成霜。

冰雹:小液滴(雨)下降时遇冷凝固
总结:六个三
1.三种状态:
①固态,②液态,③气态
2.三个吸热过程:
①熔化,②汽化,③升华
3.三个放热过程:
①凝固,②液化,③凝华
4.三个特殊(温度)点:
①熔点:晶体熔化时的温度;②凝固点:晶体凝固时的温度:
③沸点:液体沸腾时的温度。

5.三个不变温度:
①晶体溶化时温度;
②晶体凝固时温度;
③液体沸腾时温度。

6.三个条件:
①晶体熔化的条件:达到熔点;继续吸热;温度不变。

②晶体凝固的条件:达到凝固点;继续放热;温度不变。

③液体沸腾的条件:达到沸点;继续吸热;温度不变。

相关文档
最新文档