十动态规划的应用---资源分配问题

合集下载

动态规划资源分配问题

动态规划资源分配问题

S1
7
X1
12
3
4
P1(x1)
44
5
8
F2+ p1 21 19
17 18
f1(s1)
21
X1*
1
• 当k=2时;
f2(s2) = max [p2(x2)+ f3(s3) ]
1< x2 < s2 3< s2< 6 计算结果:
S2 X2 p2(x2) F3+ p2 f2(s2) X2*
34 1 12 3 35 10 12 12 10 12 1 1或2
f(k* sk ) max{ fk (sk , xk )}
xk 1,2,3...,sk
4
xi sk
ik
xi大于等于1且为整数
将递推关系写出即是
f
* k
(
sk
)
xk
max
1, 2 ,..., sk
{Pk
(
xk
)
f
* k 1
(
sk
xk )}
f(5* s5)=0
k 1,2,3
当k=4时;
f4(s4) = max [p4(x4)]
S3 X3 p3(x3) F3+ p3 f3(s3) X3*
23 1 12 5 56 7 98 79 11
4 123 568 12 10 10 12 1
5 1 2 34 5 6 88 13 13 12 10 13 1或2
• 当k=1时;
f1(s1) = max [p1(x1)+ f2(s2) ]
1< x1< s1 s1=7 计算结果:
5 123 35 6 15 14 13 15 1

动态规划的应用举例大全

动态规划的应用举例大全
多背包问题
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。

动态规划习题详解

动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。

该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。

他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。

他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。

动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。

动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。

由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。

第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。

例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。

(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。

如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。

(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。

描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。

如例l中,第一阶段的状态为A(即出发位置)。

第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。

资源分配问题的求解方法

资源分配问题的求解方法
2 线性规划 2.1 模型的建立
线性规划是运筹学中最基本且范围最广的分支,它最主要是应用于合理的进行 各种资源的分配,以取得最佳的效果。
对于这类需要 M 种不同的原材料生产 AN 种不同的产品的资源分配问题,一般是 已知每种原材料的库存量,每种产品所需的各种原材料的分量,以及生产每种产品 能获得多少利益[1]。这类资源分配问题只要运用线性规划就可以解决。
其一般的数学模型为[3] :
n
max(min)z cj xj j 1
n
aij x j
(, )bi (i 1,2,, m)
j1
x j 0或1, ( j 1,2,, n)
其中 x j 为 0-1 变量,也称二进制变量、逻辑变量。 x j 仅取值 0 或 1 这个条件可 由下述约束条件所代替。x j 1,x j 0 ,x j 为整数,它和一般整数线性规划的约束条 件形式是一致的。
这里 f 为由目标函数的系数组成的向量,A 和 b1 分别为不等式约束条件的系数 矩阵和右端向量, B 和 b2 分别为等式约束条件的系数矩阵和右端向量,当约束条 件没有等式时,B 和 b2 就用空矩阵[] 表示,l1 和 l2 分别是变量的下界和上界约束。 满足全部约束条件的一组决策变量 x1, x2 ,..., xN ,称为此线性问题的可行解,而使目 标函数达到问题要求的最优值( max 或 min )的可行解称为线性规划问题的最优解。
III
石家庄学院毕业论文
1 引言
人们奋斗所争取的一切,都同他们的利益有关。资源分配问题关系着人们的利 益能否实现,因而一直是政治经济学研究的中心课题之一。在近几年,随着社会经 济的发展,资源分配问题已经广泛存在于社会各个领域,并且已经成为制约我国改 革、发展、稳定的焦点问题。如何在满足各使用者的基础上,将有限资源进行最佳 分配,使得生产成本最低、投资最省、产量最高、利润最大,以最大限度地提高效 益,是资源分配问题中亟待解决的难题,所以资源分配的求解方法就给解决这种问 题带来了很大的方便。线性规划是运筹学中研究较早,理论和算法比较成熟的分支 之一,它主要研究在线性等式(或不等式)的限制条件下,使某一线性目标函数取 得最大值(或最小值)的问题,并且求解有统一而简单的方法即单纯形法。但在许 多问题中,决策变量必须为整数,例如当决策变量是分配的人数、购买的设备数、 投入的车辆数时,它们一般必须为非负整数时才有意义。在这种情况下,常需要应 用整数规划进行优化。0-1 整数规划是整数规划的特殊情况,也是最广泛的整数规划, 用 0-1 整数规划求解时有时会更容易。有时源分配问题上也可以使用动态规划求解, 动态规划是解决多阶段决策过程最优化问题的一种方法,这种方法就是把它看成一 个时间轴,在时间的推移过程中,在每个时间阶段选择适当的决策,以使整个系统 达到最优。本文不仅介绍了线性规划、0-1 规划、和动态规划几种求解资源分配的方 法,还介绍了求解线性规划的方法—单纯形法、求解 0-1 规划的方法—隐枚举法和 LINGO 软件法、以及求解动态规划的方法—逆序递推法等几种算法的模型、求解的具 体步骤和所对应的实例。通过对本文的这几种求解方法的介绍,基本上就可以使不 同的资源分配问题得到更好更快的解答。

动态规划方案解决资源分配问题的策略

动态规划方案解决资源分配问题的策略

动态规划方案解决资源分配问题的策略在幼儿教育事业中,资源分配问题是一项至关重要的任务。

如何合理、高效地分配教育资源,以满足幼儿的需求和发展,成为幼儿工作者们关注的焦点。

针对这一问题,我们引入动态规划这一优化算法,提出一套解决方案,以期为我国幼儿教育事业的发展提供有力支持。

一、背景及问题阐述随着我国经济社会的快速发展,幼儿教育事业逐渐受到广泛关注。

然而,在资源分配方面,幼儿教育仍面临诸多问题。

一方面,资源分配不均,城乡、地区之间差距较大,部分幼儿无法享受到优质的教育资源;另一方面,资源利用效率低下,导致教育成本上升,加剧了教育资源供需矛盾。

为解决这一问题,我们需要对教育资源进行合理分配,提高资源利用效率。

动态规划作为一种优化算法,具有实现全局最优、求解效率高等特点,适用于解决资源分配问题。

本文将以幼儿教育资源分配为背景,探讨动态规划在解决资源分配问题方面的应用。

二、动态规划基本原理动态规划(DynamicProgramming,DP)是一种求解最优化问题的方法,它将复杂问题分解为多个子问题,并通过求解子问题来实现全局最优。

动态规划的核心思想是“记住已经解决过的子问题的最优解”,从而避免重复计算。

1.确定状态:将问题分解为若干个子问题,并用状态变量表示这些子问题。

2.建立状态转移方程:找出子问题之间的关系,建立状态转移方程,表示当前状态如何通过前一个状态得到。

3.确定边界条件:设定初始状态和边界条件,为递推过程提供基础。

4.计算最优解:根据状态转移方程,从初始状态开始递推,得到问题的最优解。

5.构造最优解:根据最优解的递推过程,构造出问题的最优解。

三、动态规划解决资源分配问题的策略1.状态定义我们将资源分配问题分为两个状态:当前状态和子状态。

当前状态表示在某一时间点或某一阶段,已分配的资源总量;子状态表示在分配过程中,某一特定资源类型的分配情况。

2.状态转移方程状态转移方程是动态规划的核心,它描述了当前状态如何由子状态得到。

简述动态规划的最优性原理及应用

简述动态规划的最优性原理及应用

简述动态规划的最优性原理及应用1. 动态规划的最优性原理动态规划是一种求解最优化问题的方法,它通过将问题分解为更小的子问题,并通过保存中间结果来减少重复计算的次数。

1.1 最优子结构性质动态规划的最优性原理基于最优子结构性质。

最优子结构性质指的是一个问题的最优解包含其子问题的最优解。

当一个问题满足最优子结构性质时,我们可以用递归的方式将问题分解为更小的子问题,然后通过解决这些子问题来得到原问题的最优解。

1.2 重叠子问题性质动态规划的最优性原理还依赖于重叠子问题性质。

重叠子问题性质指的是在求解一个问题时,我们会多次遇到相同的子问题。

通过保存中间结果,我们可以避免对相同的子问题重复计算,从而提高算法的效率。

2. 动态规划的应用动态规划的最优性原理可以应用于解决各种不同的问题,包括最长公共子序列、背包问题、图的最短路径等。

2.1 最长公共子序列最长公共子序列问题是指在两个序列中找到一个最长的公共子序列,该子序列不需要在原序列中是连续的。

通过动态规划的最优性原理,我们可以将最长公共子序列问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。

2.2 背包问题背包问题是指在给定的容量下,选择一些物品放入背包中,使得物品的总价值最大。

通过动态规划的最优性原理,我们可以将背包问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。

2.3 图的最短路径图的最短路径问题是指在一个带有加权边的有向图中,找到从一个节点到另一个节点的最短路径。

通过动态规划的最优性原理,我们可以将图的最短路径问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。

3. 动态规划的实现步骤使用动态规划求解问题的一般步骤如下:1.定义状态:明确问题所求解的状态是什么,一般用函数或数组表示。

2.确定状态转移方程:通过分析问题的最优子结构,构建状态转移方程,表示当前状态与前一个状态之间的关系。

3.初始化边界条件:根据问题的实际情况,初始化边界条件,来解决最小规模的子问题。

动态规划在资源分配中的应用

动态规划在资源分配中的应用
维普资讯
第 2 第 6期 2卷
Vo. 2 N . 12 o 6
荆 门职业技术 学院学报
Ju a fJn me e h ia l g o r l ig n T c nc l n o Co e e
20 07年 6月
Jn 20 u .0 7
2 动 态 规 划 的数 学模 型 及 求解 步 骤
动态 规划的 学模 数 型是:
பைடு நூலகம்
Ot p @ (k , R X, )
X : ( , )
J s .
∈ U ( ) k∈
j }= 1, … , 2, 忍
() 1
[ 收稿 日期 ]2 0 06—1 3 2—1 [ 作者简 介]王小华( 9 1 , , 16 一) 女 四川三 台人 , 罗定职业技术学 院讲 师。研究方 向: 高等代数 、 高等 数学 。E—m i a l
4 )根 据状 态变 量 之 间的递 推关 系 , 出状 态 转移方 程 写 6 )建立 动态 规划 基本 方程 : = ( , ( ) ; ) 5 建 立 指标 函数 : ) 一般 用 r( , )描写 阶段 效应 , ) 示 k一1 A( 表 2阶段 的最优 策 略函数 ;
合这 种 要求 的一 种决 策方 法。
1 动 态 规 划 的最 优 性 原 理
动态规划在经济管理、 军事、 工程技术等方面都有广泛 的应用。“ 最优化原理” 是动态规划的核心, 所有动态规划 问题 的递推关系都是根据这个原理建立起来的。 最优性原理 :整个过程的最优策略具有这样 的性质 : “ 即无论过程过去 的状态和决策 如何 , 对前面 的决策所形成 的状态而言 , 余下的诸决策必须构成最优策略。 简而言之 , ” 最优性原理的含义就是 : 最优 策略 的任何一部分子策略也必须是最优的。

管理运筹学07动态规划

管理运筹学07动态规划
生产计划、库存管理、路径规划 等。
连续时间动态规划
定义
连续时间动态规划是指时间连续变化,状态 和决策也连续变化,状态转移和决策可以发 生在任意时刻。
解决思路
通过将时间连续化,将连续的时间动态问题转化为 离散的时间动态问题,然后应用动态规划的方法进 行求解。
应用场景
控制系统优化、金融衍生品定价、物流优化 等。
状态转移
指从一个状态转移到另一个状态的过程,是动态规划的基本要素 之一。
状态转移方程
描述了状态转移的数学表达式,是动态规划算法的核心。
最优化原理
最优化原理
在多阶段决策问题中,如果每个阶段 都按照最优策略进行选择,则整个问 题的最优解一定是最优的。
最优子结构
如果一个问题的最优解可以由其子问 题的最优解推导出来,则称该问题具 有最优子结构。
解决方案
采用启发式搜索策略, 如模拟退火、遗传算法 等,来引导算法跳出局 部最优解。
案例
在旅行商问题中,采用 模拟退火算法结合动态 规划,在局部搜索和全 局搜索之间取得平衡, 得到全局最优解。
06 动态规划案例研究
案例一:生产与存储问题的动态规划解决方案
总结词
该案例研究探讨了如何利用动态规划解决生 产与存储问题,通过合理安排生产和存储策 略,降低总成本。
管理运筹学07动态规划
contents
目录
• 动态规划概述 • 动态规划的基本概念 • 动态规划的应用 • 动态规划的扩展 • 动态规划的挑战与解决方案 • 动态规划案例研究
01 动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法,从而有效 地解决最优化问题的方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x3 s3 0 0 0 1 2 3 4 5 g3(x3) 1 4 6 11 2 3 4 5 f3(s3) x*3



12 12 12
0 4 6 11 12 12
0 1 2 3 4 4,5
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
s2 = 3



4
5
12 12 12
0 4 6 11 12 12
0 1 2 3 4 4,5
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
s2 = 5
f 2 (5) max {g 2 ( x2 ) f 3 ( s3 )}
0 x2 s 2
乙 0 5 10 11 11 11

s3 = 5
f 3 (5) 12
x3*(5) = 4,5
0 4 6 11 12 12
结果可写 成表格的 形式:
x3 s3 0 1 2 3 4 5 0 0 1 4
4
5
f3(s3) x*3
11
12 12 12
0 4 6 11 12 12
0 1 2 3 4 4,5
k =2,s3 = s2 - x2,s2=0,1,2,3,4,5,0 x2 s2,有
x2*(1) =1
x3 s3 0 0 0 1 2 3 4 5 g3(x3) 1 4 6 11 2 3
g 2 (0) f 3 (1) m ax x 2 0 ,1 g (1) f ( 0 ) 3 2 0 4 m ax 5 x 2 0 ,1 5 0
s2 = 0
0 x 2 s 2
s3 s2 x2
f 2 (0) max { g 2 ( x 2 ) f 3 ( s 3 )} g 2 (0) 0
x2*(0) = 0
x3 s3 0 0 0 1 2 3 4 5 g3(x3) 1 4 6 11 2 3 4 5 f3(s3) x*3
x2*(3) =2
x3 s3 0 0 0 1 2 3 4 5 1 4 6 2
g3(x3) 3 4 5
f3(s3) x*3



11
12 12 12
0 4 6 11 12 12
0 1 2 3 4 4,5
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
s3的可达状态集合
决策变量 0 ukx (s kk) sk
s2的可达状态集合
s1的可达状态集合
3个阶段 如何划分 阶段
甲 乙 丙
状态转移方程?
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
s1
x1 1
s2
x2 2
s3
x3 3
s4
sk 1 sk xk
资源分配问题
1 资源平行分配问题
不考虑回收 设有某种原料,总数量为 a,用于生产 n 种产 品。若分配数量 xi 用于生产第 i 种产品,其收益为 gi ( xi ),问应如何分配,才能使生产 n 种产品的总 收入最大? Max Z = g1(x1)+g2(x2)+ +gn(xn) s.t. x 1+ x 2 + + x n = a xi 0 i = 1, 2, , n 静态规 划模型
3
g 3 ( 0) 0
3
s3 = 1
s3 = 2
f 3 (2) 6
f 3 (1) m ax{ g 3 ( x 3 ) f 4 ( s 4 )} x *(1) = 1 3 0 x 3 s3 g 3 ( 0 ) m ax 4 x 3 0 ,1 g 3 (1) 甲 乙 丙
x2
0 x1 s1
s2
f2(s2) 0 5 10 14 16 21
x*2 0 1 2 2 1,2 2



0 1 2 3 4 5
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
结果可写成表格的形式
x1 s1 5 0 1 0+21 3+16 g1(x1)+f2(s1-x1) 2 3 7+14 4 5 f1(s1) 21 x*1 0,2
x3*(2) = 2
s3 = 3 f 3 (3) 11
x3*(3) = 3
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
s3 = 4
f 3 (4) 12
x3*(4) = 4
甲 0 1 2 3 4 5 g3(x3) 2 3 6 0 3 7 9 12 13
9+10 12+5 13+0
最优分配方案一:由 最优分配方案? x1* = 0,根据 s2 = s1- x1* = 5- 0 = 5,查表知 x2* = 2,由s3 = s2- x2* = 5 - 2 = 3,故 x3* = s3 =3。即得甲工厂分配0台,乙工厂分配2台,丙 工厂分配3台。
最优分配方案二:由 x1* = 2,根据 s2 = s1 - x1* = 5- 2 = 3,查表知 x2*= 2,由 s3 = s2 - x2*= 3 - 2 =1, 故 x3* = s3 =1。即得甲工厂分配2台,乙工厂分配2台, 丙工厂分配1台。 以上两个分配方案所得到的总盈利均为21万元。 问题: 如果原设备台数是4台,求最优分配方案? 如果原设备台数是3台,求最优分配方案?
例3 某公司拟将5台某种设备分配给所属的甲、 乙、丙三个工厂,各工厂若获得这种设备,可以为 公司提供的盈利如表。 问:这五台设备如何分配给各工厂,才能使公 司得到的盈利最大。
工厂 盈利 设备台数



0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
f3(s3) x*3
0 x 2 s 2
x2*(4) =1,2
x3 s3 0 0 0 1 2 3 4 5 g3(x3) 1 4 6 11 2 3
f 3 ( 4) 0 12 5 11 f 3 ( 3) f 3 ( 2) m ax 10 6 x 2 0 ,1 , 2 , 3 , 4 11 4 f 3 (1) 11 0 f 3 ( 0)
4
5
f3(s3) x*3



12 12 12
0 4 6 11 12 12
0 1 2 3 4 4,5
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
s2 = 2
f 2 ( 2) max{ g 2 ( x 2 ) f 3 ( s 3 )}
f2(s2) 0 5 10 14 16 21
x*2 0 1 2 2 1,2 2
k =1时, s2 = s1 - x1, s1 = 5, 0 x1 s1,有
f 1 ( s1 ) max{ g1 ( x1 ) f 2 ( s 2 )} g 1 ( 0) f 2 ( 5) 0 21 g1 (1) f 2 (4) 3 16 g ( 2 ) f ( 3 ) 1 7 14 2 max max 21 x1 , 0 ,1, 2 , 3 , 4 , 5 g 1 ( 3) f 2 ( 2) 9 10 g1 (4) f 2 (1) 12 5 x1*(5) =0,2 13 0 g 1 ( 5) f 2 ( 0)



12 12 12
0 4 6 11 12 12
0 1 2 3 4 4,5
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
s2 = 1
f 2 (1) m ax{ g 2 ( x 2 ) f 3 ( s 3 )}
0 x 2 s2
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
状态转移方程: 基本方程:
sk+1 = sk - xk
xk的取值 范围? Dk ( sk )={ uk|0uk= xk sk }
ax[ g k x k f k 1 ( s k 1 )] f k s k 0m x k sk f 4 ( s4 ) 0
s2 = 4
f 2 (4) m ax{ g 2 ( x 2 ) f 3 ( s 3 )} g 2 ( 0) g 2 (1) m ax g 2 ( 2) x 2 0 ,1 , 2 , 3 , 4 g 2 ( 3) g ( 4) 2 16
4
5
f3(s3) x*3



12 12 12
0 4 6 11 12 12
0 1 2 3 4 4,5
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11 11 11
0 4 6 11 12 12
结果列于下表:
x2 g2(x2)+f3(s2-x2)
相关文档
最新文档