一次函数的数形结合思想

合集下载

一次函数中的数形结合

一次函数中的数形结合
排 除 选 项 A; 由6 < 6 : 可 知Y 与y 2 不 能 与Y 轴 交于 同一 点 , 排 除 选 项 C; 同 时 得 出Y 。 与Y
像 n图 l , 贝 4 下歹 q结 论
① < 0 ; ②n > 0 ; ③ 当x < 3 D / / 3\ Yl = k x +i 时, Y < y 2 中, 正 确 的 个

8 鼗
S l Jl 鞋

次 函数 中的数形结合
赵 蓉

华 罗庚 先 生 曾指 出 : “ 数 与 形本 是 相 倚 Y , 在 两 个 函 数 图像 交 点 的 左 边 即 x < 3时 ,
依 , 焉能分作 两边 飞 ; 数缺 形 时少直 觉 , 形
Y 的图像位于y 图像的上方, 因 坳 > Y 2 . 故
算 的 目的 .


\ l

/ 一 \ > < / O 一 \ / ; / 、 \ / \
C D

【 典例精析 】
例 1 一 次 函 数 y l = k x+ b与 Y2 = + 0的 图 \

【 解析 】 由k ・ k 2 < O可得k 。 与k 异号 , 故 有 一 条 直线 是 上 升 的 , 一条直线是下降的 ,
J l
形” 可使 复 杂 问题 简单 化 , 抽 象的数 学 问题 直观 化 、 生动 化 , 能 够 变抽 象 思 维 为 形 象 思维 , 有 助 于 把 握 数 学 问题 的 本 质 . 另外,
由于 使 用 了数 形 结 合 的 方 法 , 很 多 问题 便
迎 刃而 解 , 且 解法 简捷 , 从 而 起 到 优 化 计

一次函数中的数形结合思想

一次函数中的数形结合思想

一次函数中的数形结合思想在众多的函数中,一次函数最为简单.它的性质和应用是初中数学的重要内容,也是中考的重点考查内容.形少数,难入微;数缺形,少直观.在一次函数中数形结合思想的应用广泛且灵活,下面试举几例希望能对同学们的学习有所帮助.一、面积型根据已知条件的特点,画出图形,利用图形的直观性求解问题.例1.求直线y=3x-2和直线y=2x+3与y轴所围成的图形的面积.【思路分析】画出两直线的图像,如图1,得到满足条件的△ABC,再根据图形的特点求其面积.所以交点C的坐标为(5,13)因为直线y=3x-2和直线y=2x+3分别与y轴交于点A(0,-2)和B(0,3),所以AB=︱3-(-2)︱=5.又CD=5,所以 .【评注】解题时,若借助数形结合思想,把问题直观化、形象化,则有利于问题的解决.例2.一条直线与y轴交点到原点的距离为4,且与两坐标轴围成三角形的面积为4,求直线的解析式.【思路分析】欲求直线的解析式,只需两组对应值,由已知直线与y轴交点到原点的距离为4,可以确定一组对应值,另一组对应值则需利用三角形面积的计算方法求出直线与x轴交点的坐标而求得.【解】设解析式为y=kx+b(k≠0),直线交y轴于点A,交x轴于点B.因为直线与y轴交点到原点的距离为4,所以A(0,4)或(0,-4).由,可得OB=2.所以B(-2,0)或(2,0).由于未指定直线的位置,所以应考虑所有的情况,如图所示:当直线过A(0,4),B(-2,0)时,解析式为y=2x+4;当直线过A(0,4),B(2,0)时,解析式为y=-2x+4;当直线过A(0,-4),B(2,0)时,解析式为y=2x-4;当直线过A(0,-4),B(-2,0)时,解析式为y=-2x-4;综上所述,所求解析式为:y=2x+4或y=-2x+4或y=2x-4或y=-2x-4【评注】对距离有要求时,需画草图分析,可能出现的各种情况,考虑周全,防止漏解.二、不等式型例3.作函数y=x+3的图象,如图所示,回答下列问题:(1)x取何值时,x+3>0;(2)x取何值时,x+3<0;(3)x取何值时,x+3>1;【思路分析】要回答上面的三个问题,我们可以从函数图象的定义上去理性的思考:x+3>0,可以看作是一次函数y=x+3中y>0,从图象上看,可以看作是纵坐标大于0的所有点的集合,即y=x+3的图象在x轴上方的部分.此时,要满足x+3>0,必须满足x>3.其他两个问题的研究方法相同.【解】观察图象知:直线y=x+3与x轴的交点坐标为(-3,0),可知x=-3时,y=0.(1)当x>-3时,x+3>0;(2)当x<-3时,x+3<0;(3)当x>-2时,x+3>1.【评注】利用函数图象解一元一次不等式的方法是:作出函数图象,寻求图象与x轴的交点,求得一元一次不等式的解集.这是利用函数图象解一元一次不等式的“三部曲”.例4.一次函数y=kx+b的自变量x的取值范围是-4≤x≤-2相应函数值的范围是4≤y≤6求此函数的解析式.【思路分析】一次函数y=kx+b(k≠0,b为常数)的性质理解是一个难点,我们应该把图象和k值正负结合起来理解.由于一次函数的图象是直线,故当-4≤x≤-2时,图象是线段,由一次函数的增减性,函数的最值一定对应x的最值,即y的最大值6,一定对应x的最大值-2或最小值-4,这要视k的符号而定.【解】对k的值分两种情况进行讨论;(1)当k>0时,则y的值随x的值的增大而增大.因此,一定是当x=﹣4时,y=4;当x=﹣2时,y=6故得:y=x+8(2)当k<0时,y随x的增大而减少,一定是当x=﹣4时,y=6;x=﹣2时,y=4,于是得y=﹣x+2.综合上述两种情况,符合条件的解析式为:y=x+8或y﹣x+2【评注】这是一道分类讨论题,由k的符号充分利用了一次函数的性质,构题较妙.三.实际应用型我们在分析和解决实际问题时首先应根据题目给出的条件写出函数关系式,然后再根据题意解决具体问题.在一些实际问题中经常是已知自变量的值,求相应的函数值;或根据函数值,求出与之对应的自变量的值.例5 某电信公司开设了甲、乙两种市内移动通信业务,甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月总通话时间为x分钟,甲、乙两种业务的费用分别为y1元和y2元.(1)试分别写出y1、y2与x之间的函数关系式;(2)在同一坐标系中画出y1、y2的图像;(3)根据一个月的通话时间,你认为选用哪种通信业务更优惠?【思路点拨】“选择”是现实生活中经常遇到的问题,选择经常与经济效益相联系,.借助一次函数的图像,运用图像使问题得以解决.(1)由题意很容易得出y1=0.3x+15(x≥0);y2=0.6x(x≥0);(2)y1、y2在同一坐标系中的图像如下图所示;(3)由图像可知:当一个月通话时间为50分钟时,两种业务的费用相同;当一个月通话时间少于50分钟时,乙种业务更优惠;当一个月通话时间多于50分钟时,甲种业务更优惠,【评注】:求实际应用型问题的函数关系式,一般要写出自变量的取值范围,这个范围要根据实际情况来考虑.。

数形结合在一次函数中的应用

数形结合在一次函数中的应用
评 注 : 从 “ ” “ ” 问 题 时 解 形 到 数 的 应 注 意 观察 图象 的形 状 特 征 . 分 挖 充 掘 图 象 中 的 已知 条件 . 定 函 数 的解 确 ( A)
s { 漱
() B
根 据 图 象 , 答 下 列 问题 : 解
析 式 . 而利 用 函数 图 象 的性 质来 解 从
f )求 这 辆 汽 车 从 甲 地 出 发 4 为 总 费 用 为 y 元 ) 有 两 种 购 买 方 3 h ( 现
案:
分析 : 由题 意 得 : 刚 前 4 0米 时 与 甲地 的距 离 小 5 行 走 的 时 间 t= 1 = 5 ( )s t 1 分 ,随
分 析 :1 由 题 意 得 : () 线段 O 表 A
例 题 :小 刚 每天 从 家 去 学 校 . 上 学 行 走 的路 程 为 9 0米 天 他 从 家 0 某
k ( ≠0 , 图象 得 : xk )由
B( . 2 ) C 5 0 , 入 得 : 2 ,1 0 、 ( 、 ) 代 5
例 题 : 一 次 运 输 任 务 中 . 辆 在 一
2 : 数 关 系 . 后 根 据 函象 . 而 归 纳 出 函数 的 图 从
同。 ■髓圄咖 湖 育l 教学 4 北教 教育 5
实践

是线段 O A所 表 示 的正 比例 函数 .= v 评 注 : 数 形 结 合 的 问题 时应 注 解

( 0 ,0 0 )B(5 ,4 0 ) 1 0 10 0 、 10 10 0
强 解 决 问 题 的灵 活 性 . 高 分 析 问 题 提
解决 问题 的 能力 数 学 中 渗透 数 形 在
当 x 10时 . ≥ 0 Y与 x的 函 数 关

数形结合思想在一次函数中的运用

数形结合思想在一次函数中的运用

数形结合思想在一次函数中的运用作者:张治国来源:《语数外学习·教学参考》2012年第11期函数是初中数学代数部分的重点,也是难点。

函数最本质的内容是性质和图象,核心思想是“数形结合”。

深刻理解和熟练运用数形结合思想是学好函数的关键。

著名数学家华罗庚先生曾说过,“数缺形时少直观,形少数时难入微,数形结合百般好,数形分离万事休”。

由此可见数形结合在数学学习中的重要性。

一次函数反映的是数量关系与变化规律,是最基本的函数,学好一次函数是学好函数的基础。

对于学生而言,一次函数学好了,真正做到数形结合,再学习后面的反比例函数和二次函数便会容易得多。

本文结合教学实践,对一次函数中“数形结合”的思想进行探讨,以指导学生更好地理解函数的精髓,掌握解题方法。

一、从数到形,以形助数例1一个沙漏中有100g沙子,沙子以每秒钟10g的速度漏出。

沙漏中余下的沙子y(单位g)与沙漏时间x(单位s)之间的函数图象是()。

解析:y为余下的沙子,随着沙漏时间的增长,剩余的沙子y必然减少,因此,该函数一定是减函数,由此可以排除A和C选项。

沙子最多时候为20g,漏完之后为0g,因此y的区间一定是0~20,由此可以排除D选项,因此本题正确答案应为B。

二、从形到数,量化入微例2有一种玩具小汽车的车速可以在1分钟之内加速到10m/s,之后以每秒5米的速度提高车速,最高车速为每秒40m,达到40秒之后便保持40m/s的速度行驶。

假设时间为x(单位:s),车速为y(单位:m),则y与x的函数图象如下图所示。

(1)根据图象,写出当1≤x≤7时,y与x的函数关系式。

(2)计算车速要想达到35m/s时,需要多长时间。

(3)求出在多长时间之后,小汽车的速度就不再提高。

写出小汽车车速达到40m/s之后,y与x的函数关系式。

解析:(1)根据题意可知,此玩具汽车的速度分为三个部分,首先是第1秒内提高到10 m/s,之后以5m/s的速度提速,在提到40m/s的速度后便匀速行驶。

数形结合思想在初中数学中的应用

数形结合思想在初中数学中的应用

数形结合思想在初中数学中的应用数形结合思想是指通过对数学问题进行图形化的表示和解释,从而提供直观的解决问题的思路和方法。

在初中数学中,数形结合思想的应用主要包括以下几个方面。

一、图形与几何问题的解决数形结合思想在解决几何问题时起到了至关重要的作用。

通过将几何问题转化为图形问题,可以直观地理解问题的本质,并通过观察和推理得到解决问题的方法。

当求解一个三角形的面积时,可以通过将三角形划分成若干个简单的图形,计算它们的面积然后相加来得到整个三角形的面积。

这种数形结合思想的应用,帮助学生理解并解决了许多几何问题。

二、函数与图像的分析在初中数学中,我们接触到的函数种类较为简单,但是通过对函数图像的观察,可以对函数进行初步的分析和判断。

通过观察一元一次函数(y = kx + b)的图像,可以看出当 k>0 时函数是递增的,而当 k<0 时函数是递减的。

通过对图像的观察和比较,可以得到一些函数的性质和规律。

图形化的表示和解释使得函数的学习更加直观和有趣。

三、统计与数据分析数形结合思想在统计和数据分析中也有重要的应用。

在分析一个统计数据时,可以通过绘制柱状图、折线图等图形来直观地展示和比较数据的特征。

通过观察图形,我们可以得出一些有关数据的结论和推断。

图形化的表达也使得数据的理解和分析更加简单和直观。

四、证明与推理在初中数学中,我们也经常需要进行一些证明和推理的工作。

数形结合思想通过图形的表示和解释,可以帮助学生更好地理解和掌握证明和推理的方法。

在证明两个三角形全等时,可以通过绘制它们的图形表示,并观察图形的对应部分是否相等来进行验证。

这种数形结合的思考方式,帮助学生更好地理解和运用证明和推理的方法。

数形结合思想在初中数学中的应用十分广泛。

通过将抽象的概念和问题进行图形化的表示和解释,数形结合思想可以帮助学生更好地理解和掌握数学知识,提高解决问题的能力和思维方式。

数形结合思想在初中数学的教学中起到了重要的作用,同时也培养了学生的创造力和想象力,使学习数学变得更加有趣和实用。

一次函数的解题技巧

一次函数的解题技巧

一次函数的解题技巧
1、待定系数法:用于确定一次函数的解析式,是方程思想的具体应用;
2、由函数解析式画其图像的一般步骤:列表、描点、连线;
3、一次函数解题常用公式:
求函数图像的k值:(y1-y2)/(x1-x2)
求与x轴平行线段的中点:|x1-x2|/2等等。

扩展资料
求与y轴平行线段的中点:|y1-y2|/2
求任意线段的长:√(x1-x2)^2+(y1-y2)^2
一次函数的解题方法
在解决一次函数相关问题过程中,会运用到许多重要的数学思想方法:
1、数形结合思想:根据数和形之间的对应关系,将数字和图形结合起来以解决数学问题,兼备了直观性和严密性的特征。

2、方程思想:方程思想的实质就是将所求的量设成未知数,根据已知条件或所给数量关系列出方程或方程组,通过解方程或对方程进行研究,从而解决问题。

3、转化和化归的.思想:转化和化归的核心是把没做过的题转化为经典的题型,将复杂问题化归为简单问题,将较难问题化为较易问题,从而使问题顺利得解。

4、分类讨论思想:当面临的数学问题不能统一地进行解决时,可分情况来讨论,最后再组合到一起。

初中数学教学课例《一次函数的图像》课程思政核心素养教学设计及总结反思

初中数学教学课例《一次函数的图像》课程思政核心素养教学设计及总结反思

择与设计
让学生画图后,观察图像,总结出这些图像的特点,
教学过程 并与小组同学交流,归纳出一次函数的图像性质。教师
引导学生观察方法,体会“数形结合”思想。
课例研究综
要把课堂还给学生,相信学生,体现知识的形成过

程,才能使学生在课堂中学到真本事,找到快乐。
一次函数的性质特点。2 过程目标:通过画图和观察图
教学目标 像特点的过程学习,培养学生的探究能力,深刻体会
“数形结合”思想方法。3、情感目标:在学习过程中,
让学生找到成功的快乐,体会到数学结合的美。
学生学习能
本节课需要学生的画图能力,观察归纳能力,合作
力分析 讨论的习惯。
教学策略选
通过学生自主画图,小组讨论的方法
初中数学教学课例《一次函数的图像》教学设计及总结反思
学科
初中数学
教学课例名
《一次函数的图像》

一次函数的图像是函数的重要内容,来自形结合思想的入门学习,是以后函数学习的基础。掌握一次函数的 教材分析
图像及性质是本节课的重点,数形结合方法的应用是学
习的重点也是难点。
1、知识目标:掌握一次函数的图像的画法,理解

专题48 中考数学数形结合思想(解析版)

专题48 中考数学数形结合思想(解析版)

专题48 中考数学数形结合思想数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。

中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。

作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。

“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。

1.数形结合思想的含义数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

2.数形结合思想应用常见的四种类型(1)实数与数轴。

实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。

(2)在解方程(组)或不等式(组)中的应用。

利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。

(3)在函数中的应用。

借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

(4)在几何中的应用。

对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。

3.数形结合思想解题方法“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观.【例题1】(2020•遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°=AC CD =12+√3=2−√3(2+√3)(2−√3)=2−√3.类比这种方法,计算tan22.5°的值为( )A .√2+1B .√2−1C .√2D .12 【答案】B【分析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,根据tan22.5°=ACCD 计算即可.【解析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,∴tan22.5°=AC CD =11+√2=√2−1 【对点练习】(2019•湖北省仙桃市)不等式组的解集在数轴上表示正确的是( )A. B.C.D.【答案】C【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2【例题2】(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=15【答案】A【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.【解析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.【对点练习】(2020株洲模拟)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.【答案】4【解析】本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.【例题3】(2020通化模拟)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE 的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数中的数型结合思想
学习目标:1、巩固一次函数知识,灵活运用变量关系解决相关几何问题.
2、有机地把各种数学模型通过函数统一起来使用,提高解决几何问题的能力. 3.认识数学在现实生活中的意义,发展运用数学知识解决几何问题的能力.
重 点:一次函数的模型建立及应用
难 点:如何选择合适的模型并应用
一、 自主学习:1.如图,直线AB 与y 轴,x 轴交点分别为A(0,2) B(4,0)
问题1:求直线AB 的解析式及△AOB 的面积.
问题2:
当x 满足什么条件时,y >0,y =0,y <0,0<y <4
二、课堂探究:问题3:在x 轴上是否存在一点P,使
若存在,请求出P 点坐标,若不存在,请说明理由.
问题4:求直线AB 上是否存在一点E,使点E 到x 轴的距离等于1.5,若存在求出点E 的坐标,若不存在,请说明理由.
问题5:求直线AB 上是否存在一点F,使点F 到y 轴的距离等0.6,若存在求出点F 的坐标,若不存在,请说明理由.
问题6:在AB 上是否存在一点G,使 AOB BOG S S ΛΛ=21 若存在,请求出G 点坐标,若不存在,
请说明理由.
3=ΛPAB S
问题7:
在AB 上是否存在一点H,使
AOB AOH S S ΛΛ=41 若存在,请求出H 点坐标,若不存在,请说
明理由.
三.课后巩固练习:直线: 232-=x y 分别交x 轴,y 轴于A,B 两点,O 为原点. (1)求△AOB 的面积;
(2)过AOB 的顶点,能不能画出直线把△AOB 分成面积相等的两部分?写出这样的直线所对应
的函数解析式。

相关文档
最新文档