轧辊材料及热处理
轧辊生产工艺流程

轧辊生产工艺流程轧辊是冶金设备中的重要部件之一,主要用于压制金属材料。
轧辊的生产工艺流程主要包括熔化和铸造、铸锭处理、预热和加热处理、热处理、机械加工、表面处理和检测等环节。
下面将对轧辊生产工艺流程进行详细介绍。
首先是熔化和铸造环节。
轧辊的熔化通常采用电弧炉熔炼方法,将铁水与熔点较高的合金加入炉中,经过高温熔化后,倾入预先准备好的模具中。
然后,待铸造完成后,进行冷却、脱模,得到初步成型的轧辊。
接下来是铸锭处理环节。
铸锭处理是对初步成型的轧辊进行清洁和修整,以去除铸造过程中的氧化物、杂质和气孔等缺陷,并进行尺寸修整。
这一环节通常采用机械或化学方法进行处理。
然后是预热和加热处理环节。
预热是对清洁的轧辊进行适当加热,以去除轧辊中的内应力,使轧辊能够在加热处理时不产生严重的变形。
加热处理是将轧辊加热到一定温度,并在特定条件下保持一定时间,使轧辊中的组织结构发生相应的变化,从而提高轧辊的硬度和耐磨性。
热处理是轧辊生产工艺流程中非常重要的一环。
它是通过对加热后的轧辊进行快速冷却和回火,调整轧辊的组织结构,使其达到预期的性能要求。
热处理的过程中,需要严格控制冷却速度和回火温度,以保证轧辊的硬度和韧性的平衡。
机械加工环节主要是对经过热处理的轧辊进行精加工。
这一环节通常包括车削、磨削、镗削等工艺,以保证轧辊的尺寸精度和形状精度。
表面处理环节是为了提高轧辊的抗腐蚀性能和表面质量。
这一环节通常包括抛光、酸洗、镀铬等工艺,以使轧辊的表面光滑、均匀,并具有一定的抗腐蚀能力。
最后是检测环节。
轧辊在生产过程中需要进行各种性能和质量的检测,以确保轧辊达到设计要求和使用要求。
检测包括尺寸检测、硬度检测、化学成分分析、金相分析等。
综上所述,轧辊的生产工艺流程包括熔化和铸造、铸锭处理、预热和加热处理、热处理、机械加工、表面处理和检测等环节。
通过这些环节的有序组合,可以获得性能优良、质量稳定的轧辊产品。
轧辊生产工艺流程

轧辊生产工艺流程轧辊是轧制金属的重要工具,在轧制过程中起到支撑金属材料、改变金属材料形状和尺寸的作用。
轧辊的生产包括轧辊铸造、热处理、精加工和质检等环节。
以下是轧辊生产的主要工艺流程。
首先,轧辊的生产始于轧辊铸造。
在轧辊铸造过程中,首先根据轧辊的结构参数,制定铸造工艺方案,确定熔炼材料和铸型材料。
然后,按照轧辊的形状和尺寸制作铸型,并在铸型内涂抹耐火材料。
接着,熔炼金属材料,将熔融金属倒入铸型中,待金属凝固后,取出轧辊铸件。
其次,轧辊的生产需要进行热处理。
热处理是为了改善轧辊的硬度和强度,提高轧辊的耐磨性和耐热性。
热处理一般包括淬火和回火两个步骤。
在淬火过程中,将轧辊加热至一定温度,然后迅速浸入冷却介质中,使轧辊表面形成硬脆组织。
随后,在回火过程中,将淬火后的轧辊加热至一定温度,保温一定时间,然后冷却至室温,使轧辊表面的脆性得到缓解,同时增加韧性和强度。
接下来,轧辊的生产还需进行精加工。
精加工包括车削、磨削和抛光等工艺。
首先,通过车削工艺将轧辊的外径和端面进行加工,使其符合要求的几何尺寸和表面粗糙度。
然后,通过磨削工艺将轧辊的外表面进行研磨,提高轧辊的表面光洁度和平行度。
最后,通过抛光工艺对轧辊进行抛光,使其表面得到更好的光亮度和光滑度。
最后,轧辊的生产还需要进行质检。
质检是为了验证轧辊的质量是否符合技术要求。
质检一般包括外观检查、尺寸检测和力学性能测试等项目。
外观检查主要是对轧辊的表面质量进行检查,包括表面有无裂纹、气孔等缺陷;尺寸检测主要是对轧辊的几何尺寸进行测量,包括外径、内径、宽度等尺寸;力学性能测试主要是对轧辊的硬度、强度等力学性能进行测试,以确保轧辊的使用性能。
综上所述,轧辊的生产工艺包括轧辊铸造、热处理、精加工和质检等环节。
每个环节都有其特定的工艺要求和技术要求,通过完成这些环节,可以制造出质量可靠、性能稳定的轧辊产品。
轧辊的材料及热处理

轧辊的寿命主要取决于轧辊的内在性能和工作受力,内在性能包括强度和硬度等方面。
要使轧辊具有足够的强度,主要从轧辊材料方面来考虑;硬度通常是指轧辊工作表面的硬度,它决定轧辊的耐磨性,在一定程度上也决定轧辊的使用寿命,通过合理的材料选用和热处理方式可以满足轧辊的硬度要求。
轧辊按工作状态可分为热轧辊和冷轧辊,按所起的作用可分为工作辊、中间辊、支承辊,按材质可分为锻辊和铸辊(冷硬铸铁)。
通常轧辊的服役条件极其苛刻,工作过程中承受高的交变应力、弯曲应力、接触应力、剪切应力和摩擦力。
容易产生磨损和剥落等多种失效形式。
不同的用途、不同类型的轧辊处在各自特定的工况条件,其大致的性能要求如下:冷轧辊在工作过程中要承受很大的轧制压力,加上轧件的焊缝、夹杂、边裂等问题,容易导致瞬间高温,使工作辊受到强烈热冲击造成裂纹、粘辊甚至剥落而报废。
因此,冷轧辊要有抵抗因弯曲、扭转、剪切应力引起的开裂和剥落的能力,同时也要有高的耐磨性、接触疲劳强度、断裂韧性和热冲击强度等。
国内外冷轧工作辊一般使用的材质有GCr5、9Cr2、9Cr、9CrV、9Cr2W、9Cr2Mo、60CrMoV、80CrNi3W、8CrMoV、86CrMoV7、Mo3A等。
20世纪50~60年代,这一时期的轧件多为碳素结构钢,强度和硬度不高,所以轧辊一般采用 1.5%~2%Cr锻钢。
此类钢的最终热处理通常采用淬火加低温回火,常见的淬火方式有感应表面淬火和整体加热淬火。
其主要任务是考虑如何提高轧辊的耐磨性能、抗剥落性能,并提高淬硬层深度,尽量保证轧辊表面组织均匀,改善轧辊表层金属组织的稳定性。
从20世纪70年代开始,随着轧件合金化程度的提高,高强度低合金结构钢(HSLA)的广泛应用,轧件的强度和硬度也随之增加,对轧辊材料的强度和硬度也提出了更高的要求,国际上普遍开始采用铬含量约2%的Cr-Mo型或Cr-Mo-V 型钢工作辊,如我国一直使用的9Cr2Mo、9Cr2MoV和86CrMoV7、俄罗斯的9X2MΦ、西德的86CrMoV7、日本的MC2等。
轧辊修复加工工艺流程

轧辊修复加工工艺流程轧辊是钢铁、有色金属等工业领域中重要的加工设备之一,承担着压制、塑性变形等工作任务。
由于长期使用和工作环境的影响,轧辊会出现磨损、裂纹、疲劳断裂等问题,影响轧制质量和生产效率。
因此,轧辊修复加工工艺流程成为了轧辊维修的重要环节。
本文将详细介绍轧辊修复加工工艺流程的各个环节和步骤。
第一步:轧辊检测和评估在进行轧辊修复加工之前,首先需要对轧辊进行全面的检测和评估。
这一步骤的目的是确定轧辊的实际状况,包括轧辊表面的磨损程度、裂纹的情况、轧辊轴颈的磨损程度等。
常用的轧辊检测方法包括超声波检测、磁粉检测、磁记忆检测等。
通过对轧辊的检测和评估,可以为后续的修复加工工艺提供依据。
第二步:轧辊磨削修复轧辊修复加工的第一个环节是磨削修复。
磨削修复是通过机械磨削的方法对轧辊表面进行修复,去除磨损层和裂纹,使轧辊恢复原有的几何形状和尺寸。
磨削修复主要包括以下几个步骤:1. 清洗和除锈:首先需要对轧辊进行清洗和除锈,去除表面的污物和氧化物,保证磨削效果。
2. 粗磨:采用粗磨砂轮对轧辊表面进行粗磨,去除较深的磨损层和裂纹。
3. 精磨:采用精磨砂轮对轧辊表面进行精磨,使轧辊表面平整光滑,减少磨削痕迹。
4. 抛光:通过抛光工艺对轧辊表面进行抛光,提高轧辊表面的光洁度和光亮度。
第三步:轧辊热处理轧辊磨削修复后,需要对轧辊进行热处理,以提高轧辊的硬度和耐磨性。
轧辊热处理主要包括以下几个步骤:1. 预热:将轧辊放入炉内进行预热,使轧辊温度均匀升高,准备进行热处理。
2. 淬火:将轧辊迅速放入冷却介质中,使轧辊迅速冷却,以获得高硬度和较高的强度。
3. 回火:将淬火后的轧辊进行回火处理,以消除淬火时产生的内应力和改善轧辊的韧性。
4. 退火:对回火后的轧辊进行退火处理,以减少残余应力,提高轧辊的稳定性。
第四步:轧辊抛丸清理轧辊热处理后,轧辊表面会产生一层氧化皮和残余的热处理渣。
为了保证轧辊的质量和使用寿命,需要对轧辊进行抛丸清理。
9cr3mo冷轧辊钢的热处理

9cr3mo冷轧辊钢的热处理9Cr3Mo冷轧辊钢的热处理9Cr3Mo冷轧辊钢是一种常用于冷轧生产线的重要材料,其性能的优劣直接影响到冷轧产品的质量和生产效率。
为了提高9Cr3Mo冷轧辊钢的性能,热处理是一项关键的工艺。
本文将探讨9Cr3Mo冷轧辊钢的热处理方法及其对性能的影响。
热处理是通过控制材料的加热、保温和冷却过程,使其达到特定的组织和性能要求的一种工艺。
对于9Cr3Mo冷轧辊钢而言,主要包括退火和正火两种热处理方式。
不同的热处理方式会对钢材的组织、硬度和韧性产生不同的影响。
首先是退火处理。
退火是将钢材加热至一定温度后,保温一段时间,然后缓慢冷却至室温的过程。
对于9Cr3Mo冷轧辊钢而言,退火处理能够使其组织细化、晶粒均匀化,从而提高其韧性和抗疲劳性能。
此外,退火还能够消除内应力,改善材料的变形能力和加工性能。
因此,在生产中,常常采用退火来提高9Cr3Mo冷轧辊钢的综合性能。
其次是正火处理。
正火是将钢材加热至一定温度后,保温一段时间,然后迅速冷却至室温的过程。
正火处理能够使9Cr3Mo冷轧辊钢的组织发生相变,从而提高其硬度和强度。
正火处理后的冷轧辊钢表面硬度高,能够更好地抵抗磨损和变形,从而延长冷轧辊的使用寿命。
然而,正火处理过程中易产生内应力,因此需要合理控制加热温度和冷却速度,以避免产生组织不均匀和裂纹。
除了退火和正火处理外,还有一些其他的热处理方法可以应用于9Cr3Mo冷轧辊钢。
例如,淬火处理能够在短时间内使钢材的组织快速转变为马氏体,从而提高其硬度和强度。
然而,淬火处理过程中易产生内应力和变形,需要进行适当的回火处理以提高韧性。
此外,还可以采用等温淬火处理来提高冷轧辊钢的综合性能。
9Cr3Mo冷轧辊钢的热处理是提高其性能的重要工艺。
通过合理选择退火和正火处理等热处理方法,能够改善9Cr3Mo冷轧辊钢的组织、硬度和韧性,从而提高冷轧产品的质量和生产效率。
然而,在实际应用中,需要根据具体的生产要求和条件,合理选择热处理工艺参数,以获得最佳的处理效果。
热轧辊的选材及热处理

机 械研 究与应 用
ME H C ANI AL R S AR H & A P I A I N C E E C P LC TO
第 1 5卷
第 1 期
3O 32年 3 月
热 轧 辊 的选 材 及热 处 理
熊运 昌 , 梁秀山 , 杨凌平
( 】南 阳理工学 院, 河南 南阳 摘  ̄3 ; 南阳华骏 电源工业 有限公司 , 71 2  ̄4 河南 南阳 43  ̄) 70
6 "Байду номын сангаас0 3
.
轧辊 表面 温度 和热疲 劳 的出现 密 切相 关 , 度达 温 60 2 0 5时热臌 胀 和 应 力 正 好 是 一 般 热作 钢 所 能 承 受 的 , 温 度再 高 时 , 明显 产 生 热 龟 裂 危 险 。而 轧辊 但 会
表面温度取决于钢坯轧制温度、 钢坯 的材质以及轧辊
第 l卷 5
第1 期
机械研 究 与应 用
ME }A I A ES AR H & A P I A I N C IH C LR E C P LC T O
V0 5 No 1 l1
20 0 2年 3月
2 0 -3 0 20
气体冷 却 。 ( )回火 温度 :3 4 6 0~60℃ 5
基于上述分析讨论 , 作者认 为, 采用一般热作模 具钢 、 3 rw v4 rM V S、5rM 3 Z 如 C2 8 、C5 o Ii3C3 oW V均 可 做
热轧 辊 , 中 以  ̄ .,R g 其 A Q Oo为最 优 。当然 , 述 钢 2 上
和抗回火性相关 的软化会 因机械负荷 的作用 明 显加速 , 轧辊材料 同时处于高温 和机械负荷状态, 因 此, 一种好的轧辊材料应具备高温下抗机械负荷作用 的 能力 。此 能 力可 以数字 化 的高温 蠕变 强 度表示 。
轧辊热处理

轧辊热处理轧辊按工作状态可分为热轧辊和冷轧辊,按所起的作用可分为工作辊、中间辊、支承辊,按材质可分为锻辊和铸辊(冷硬铸铁)。
通常轧辊的服役条件极其苛刻,工作过程中承受高的交变应力、弯曲应力、接触应力、剪切应力和摩擦力。
容易产生磨损和剥落等多种失效形式。
不同的用途、不同类型的轧辊处在各自特定的工况条件,其大致的性能要求如下:轧辊类型主要性能要求辊身硬度工作温度℃热轧工作辊抗热疲劳裂纹性能,抗表面粗糙性能HB:196~302室温~850冷轧工作辊高硬度,耐磨性,抗疲劳剥落性能HS:90~105室温~180对热轧辊来说,辊面不允许出现裂纹,表面裂纹缺陷容易造成应力集中,加速扩展而使轧辊失效。
热疲劳裂纹主要起因于周期性交变热应力,严重情况下,裂纹扩展可能造成辊面剥落,甚至断辊。
冷轧辊主要失效形式包括划伤、粘辊和剥落等。
冷轧辊辊身表面应有高而均匀的硬度,其优劣表现在辊身工作层的耐磨性,即耐粗糙性。
大型热轧锻钢工作辊用钢的化学成分、临界点以及工艺参数如下。
热轧锻钢工作辊用钢化学成分(%)钢号CSiMnPSCrNiMoVCu55Cr0.50~0.600.17~0.370.35~0.65≤0.025≤0.0251.00~1.30≤0.30--≤0.2550CrMnMo0.45~0.550.20~0.601.30~1.701.40~1.80-0.20~0.60-60CrMnMo0.55~0.650.25~0.400.70~1.000.80~1.20-0.20~0.30-50CrNiMo0.45~0.550.20~0.600.50~0.801.40~1.80-0.20~0.60-60CrNiMo0.55~0.650.20~0.400.60~1.000.70~1.001.50~2.000.10~0.30-60SiMnMo0.55~0.650.70~1.101.10~1.50--0.30~0.40-60CrMo0.55~0.650.17~0.300.50~0.800.50~0.80≤0.250.30~0.4060CrMoV0.55~0.650.17~0.370.50~0.800.90~1.20-0.30`0.400.15~0.3570Cr3Mo0.60~0.800.40~0.700.50~0.902.00~3.000.40~0.600.25~0.60-常用热轧锻钢工作辊的临界点及工艺参数钢号临界点热处理Ac1Ac3Ar1Ms正火温度(℃)淬火温度(℃)回火温度(℃)55Cr735755--840~850820~840590~63060CrMo676805685-840~860860~870600~66060CrMoV765798-265890~910860~880600~68060CrMnMo700805655-820~840860~870650~68060SiMnMo700760--810~830830~850570~65070Cr3Mo800-700195810~880860~880-热轧工作辊进行的热处理一般有锻后热处理和调质。
轧机轧辊的加工工艺过程

轧机轧辊的加工工艺过程在轧机中,轧辊是核心部件之一,其性能和质量对整个轧机的工作效果和产品质量具有重要影响。
本文将详细介绍轧机轧辊的加工工艺过程,包括材料选择、毛坯制备、粗加工、精加工、热处理、表面处理和检测与质量控制等方面。
1.轧辊材料选择选择适合的轧辊材料是加工工艺的第一步。
轧辊材料应具备高硬度、高耐磨性、高耐腐蚀性和良好的导热性等特性。
常用的轧辊材料包括高速钢、合金钢、碳素钢、合金铸铁等。
对于不同的轧机工作环境和加工要求,需根据实际情况选择合适的材料。
2.轧辊毛坯制备轧辊毛坯的制备包括锻造、铸造、焊接等方法。
根据所选材料和加工要求,选择合适的毛坯制备方法。
在毛坯制备过程中,需注意控制毛坯的尺寸和形状精度,保证毛坯质量符合要求。
3.轧辊粗加工粗加工的主要目的是去除轧辊毛坯表面的杂质和多余材料,同时初步形成轧辊的形状和尺寸。
粗加工的方法包括车削、铣削、磨削等。
在此过程中,需注意控制加工余量和粗糙度,为后续的精加工做好准备。
4.轧辊精加工精加工是轧辊加工的关键步骤,主要包括磨削、精车削、精铣削等。
精加工的目的是进一步细化轧辊表面,达到更高的尺寸精度和粗糙度要求。
在此过程中,需注意控制加工参数和刀具选择,确保加工质量和效率。
5.轧辊热处理热处理是提高轧辊性能的关键步骤,主要包括淬火、回火、表面强化处理等。
通过热处理可以改变轧辊材料的内部结构,提高其硬度、耐磨性和抗疲劳性能。
在热处理过程中,需注意控制加热温度和冷却速度,避免出现裂纹、变形等问题。
6.轧辊表面处理表面处理可以进一步提高轧辊的耐磨性和抗腐蚀性。
常用的表面处理方法包括喷丸强化、渗碳淬火、氮化处理等。
通过表面处理可以增加轧辊表面的硬度和耐磨性,提高其使用寿命。
在表面处理过程中,需注意控制处理时间和处理温度,确保处理质量和效果。
7.轧辊检测与质量控制在每个加工步骤完成后,应对轧辊进行检测,确保其尺寸、形状和质量符合要求。
检测方法包括外观检测、尺寸检测、无损检测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轧辊材料及热处理工艺轧辊的寿命主要取决于轧辊的内在性能和工作受力,内在性能包括强度和硬度等方面。
要使轧辊具有足够的强度,主要从轧辊材料方面来考虑;硬度通常是指轧辊工作表面的硬度,它决定轧辊的耐磨性,在一定程度上也决定轧辊的使用寿命,通过合理的材料选用和热处理方式可以满足轧辊的硬度要求。
概述了传统的轧辊选材及其热处理工艺,同时,对轧辊材料及其热处理工艺的发展进行了展望。
传统冷轧辊材料及其热处理方式冷轧辊在工作过程中要承受很大的轧制压力,加上轧件的焊缝、夹杂、边裂等问题,容易导致瞬间高温,使工作辊受到强烈热冲击造成裂纹、粘辊甚至剥落而报废。
因此,冷轧辊要有抵抗因弯曲、扭转、剪切应力引起的开裂和剥落的能力,同时也要有高的耐磨性、接触疲劳强度、断裂韧性和热冲击强度等。
国内外冷轧工作辊一般使用的材质有GCr15、9Cr2、9Cr、9CrV、9Cr2W、9Cr2Mo、60CrMoV、80CrNi3W、8CrMoV、86CrMoV7、Mo3A等。
20世纪50~60年代,这一时期的轧件多为碳素结构钢,强度和硬度不高,所以轧辊一般采用1.5%~2%Cr锻钢。
此类钢的最终热处理通常采用淬火加低温回火,常见的淬火方式有感应表面淬火和整体加热淬火。
其主要任务是考虑如何提高轧辊的耐磨性能、抗剥落性能,并提高淬硬层深度,尽量保证轧辊表面组织均匀,改善轧辊表层金属组织的稳定性。
从20世纪70年代开始,随着轧件合金化程度的提高,高强度低合金结构钢(HSLA)的广泛应用,轧件的强度和硬度也随之增加,对轧辊材料的强度和硬度也提出了更高的要求,国际上普遍开始采用铬含量约2%的Cr-Mo型或Cr-Mo-V型钢工作辊,如我国一直使用的9Cr2Mo、9Cr2MoV和86CrMoV7、俄罗斯的9X2MΦ、西德的86Cr2MoV7、日本的MC2等。
这类材质的合金化程度较低,在经过最终热处理后,其淬硬层深度一般为12~15mm(半径),仅能满足一般要求,而且使用中剥落和裂纹倾向严重,轧制寿命低。
通过改进热处理方式,即进行重淬1~2次,提高了该类轧辊的淬硬层,但每次重淬不仅需要一定的热处理费用,而且会使轧辊直径都要损失5mm左右,同时轧辊在经过多次热处理后容易变形,难以满足高精度轧辊的形位公差要求。
因此,研制深淬硬层冷轧辊不仅可以大幅度地降低冷轧辊的消耗,减少轧辊在使用过程中的重新淬火次数,延长轧辊寿命,具有重大的经济效益。
为了减少重淬消耗,提高轧辊的淬硬层深度、接触疲劳强度、韧性,延长其使用寿命,从20世纪70年代后期到80年代中期,国内外开始研究使用铬含量在3%~5%的深淬硬层冷轧工作辊钢。
3%铬冷轧辊不需重淬,且有效淬硬层深度可达到25~30mm,5%Cr冷轧辊有效淬硬层深度则达到40mm,其耐磨性和抗事故性能也有显著提高。
在这一阶段,国内试制了9Cr3MoV钢,国外一些制造厂也先后开发推广了深淬硬层冷轧辊,如美国的3.25%Cr钢和5%Cr钢,日本的KantocRP53、FH13、MnMC3和MC5等。
这些钢都采用高碳高合金材料,具有良好的硬度和耐磨性,但轧辊淬硬表面脆性大,接触疲劳寿命低,质量不稳定。
为提高淬硬层深及接触疲劳寿命,降低淬硬层脆性及过热敏感性,同时也为满足轧件对冷轧工作辊力学性能和使用性能的进一步要求,自20世纪80年代中、后期,国外轧辊生产厂对5%Cr冷轧辊钢进行了化学成分的优化工作,主要是在5%Cr钢中增加钼、钒的含量或加入钛、镍等元素。
添加0.1%左右钛的5%Cr钢轧辊中,钛以碳氮化合物(TiCN)形式在基体中微细析出,经过摩擦损耗后TiCN脱落,在轧辊表面形成划痕,使适度的粗度再生。
在镀锡板轧机的实际操作中,有效利用粗糙度降低小的优点,从轧制初期就可高速轧制。
在最终热处理过程中,对轧辊钢的淬火和加热限制在奥氏体中含碳量不超过0.6%的程度,然后进行尽可能强烈的冷却,这样就可以得到较深的淬硬层。
此时,轧辊的淬硬层组织除隐针马氏体(以板条为主)外,尚有约4%的碳化物和10%左右的残留奥氏体。
轧辊的表面硬度(包括残余压应力的影响)约为HS(D)95~99。
最后,用低温回火将轧辊表面硬度调整到规定值,低温回火越充分,硬度偏低时韧性越好,抗热裂能力越高。
钼、钒含量的增加导致淬火后钢中含有较多的残余奥氏体,回火后大部分又转变为新马氏体,这样就有助于提高轧辊硬度,增强耐磨性并降低磨损面粗糙度。
传统热轧辊材料的选用及热处理工艺热轧辊常工作在700℃~800℃的高温环境,与灼热的钢坯相接触,需要承受强大的轧制力,同时表面要承受轧材的强力磨损,反复被热轧材加热及冷却水冷却,经受温度变化幅度较大的热疲劳作用。
这就要求热轧辊材料必须具有高的淬透性、低的热膨胀系数、高的热传导能力和高的高温屈服强度及高的抗氧化性。
国内曾经使用过锻钢轧辊和无限冷硬铸铁轧辊,除普通冷硬铸铁外,还有低镍铬钼、中镍铬钼、高镍铬钼铸铁材料,高档次的冷硬铸铁材料为高镍铬钼冷硬铸铁。
这类材质轧辊的缺点是硬度低,耐磨性不好。
后来采用了球墨复合铸铁轧辊,相对而言,使用寿命提高了几倍,至今仍然在使用。
国外则一般采用半钢和高硬度特殊半钢材质,对克服表面粗糙和抗磨损都很有效。
为了提高热轧辊的表面耐磨性,热轧辊的材料不断地得到改进,其基本的发展过程是从冷硬铸铁到高铬铸铁到半高速钢和高速钢。
高铬铸铁轧辊的化学成分为:2.0%~4.0%C,10%~30%Cr,0.15%~1.6%Ni,0.3%~2.9%Mo。
其本质是一种高耐磨性的高合金白口铁,铬含量一般在10%~15%,其碳化物主要是M7C3型,与白口铸铁的连续的M8C型碳化物不同,它不但具有良好的耐磨性,还有较高的硬度(HV可达1800),基体为奥氏体、马氏体,因而其硬度和韧性结合较好。
实际的轧制生产表明,高铬铸铁轧辊有较好的抗热裂性能,原因是轧辊表面生成一层致密且有韧性的铬的氧化膜,能减少热裂纹的数量和深度。
因此,高铬铸铁辊在20世纪80年代被非常广泛用于精轧前架。
目前,高铬铸铁复合轧辊已广泛用作热轧带(钢)连轧机,粗轧和精轧前段工作辊、宽中厚板;粗轧和精轧工作辊及小型型钢和棒材轧机精轧辊等。
高铬铸铁轧辊的热处理有两种形式,一是低于临界转变温度的亚临界热处理,另一种是高于临界点A3的高温热处理。
高铬轧辊表面材料的珠光体基体,希望具有极细的片间距,并在基体上有大量弥散分布的二次碳化物,要求有尽量低的残余奥氏体和残余应力,所以一般选用后一种形式的热处理,具体为正火加回火。
高速钢作为热轧辊材料的应用在1988年始于日本,20世纪90年代初期美国和欧洲也进行了研制,我国在20世纪90年代后期开始研制和使用高速钢轧辊。
一般高速钢的成分为1%~2%C,0%~5%Co,0%~5%Nb,3%~10%Cr,2%~7%Mo,2%~7%V,1%~5%W。
因为拥有大量可形成强碳化物的合金元素如W和V,其最终的显微组织含有大约10%~15%具有极高硬度和高温稳定性的碳化物,所以在高温下工作能保持较高的强度和硬度。
其工作层硬度高,可达到80~85HS,具有较好的耐磨性和抗热裂性,轧辊表面没有出现热裂纹,一般没有剥落现象。
近年来国外在热轧薄板粗轧机架采用半高速钢轧辊也获成功,其耐磨性是高铬钢轧辊的2倍,且咬入性能和抗热疲劳性能好,因而成为热轧薄板粗轧机架和线棒材中轧机架轧辊的理想选择,半高速钢的化学成分范围为:1.5%~2.5%C,0.5%~1.5%Si,0.4%~1.0%Mn,1.0%~6.0%Cr,0.1%~4.0%Mo,0.1%~3.0%V,0.1%~4.0%W。
高速钢热轧辊的热处理方式一般采用淬火加回火,在加热到高温时,钢中的二次碳化物充分溶解,一次共晶碳化物部分溶解。
这些碳化物所含有的碳和合金元素溶入奥氏体中,增加了奥氏体中碳和合金元素的含量。
在淬火时它们固溶于贝氏体和马氏体中,而在回火时析出了弥散的碳化物,使钢呈现出比淬火时硬度还要高的二次硬度。
因此为了增加基体的硬度,应提高淬火温度,同时,为了防止基体中出现块状粗大的碳化物,应尽量降低淬火温度,一般确定最佳淬火温度为1050℃~1150℃,同时回火温度为550℃~600℃。
为了保证基体中含有大量弥散分布的球状MC型碳化物,应增加V含量,但V不宜过高,因为V会降低淬透性,凝固时生成粗大的一次碳化物,淬火时不能完全溶入奥氏体,从而降低了断裂韧性,同时还会降低轧辊的表面粗糙度。
轧辊材料及热处理工艺的发展趋势冷轧辊的发展方向将是在进一步提高强度硬度和淬硬层深度的同时,保证一定的韧性。
大型冷轧工作辊将普遍采用含钒、铣、镍等元素的改进型5%Cr钢制造。
为提高材料的淬透性,Cr的含量将进一步增加,如8%~10%Cr及更高铬的锻钢已开始用于实际生产,但含Cr量的增加会导致较差的韧性,因此需要适当平衡C和Cr含量,在较低的温度下淬火获得所需要的冷轧辊硬度,从而减少轧辊的断裂和降低其断裂敏感性。
另外,随着锻件制造技术的进一步完善,高铬钢工作辊将更多地应用于大型冷连轧机。
5%Cr及其含钒的改进型钢广泛用于大型支承辊锻件,高铬含量的大型锻钢支承辊进入实用阶段。
大型冷轧工作辊要求采用电渣重熔锭锻制,而大型支承辊锻件用钢则被广泛采用钢包精炼并真空除气的冶铸工艺生产,钢水的纯净度均达到较高水平。
热轧辊工作在交变的高温和力的作用下,其表面反复受到摩擦,会产生强烈的磨损,因此热轧辊的发展主要在于进一步提高其耐磨性。
在实际的轧制生产中,表面淬火和渗碳强化处理的热轧辊己不能满足对其高耐磨性的要求,但整体的高速钢或硬质合金轧辊成本极高,对于轧辊芯部材料将造成浪费。
因此,轧辊的生产迫切需要进行表面处理,将硬质合金或陶瓷材料熔覆在轧辊的表面作为轧辊的工作表层。
表面镀铬、火焰喷涂、等离子喷涂以及激光毛化都是工具表面合金强化技术,将进一步用于提高的轧辊的性能。
总之,合理选材及采用合适的热处理方式高质量地制造轧辊,可以节约大量的辊材,降低轧钢生产成本,同时提高轧辊的质量和产量。
因此,应重视轧辊选材的新动向,从轧钢的实际条件出发.开发轧辊的新材质,提高轧辊的制造质量。