轧辊失效方式及其原因分析

合集下载

轧辊爆裂原因

轧辊爆裂原因

轧辊爆裂是轧制生产中常见的一种失效形式,可能会导致严重的生产事故和经济损失。

以下是几种可能导致轧辊爆裂的原因:
1. 轧辊材质不适:轧辊材质应该具有高的强度、韧性和耐磨性。

如果材料不符合轧辊的使用要求,则会引起轧辊疲劳失效和裂纹扩展,导致轧辊爆裂。

2. 轧辊表面缺陷:轧辊表面缺陷、裂纹、凹坑等缺陷也可能导致爆裂。

这些缺陷将在轧制过程中扩展并使轧辊破裂。

3. 轧辊使用过程中温度过高:过高的轧辊表面温度会使轧辊产生变形和热疲劳裂纹,最终导致轧辊爆裂。

4. 轧辊使用寿命过长:轧辊在使用过程中会不可避免地出现疲劳损伤和磨损,长期使用可能导致轧辊的强度减小,出现裂纹和爆裂。

5. 非正常操作:轧辊在使用过程中需要严格遵循规定的操作程序和参数范围。

如果操作不当,例如过多受力或者运转速度过快,就有可能导致轧辊疲劳损伤和爆裂。

综上所述,预防轧辊爆裂需要严格控制轧辊的材质、缺陷、温度、使用寿命和操作规范,定期检测和维修轧辊以及合理调整轧制过程参数等措施。

1420轧机弯辊缸失效分析与对策

1420轧机弯辊缸失效分析与对策

1420轧机弯辊缸失效分析与对策
一、问题描述
二、失效原因分析
1.润滑不良:润滑不良会导致摩擦增大,加速零部件的磨损,从而导
致弯辊缸失效。

2.密封不严:密封不严会导致液压系统内部液压漏油,降低了液压系
统的工作效率,同时也会影响到了弯辊缸的正常运行。

3.缸体磨损:长时间使用或者操作不当会导致弯辊缸的缸体磨损,进
而导致其失效。

三、对策建议
1.加强润滑管理:定期检查加油润滑情况,确保润滑油的充足和质量。

严格按照润滑标准操作,确保润滑效果。

2.定期检查维护:定期检查弯辊缸的密封情况,及时更换密封件。


定期检查缸体磨损情况,根据情况进行修复或更换部件。

3.加强操作规范:员工在操作弯辊缸时,应按照操作规程进行操作,
避免操作不当导致的缸体磨损。

4.提高维护意识:定期对弯辊缸进行维护保养,确保设备长期稳定运行。

同时,员工应加强维护意识,发现问题及时报修,避免小问题演变成
大问题。

四、总结
1420轧机弯辊缸的失效会给生产带来不小的影响,因此对其进行定期维护和保养是非常重要的。

除了以上提到的对策建议外,还应加强员工培训,提高其维护技能和意识,确保设备的长期稳定运行。

只有全面加强对设备的维护管理,才能最大程度地减少设备失效带来的影响,提高生产效率和产品质量。

多辊轧机轧辊失效分析

多辊轧机轧辊失效分析

发现问题
- 表面疲劳通常与长时间生产后的加工硬化共同产生 通常硬度会比原始 表面疲劳通常与长时间生产后的加工硬化共同产生,通常硬度会比原始 硬度高出4 HRc (40 Ld). 硬度高出
解决
磨辊恢复轧辊表面原始硬度
预防措施
1/ 磨辊后经常测量硬度 2/对易出现疲劳的轧辊区域进行表面硬度抽查 对易出现疲劳的轧辊区域进行表面硬度抽查
14
Fig. 3
辊身螺旋状断裂
轧辊应用类型 适用轧辊级别 说明
-由表面疲劳而产生的螺旋状断裂面 (图.2) -断面上可见数个同心扩展环状痕迹(B)
Fig. 1
全部 全部
可能的原因
磨削没有完全去除裂纹, 在过度的弯转力下发生扩展 裂纹可能因为以下因素产生: 表面疲劳 热疲劳 (因轧制事故或磨削而产生).
Fig. 1
补救措施
- 检查联轴器或轴套是否安装不妥或变形 - 适当增加硬度 - 确保机械部件安装妥当 Fig. 2
Fig. 3
Fig. 4
19
压痕
轧辊应用类型 适用轧辊级别 说明
- 辊身表面局部压痕
工作辊 全部
可能的原因
- 板带上有异物 - 工作辊硬度低或中间辊硬度偏高 - 局部过热造成软点
Fig. 1
Fig. 1 辊身纵向断裂面
- 热处理工序中回火过晚产生的裂纹造成的.
补救措施
做好轧辊使用工卡,严格记录生产中的异常情况 轧辊上机前,应完全去除裂纹,疲劳层或过热的区域. 做无损探伤测试以确保所有裂纹已经完全去掉了.
16
辊身纵向断裂
轧辊应用类型 适用轧辊级别 说明
- 因疲劳产生的断裂
全部 全部
- 如(A)图示平行于轴向的裂纹扩展而造成的.

浅谈精轧工作辊失效形式及预防措施

浅谈精轧工作辊失效形式及预防措施

浅谈精轧工作辊失效形式及预防措施(郑强)检修中心轧钢维护部摘要:通过对轧辊在生产中发生的各种失效形式进行分析,并作出相应的预防措施。

关键词:裂纹;剥落;断裂前言轧辊是热轧厂生产中最大的消耗性、关键性备件,不仅其消耗量大、价格昂贵,而且其性能和使用情况的好坏,直接影响生产的作业率和成本、产品的产量和质量、辊耗等。

轧辊消耗量是轧钢生产技术经济指标之一,是考核轧钢生产的主要内容。

因此,提高轧辊使用寿命,是轧钢生产提高生产效率、实现增产节约、降低消耗的有力措施。

使用中的轧辊,由于和轧件直接接触引起的接触应力、热应力、剪切应力、残余应力和轧辊本身的制造缺陷等原因,常常在正常使用周期内被迫提前下机,甚至非正常报废,这就需要我们通过各种失效形式做出相应的分析,并加以预防和解决。

1.裂纹裂纹是轧辊使用中最常见的一种失效形式,又分正常裂纹和非正常裂纹两种。

1.1正常裂纹正常裂纹又叫热裂纹,热裂纹属正常轧制下产生的裂纹,初期呈很细的网状均匀分布在轧辊的整个辊身上,深度较浅。

热裂纹是由于多次温度循环产生的热应力所造成的逐渐破裂,是发生于轧辊辊身上的一种微表面层现象。

此种裂纹是轧制过程中轧辊受接触应力、热应力、剪切应力、残余应力影响,当应力超过材料的疲劳极限时,轧辊表面产生严重应变,逐渐导致热疲劳裂纹的产生。

预防措施:1、合理控制冷却水量和冷却水的分布;2、合理分配各机架轧制负荷;3、合理控制换辊周期;4、合理控制磨削量;1.2非正常裂纹轧制中发生的打滑、粘钢、卡钢、堆钢、甩尾、甚至断水轧制等轧制事故,这些轧制事故会造成轧辊局部温度升高而产生热应力和组织应力,当轧辊应力值超过材料强度极限时便产生热冲击裂纹,形成轧辊辊身表面一条母线上或局部深度和开口度较大的裂纹。

通过修磨,轧辊表面裂纹消除后可以继续使用,但其使用寿命明显降低,并在以后的使用中易出现剥落事故。

预防措施:1、轧制条件应满足轧辊的使用技术要求;2、合理分配各机架轧制负荷;3、提高轧制操作技能,尽量减少打滑、粘钢、卡钢、堆钢、甩尾、甚至断水轧制等轧制事故的发生;4、轧线必须及时把事故原因的信息传递到磨辊间,以便于磨辊间针对事故原因制定有效的对事故轧辊进行严格的超声波、涡流探伤及磨削处理;2.剥落剥落是轧辊使用中比较严重的一种失效形式,是由于轧辊表面裂纹的扩展或轧辊本身内部缺陷造成的。

轧辊失效方式及其原因分析

轧辊失效方式及其原因分析

轧辊失效方式及其原因分析轧机在轧制生产过程中,轧辊处于复杂的应力状态。

热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。

如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。

轧辊失效主要有剥落、断裂、裂纹等形式。

任何一种失效形式都会直接导致轧辊使用寿命缩短。

因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。

1 、轧辊剥落(掉肉)轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。

轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。

1.1 支撑辊辊面剥落支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽度上呈块状或大块片状剥落,剥落坑表面较平整。

支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力。

在离接触表面深度为 0.786b 处 ( b 为接触面宽度之半 ) 剪切应力最大,随着表层摩擦力的增大而移向表层。

疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在 Z 为 0.5b 的交变剪应力层处。

该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。

此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。

周期交变的剪切应力是轧辊损坏最常见的致因。

在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。

另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。

若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。

支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。

轧辊失效形式

轧辊失效形式

铸轧辊失效的形式:①热龟裂;②裂纹扩展快;③表面局部塑形变形;④断裂。

在轧制中,裂纹扩展速度快,有时纵向裂纹长300mm,深2-4mm,是辊套过早的失效,原因是:辊套热处理工艺不合格,内部较大的残余应力为消除,在轧制过程中,受铝液热应力与辊芯内冷却水冷应力的交替作用,加速了裂纹的生成和扩展。

辊套的正常失效按下公式计算:有效厚度=(Dmax-Dmin)/2 Dmax为铸轧辊的最大的外径,Dmin为最小外径,每次车磨4mm左右,直至有效厚度接近于零,此辊套就认为失效为重新更换。

辊芯失效形式:①水槽阻塞;②水槽破裂,辊芯的材质:42CrMo 辊芯硬度HB在500左右。

调质硬度范围为2000MPa<HB<4000MPa辊套:需具有良好的导热性,线性膨胀系数及弹性模数小,较高的抗拉强度、屈服强度及硬度,较好的耐热性、抗热疲劳及热变形等。

辊套粗糙度Ra为0.8-1.2μm。

辊套硬度HB为370-400左右,目前国内使用的辊套材质为PCrNi3Mou和32Cr3Mo1V钢。

冷却说的要求:水硬度:硬度总和不大于7. PH值:6-8 水压:0.4-0.6MPa悬浮物:不大于50PPM 水温:一般控制在15-28℃辊芯辊套热装时温度的计算:t=I/αD内·C 式中:I=σ+Δminσ-过盈量;Δmin-热装的最小间隔;α材料线膨胀系数过盈量配合量的经验公式为:过盈量一般为铸轧辊辊径的0.09%-0.11%。

辊芯尺寸在φ500mm-φ700mm,过盈量(mm)=辊芯尺寸x1/650辊芯尺寸在φ700mm-φ850mm, 过盈量(mm)=辊芯尺寸x1/700 当传递的轧制力矩一定时,辊套越薄,需要的过盈配合量越大。

辊套越薄所能产生的过盈压力越小,传递的轧制力矩越小。

对新辊(包括重新研磨的辊)进行热处理,首先用无水乙醇擦掉七表面的油污,后用自行配制的腐蚀溶液(只要成分是硝酸)均匀涂抹与辊面,待接近干燥,用清水洗净,此时辊面呈亮黑色,在轧辊完全干燥后,用800″砂纸沿轧制方向用力将其面的黑色物质打磨去掉。

轧辊轴承失效的原因

轧辊轴承失效的原因

轧辊轴承失效的原因轧辊轴承在轧制过程中会承受高强度的载荷和摩擦,因此容易出现失效。

轧辊轴承失效的原因可以归纳为以下几个方面:1.疲劳失效:轧辊轴承在轧制过程中要承受循环荷载,容易导致金属材料发生疲劳失效。

这种失效通常表现为轴承表面起初小裂纹,然后逐渐扩展成肉眼可见的大裂纹,并最终导致断裂。

2.磨损失效:在轧制过程中,轧辊轴承表面会受到较大的摩擦力和磨损,导致轴承表面磨损严重。

磨损失效会导致轴承表面粗糙度增加、尺寸减小,从而影响轴承的正常运转。

3.轴承负荷过大:若轧辊轴承受到的荷载超过了其承载能力,会导致轴承瞬时失效。

这种失效通常表现为轴承出现塑性变形或微裂纹,从而导致轴承无法正常工作。

4.润滑失效:轧辊轴承在运行过程中需要有足够的润滑,以减少摩擦和磨损。

但若润滑不到位,或润滑剂质量不好,会使轴承表面形成焦炭、热膜和凝粘物,进而导致轴承失效。

5.温度过高:轧辊轴承在运转过程中会产生热量,若轴承供应的润滑不到位,会导致摩擦产生的热量积聚在轴承内部,从而使轴承体温度升高。

当轴承温度超过其耐热极限时,会引发轴承失效。

6.安装不当:轧辊轴承的安装也是影响其寿命的重要因素。

若安装不当,例如安装时存在过度负载、不适当的配合间隙或轴向载荷过大,会导致轴承失效。

此外,如果轴承安装时没有按照规定的工艺进行操作,也会影响其使用寿命。

针对以上原因,可以采取以下措施来延长轧辊轴承的寿命:1.选择合适的轴承:根据轧辊轴承的工作条件和载荷大小,选择合适的轴承类型、规格和材料,使其能够承受工作环境中的载荷。

2.加强润滑管理:采用合适的润滑方式和润滑剂,确保轧辊轴承在工作过程中有足够的润滑。

同时,定期检查和更换润滑剂,清洗轴承表面,以避免润滑失效引发的问题。

3.控制负荷:通过改变轧辊间距、调整轧机参数等方式,减少轧辊轴承受到的负荷。

同时,注意控制轧机的工作温度,避免轴承过热。

4.正确安装轴承:遵循正确的安装工艺,确保轧辊轴承按照规定的预压力安装,并检查轴承的配合间隙和轴向负荷是否符合要求。

马钢冷轧轧辊缺陷的分析及防范措施

马钢冷轧轧辊缺陷的分析及防范措施

马钢冷轧轧辊缺陷的分析及防范措施今天,随着工业的发展,越来越多的重要工业用钢,如马钢板材,在冷轧过程中,轧辊是一个非常重要的部件,随着轧辊的日益快速的寿命,轧辊的缺陷也会带来不利影响。

本文将从分析原因和防范措施两方面来探讨马钢冷轧轧辊缺陷的问题,为提高冷轧轧辊的使用寿命和质量提供参考。

一、马钢冷轧轧辊缺陷的分析1、损坏原因由于轧辊会在马钢冷轧过程中长期受到扭矩、温度、压力等不均匀的外界考验,而轧辊中各种元素的问题也会导致轧辊疲劳损坏,从而出现缺陷,如表面裂纹、磨损和烧伤等。

2、实际表现轧辊缺陷以表面裂纹为主,由此可知表面失效正是轧辊缺陷产生的原因之一,根据不同的裂纹形态,可以推断出轧辊的损伤原因,如圆柱形裂纹、锥形裂纹、Y字型裂纹等。

二、马钢冷轧轧辊缺陷的防范措施1、优化轧辊设计优化轧辊设计,使得轧辊具有较大的强度,同时增加轧辊表面的耐磨性,减少轧辊表面的损坏,使轧辊的使用寿命更长。

2、降低轧辊温度应控制轧辊的表面温度,并在较低的温度范围内进行轧制,以减少轧辊表面的烧伤,提高轧辊的使用寿命。

3、均匀保护润滑剂应给轧辊表面均匀的润滑,以确保轧辊的表面,同时保持充足的润滑剂分布,以减少轧辊噪声,平滑运行,减少轧辊磨损损坏,提高轧辊的使用寿命。

4、改善马钢材质应均匀改善马钢坯料的碳素含量,改善马钢冷硬度,使冷轧材料更加均匀,减少冷轧过程中烧伤、磨损等,提高冷轧轧辊使用寿命。

综上所述,马钢冷轧轧辊缺陷的分析及防范措施应及早采取有效的措施,以提高冷轧轧辊的使用寿命和质量,促进行业的健康发展。

首先,应优化轧辊的设计,降低轧辊温度,提供良好的润滑剂保护,同时改善马钢材质,以改善冷轧工艺,减少轧辊缺陷产生的可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轧辊失效方式及其原因分析
摘要:介绍了轧辊存在剥落、断裂、裂纹等几种失效方式,并重点分析了轧辊剥落和断裂产生的机理,为分析生产实践中轧辊失效原因和采取相应改进措施以提高轧辊使用寿命提供了依据。

关键词:轧辊;失效原因;剥落;断裂;裂纹
1 前言
轧机在轧制生产过程中,轧辊处于复杂的应力状态。

热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。

如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。

轧辊失效主要有剥落、断裂、裂纹等形式。

任何一种失效形式都会直接导致轧辊使用寿命缩短。

因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。

2 轧辊的失效形式
2.1 轧辊剥落
轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。

轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。

2.1.1支撑辊辊面剥落支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽
度上呈块状或大块片状剥落,剥落坑表面较平整。

支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力,如图1所示。

在离接触表面深度(Z)为0.786b处(b为接触面宽度之半)剪切应力最大,随着表层摩擦力的增大而移向表层。

图1 滚动接触疲劳破坏应力状态
疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在Z为0.5b的交变剪应力层处。

该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。

此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。

周期交变的剪切应力是轧辊损坏最常见的致因。

在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。

另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。

若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。

支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。

由于服役周期较长,支撑辊中间磨损量大、两端磨损量小而呈U 型,使得辊身两端产生了局部的接触压力尖峰、两端交变剪应力的增大,加快了疲劳破坏。

辊身中部的交变剪应力点,在轧辊磨损的推动作用下,逐渐往辊身内
部移动至少0.5mm,不易形成疲劳裂纹;而轧辊边部磨损较少,最大交变剪应力点基本不动。

在其反复作用下,局部材料弱化,出现裂纹。

轧制过程中,辊面下由接触疲劳引起的裂纹源,由于尖端存在应力集中现象,从而自尖端以与辊面垂直方向向辊面扩展,或与辊面成小角度以致呈平行的方向扩展。

两者相互作用,随着裂纹扩展,最终造成剥落。

支撑辊剥落主要出现在上游机架,为小块剥落,在轧辊表面产生麻坑或椭球状凹坑,分布于与轧件接触的辊身范围内。

有时,在卡钢等情况下,则出现沿辊身中部轴向长达数百毫米的大块剥落。

2.1.2 工作辊辊面剥落工作辊剥落同样存在裂纹产生和发展的过程,生产中出现的工作辊剥落,多数为辊面裂纹所致。

工作辊与支撑辊接触,同样产生接触压应力及相应的交变剪应力。

由于工作辊只服役几个小时即下机进行磨削,故不易产生交变剪应力疲劳裂纹。

轧制中,支撑辊与工作辊接触宽度不到20mm,工作辊表面周期性的加热和冷却导致了变化的温度场,从而产生显著的周期应力。

辊面表层受热疲劳应力的作用,当热应力超过材料的疲劳极限时,轧辊表面便产生细小的网状热裂纹,即通称的龟裂。

轧制中发生卡钢等事故,造成轧辊局部温度升高而产生热应力和组织应力。

轧件的冷头、冷尾及冷边引起的显著温差,同样产生热应力。

当轧辊应力值超过材料强度极限时产生热冲击裂纹。

在轧制过程中,带钢出现甩尾、叠轧时,轧件划伤轧辊,亦可形成新的裂纹源。

另外,更换下来的轧辊,尤其上游机架轧辊,多数辊面上存在裂纹,应在轧辊磨削时全部消除。

如轧辊磨削量不够,裂纹残留下来,在下一次使用时这些裂纹将成为疲劳核心。

轧辊表面的龟裂等表层裂纹,在工作应力、残余应力和冷却
引起的氧化等作用下,裂纹尖端的应力急剧增加并超过材料的允许应力而朝轧辊内部扩展。

当裂纹发展成与辊面成一定的角度甚至向与辊面平行的方向扩展,则最终造成剥落。

2.2 轧辊断裂
轧辊在工作过程中还常常发生突然断辊事故,其断裂部位主要为工作辊的孔型处、辊颈处、辊脖与辊颈交界处。

因轧制钢种、品种与生产工艺条件差异,各断裂部位所占比例不同。

断辊可以是一次性的瞬断,也可以是由于疲劳裂纹发展而致。

根据柯垂尔脆断条件:(τD/2 +K)K≥4Gγ时,才发生脆断。

其中τ ——应力;
D——晶粒直径;
K——系数;
G——材料的弹性模量;
γ——有效表面能。

也就是说,当τ和D较大时,易发生脆性断裂,脆性断裂的断面总体平齐。

对高铬复合铸铁轧辊,如果轧辊热处理回火不充分,外层组织中会含有大量马氏体、残余奥氏体,导致轧辊铸态应力较高,亦即τ值增大;τ与D的增大,是轧辊断裂的内因。

轧制机械应力、热应力的叠加是造成辊断裂的外因。

锻造工艺不当也会导致轧辊脆性断裂。

如终锻温度过低,易形成位于轧辊心部附近其形貌具有“人”字形特征的裂纹。

若加上在终锻时控制不当,很容易造成穿晶型裂纹。

在锻造变形时,热加工压力过小,变形不合理造成心部未锻透,仅钢材表面产生塑性变形而内部产生拉应力,当此拉应力超过该区的金属强度时,
即可引起内部横裂。

脆性断裂总是以轧辊内部存在的裂纹作为裂纹源。

如果轧辊内部存在大量裂纹,在服役过程中,裂纹尖端产生应力集中而快速扩展连接,形成一个较大的裂纹,这种裂纹在交变应力作用下,由内向外逐渐扩大,当裂纹大到一定程度时就发生疲劳断裂。

轧辊组织缺陷也会导致轧辊断裂,轧辊芯部组织不正常(球化率低,渗碳体数量过高等)导致机械性能显著下降。

这种轧辊使用时,由于芯部组织不正常,在热应力的作用下,较薄弱处先被拉裂,然后裂纹迅速扩展,也会导致轧辊断裂。

轧辊铸造缺陷是轧辊辊颈断裂的另一个原因。

如果辊颈截面存在铸造缺陷组织:较多大面积粗条状、网状渗碳体,心部疏松孔洞区等,都会使材料内应力增大,力学性能下降。

因此在辊身发生碰撞时,在外加震动应力与内应力的交互作用下,以脆性相和一些缺陷为核心,萌生出裂纹。

由于材料较脆,裂纹便立即扩展产生瞬间断裂。

除上述原因外,造成轧辊断裂的因素还有很多:简单的机械性过载;设计和加工不当,对于截面尺寸发生变化的部位,未设计足够的圆角或精密加工,致使应力集中;辊面和辊颈硬度相差过大;辊颈的直径过小,强度不够等都有可能导致轧辊断裂。

2.3 轧辊裂纹
轧辊裂纹是由于多次温度循环产生的热应力所造成的逐渐破裂,是发生于轧辊表面薄层的一种微表面层现象。

轧制时,轧辊受冷热交替变化剧烈,从而在轧辊表面产生严重应变,逐渐导致热疲劳裂纹的产生。

此种裂纹是热循环应力、拉应力及塑性应变等多种因素形成的,塑性应变使裂纹出现,拉应力使其扩展。

2.4 缠辊
热轧生产中,由于钢料加热温度不均,阴阳面温差大,卫板安装不稳,造成缠辊。

经常出现在轧制矿用支撑钢、矿用工字钢及轻轨的过程中。

有些缠辊经轧辊车削车间处理后可以使用,但修复量大,会严重减少轧辊的轧出量。

缠辊严重时报废,还可能影响到另外一(两)支轧辊,造成整套轧辊的报废。

因此,在孔型设计时,应着重考虑压力的配置,使钢料从孔型中平直出口;牢固安装卫板;保证钢料加热温度均匀,以防止缠辊现象发生。

2.5 粘辊
在冷轧过程中,如果出现钢带漂移、堆钢、波浪折叠,且由于高压出现瞬间高温时,极易形成钢带与轧辊粘接,致使轧辊出现小面积损伤。

通过修磨,轧辊表面裂纹消除后可以继续使用,但其使用寿命明显降低,并在以后的使用中易出现剥落事故。

3 结语
轧辊的损坏由多种因素相互影响和相互作用引起,其损坏形式也多样。

但只要了解轧辊损坏原因,针对具体的轧机系统、损坏形式采取相应措施,轧辊失效可以得到有效控制,可以最大限度降低辊耗,从而提高轧辊的使用寿命,提高轧钢生产效率。

相关文档
最新文档