§3 测量的不确定度
游标卡尺测量结果的不确定度评定

游标卡尺测量结果的不确定度评定有很多重要额结果都是建立在测量分析的基础上,而且结果大多都是可靠的,这对分析结果的用户很重要,实验室通常测量不确定度来表示测量结果的质量,测量不确定通过度量结果的可信度证明结果的适宜性,本文对游标卡尺测量结果的不确定度评定方法进行分析。
标签:游标卡尺;测量结果;不确定度;评定一、测量不确定度定义测量不确定度指的是表征合理地赋予被测量值得分散性,与测量结果相联系的参数,测量不确定度是对测量结果可信性、有效性的怀疑程度或不肯定程度,是定量说明测量结果的质量的一个参数,在实际的测量的时候由于本身不完善和人们认识不足,测量值就会具有分散性,也就是每次测量的结果是不同的,虽然客观存在的系统误差是一个不变值,但是由于无法完全认知,只能认为是以某种概率分布存在与某个区域内,这就具有分散性,而测量不确定度就是說明被测量值分散性的参数,不是说明测量结果是否接近正确数值。
对于测量不确定度是经典误差理论应用和发展的基础,而且更加的科学合理,测量误差表明测量结果偏离真值,是无法准确知道的,测量不确定度不是具体的误差,是用来表征被测量值所处区间的评定。
二、测量不确定度的来源1.对被测量的定义不完整或不完善。
2.实现被测量的定义的方法不正确。
3.取样的代表性不足,被测量的样本无法表示所定义的被测量。
4.对测量过程中受到影响的情况考虑不全面,或者是对环境条件的测量与控制不完善。
5.对模拟仪器的读数存在偏差。
6.模拟仪器的辨别能力不足。
7.计量标准值或标准物质的值不准确。
8.引用数据计算的常量和其他参数不准确。
9.在看上去完全相同的条件,被测量多次观测的值不同。
10.测量方法和测量程序的近似性和假定性。
三、游标卡尺的使用条件1.测量方法:依据JJG30-2002通用卡尺鉴定规程。
2.环境条件:温度在15-25℃,湿度应小于等于80%RH。
3.测量标准:5等量块。
4.被测对象:分度值为0.02mm,测量范围在0-1000mm的游标卡尺,允许误差在±0.02-±0.07。
§3 测量的不确定度

测量不确定度与数据处理复习纲要§1 测量及其误差1 测量的概念测量:为确定被测对象的测量值,首先要选定一个单位,然后用这个单位与被测对象进行比较,求出它对该单位的比值──倍数,这个数即为数值。
表示一个被测对象的测量值时必须包含数值和单位两个部分。
目前,在物理学上各物理量的单位,都采用中华人民共和国法定计量单位,它是以国际单位制(SI)为基础的单位。
它是以米(长度)、千克(质量)、秒(时间)、安培(电流强度)、开尔文(热力学温度)、摩尔(物质的量)和坎德拉(发光强度)作为基本单位,称为国家单位制的基本单位;其它量(如力、能量、电压、磁感应强度等等)的单位均可由这些基本单位导出,称为国际单位制的导出单位。
2 直接测量、间接测量、等精度测量测量分为直接测量和间接测量。
直接测量是指把待测物理量直接与作为标准的物理量相比较,例如用直尺测某长度,间接测量是指按一定的函数关系,由一个或多个直接测量量计算出另一个物理量。
同一个人,用同样的方法,使用同样的仪器并在相同的条件下对同一物理量进行的多次测量,叫做等精度测量。
以后说到对一个量的多次测量,如无另加说明,都是指等精度测量。
3 测量的正确度、精密度和精确度正确度表示测量结果系统误差的大小,精密度表示测量结果随机性的大小,精确度则综合反映出测量的系统误差与随机性误差的大小。
4 误差的概念测量值x与真值X之差称为测量误差Δ,简称误差。
Δ=x-X。
误差的表示形式一般分为绝对误差与相对误差。
绝对误差使用符号±Δx。
x表示测量结果x与直值X之间的差值以一定的可能性(概率)出现的范围,即真值以一定的可能性(概率)出现在x-Δx至x+Δx区间内。
相对误差使用符号β。
由于仅根据绝对误差的大小还难以评价一个测量结果的可靠程度,还需要看测定值本身的大小,故用相对误差能更直观的表达测定值的误差大小。
绝对误差、相对误差和百分误差通常只取1~2位数字来表示。
5 误差的分类与来源一般将误差分为系统误差、随机误差、粗大误差三类。
测量不确定度评定与表示简介

测量不确定度评定与表示简介在科学研究和工程技术领域中,测量不确定度是一个非常重要的概念。
无论是实验数据、测试结果还是产品性能指标,都离不开测量不确定度的评定与表示。
下面我们将对测量不确定度的评定与表示进行简要介绍,希望能对大家有所帮助。
一、测量不确定度的概念测量不确定度是用来描述测量结果的不确定性的概念。
在任何测量中,我们都无法完全排除由于测量设备不确定度、环境条件变化等因素所引入的误差。
这些误差会导致测量结果的不确定性,而测量不确定度就是用来描述这种不确定性的度量。
测量不确定度通常用标准差、置信区间等统计指标来表示,它不仅包括了随机误差,还包括了由于仪器精度、环境条件等因素引起的系统误差。
通过评定测量不确定度,可以帮助我们更准确地理解和解释测量结果,从而提高对实验数据的可靠性和准确性。
评定测量不确定度的方法主要有两种,一种是通过重复测量获得多组数据,然后利用统计方法计算得出不确定度;另一种是通过分析测量设备的性能指标、环境条件等因素来评定不确定度。
对于重复测量的方法,通常采用方差分析、最小二乘法等统计方法来计算标准差,从而得到测量不确定度。
而对于分析测量设备性能指标的方法,则需要考虑设备的精度、分辨率、线性度、重复性等因素,综合考虑得出不确定度。
在评定测量不确定度时,还需要考虑到环境条件的影响,比如温度、湿度等因素可能会对测量结果产生影响,因此需要对这些因素进行合理的考虑和分析。
测量不确定度的表示方式通常有两种,一种是绝对不确定度表示法,一种是相对不确定度表示法。
绝对不确定度表示法是指直接以测量结果的单位为基准表示不确定度,比如长度为10cm,不确定度为0.1cm,那么绝对不确定度就可以表示为10.0±0.1cm。
这种表示法直观、简单,容易理解。
测量不确定度的评定与表示在科学研究和工程技术领域有着广泛的应用。
在科学实验中,评定测量不确定度可以帮助我们更准确地判断实验数据的可靠性,从而更好地验证实验结论;在工程技术领域,评定测量不确定度可以帮助我们更准确地评估产品性能指标,指导产品设计和生产。
三坐标测量不确定度评定

三坐标测量不确定度评定作者:陈相国刘赞来源:《中小企业管理与科技·下旬刊》2016年第06期摘要:本文对三坐标测量以ϕ40mm3等标准环规进行了实例评定,对三坐标尺寸检测方法的改进有一定意义。
关键词:三坐标;不确定度中图分类号: U467 文献标识码: A 文章编号: 1673-1069(2016)18-190-21 试验部分1.1 试验任务测量ϕ40mm3等标准环规刻度线处的直径D。
1.2 试验原理、方法和条件1.2.1 试验原理接触式,直接法,绝对测量。
1.2.2 试验方法在三坐标测量机PRISMO上测量,测量前将标准环规固定于三坐标测量工作平台上,将仪器调整满足测量需要的状态。
测量时,首先在环规刻度线处取对称两点x1、x2,构成环规的一条弦x1x2,并确定弦的中心O(以O点为坐标原点),在环规刻度线处取一点A0,连接OA0交环规另一边A(以AA0为坐标X轴),则A、A0在坐标X轴上读数差即是环规刻度线处的直径值D。
1.2.3 试验条件试验环境温度为(20±1)C,温度变化每小时不应超过0.5℃/h,环境相对湿度为≤65%;三坐标测量机常年固定安装在实验室内,受测标准环规置于实验室内的平衡时间24小时以上。
2 数学模型由试验原理和方法,得到数学模型:4 测量不确定度来源及说明测量不确定度来源及说明见表1:5 标准不确定度评定5.1 由三坐标测量机的示值误差引入的标准不确定度分量u1根据设备出厂证书三坐标测量机最大允许误差MPE为±(1.4+L/333mm)m,符合均匀分布,k=,受测标准环规的直径按40mm计算,则:u1=(1.4+40/333)/=0.8777μm5.2 由测量重复性引入的标准不确定度分量u2在各种条件均不改变的情况下,在短时间内重复性测量20次(即n=20)。
实验数据见表2。
5.3 由测量环境温度变化引入的标准不确定度分量u3由于测量设备及环规置于实验室恒温恒湿的环境中足够时间,且测量过程中启用测量设备温度补偿功能,避免温度变化引起设备与环规的热膨胀,因此此项因素引起的测量不确定度分量可忽略不计,则u3=0。
测量不确定度的评定与表示

测量不确定度评定与表示JJF1059.1--20122015.12.29南京JJF1059.1测量不确定度的评定与表示一、(测量)不确定度概念1.不确定度概念绝对测量 x y =直接测量相对测量 0x x y -= 0y U y Y ⊃±=间接测量 ),(21N x x x f y ⋅⋅⋅=定义:测量不确定度是与测量结果相联系的参数,合理地赋予被测量结果的分散性。
新定义:根据所获信息,表征赋予被测量值分散性的非负参数。
2.不确定来源表现为:(1)对被测量的定义不完整或不完善 (2)复现被测量定义的方法不理想 (3)测量所取样本的代表性不够(4)对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善(5)对模拟式仪器的读数存在人为偏差(6)仪器计量性能上的局限性(7)赋予测量标准和标准物质的标准值的不准确 (8)引用常数或其它参量的不准确(9)与测量原理、测量方法和测量程序有关的的近似性或假定性 (10)在相同的测量条件下,被测量重复观测值的随机变化 (11)对一定系统误差的修正不完善 (12)测量列中的粗大误差因不明显而未剔除(13)在有的情况下,需要对某种测量条件变化,或者是在一个较长的规定时间内,对测量结果的变化作出评定。
应把该相应变化所赋予测量值的分散性大小,作为该测量结果的不确定度。
3.测量不确定度分类与字母表示 3.1绝对量表达A 类标准不确定度(用统计方法得到):A u 一般可统一表示 标准不确定度B 类标准不确定度(用其他方法得到):B u 为:)(x u 或i u 测量不 合成标准不确定度C u 或)(y u C 确定度扩展不确定度 U 或)(y U : C ku U = (k 为包含因子)3.2相对量表达A 类标准不确定度(用统计方法得到):rel A u . 一般可表示 相对标准不确定度B 类标准不确定度(用其他方法得到):rel B u . 为:)(x u rel 或rel i u . 相对测量 合成标准不确定度relC u . 或 )(y u rel C 不确定度相对扩展不确定度 rel U 或 )(y U rel : rel C rel ku U .= (k 为包含因子)二、测量不确定度评定与表示1.A 类标准不确定度计算A 类标准不确定度是指测量随机效应引入的标准不确定度,用A 类评定。
3直接测量的不确定度

S S1 S 2 S 3 ... S m
2 2 2 2
B类不确定度u:
不能用统计方法只能用其他方法估算 (如仪器误差)
U U 1 U 2 U 3 ... U n
2 2 2 2
A类
B类
B类
三、直接测量不确定度的计算
1)A类不确定度的计算:
仪 0.01s
20分度游标卡尺:最小分度=0.05mm
仪 0.05mm
分光计:最小分度=1‘
仪 1'
D.根据实际情况估计误差
拉伸法测金属丝杨氏模量
拉伸法测金属丝杨氏模量
3) 合成不确定度
A类不确定度分量 B类不确定度分量
S1 , S 2 , S i ,......S m
电阻箱(读数为2700 )
仪 2700 0.1% 2.7()
②.仪器误差 仪 的确定:
A.由仪器的准确度表示
B.由仪器的准确度级别来计算
电表的最大误差 级别% 电表的满量程
C.未给出仪器误差时
连续可读仪器 最小分度1/2
非连续可读仪器
最小分度
C.未给出仪器误差时
连续可读仪器 米尺:最小分度为1mm
C.未给出仪器误差时
连续可读仪器 米尺:最小分度为1mm
仪 0.5mm
读数显微镜:最小分度为0.01mm
C.未给出仪器误差时
连续可读仪器 米尺:最小分度为1mm
仪 0.5mm
读数显微镜:最小分度为0.01mm
仪 0.005mm
螺旋测微计:最小分度为0.01mm
C.未给出仪器误差时
B.由仪器的准确度级别来计算
大学物理实验绪论(不确定度)总结课件

直径 D (mm)
12
四、 间接测量结果及不确定度的计算 设间接测量的函数关系式为: N=f (x ,y ,z……),
其中x ,y ,z为相互独立的直接测量量, N为 间接测量量 。
设x, y, z,的不确定度分别为△x 、 △y 、 △z , 它们必然影响间接测量结果,使N也有相应的 不确定度△N
改为N= (2.80±0.08) ×104cm
改为N= (10.7±0.2) cm
N= (10.651±0. 12) cm 改为N= (10.6±0.2) cm
29
例:用米尺测长方形边长,测得以下数据: (单位: cm) a=1.99; 2.02; 2.01; 2.00; 1.97; 2.00 b=5.57; 5.59; 5.55; 5.49; 5.48; 5.54 求:长方形面积S.
②乘除法 结果的有效数字位数与诸数中有效数字位数最少者 相同。
③乘方,开方 结果的有效数字位数与自变量的有效数字位数相同。
④对数
(1)自然对数的有效数字位数与真数的有效数字位 数相同。
例: Ln5.374=1.682
20
(2)以10为底的对数,其尾数的有效数字 位数与真数的有效数字位数相同。 例: Lg15.0=1. 176
7
(2)多次测量 N趋于无穷时, 服从正态分布, 而进行有限次测量,一般服从t分布(学生分布)。
大学物理实验中n 的次数一般不大于10次 , 在5<n≤10时,作△A=Sx近似,置信概率p为0.95 或更大。所以作为简化计算, 可直接把Sx 的值当作 测量结果的总不确定度的A类分量△A。
若n不在此范围或要求更高,用公 式(6)
⑤常数,π,e 等有效数字位数可认为是无限的。但一 般取比运算各数中有效数字位数最多的还多一位。
测量误差与测量不确定度(检测体系)

测量误差与测量不确定度(检测体系)测量误差和测量不确定度⼀、测量误差(⼀)测量和误差 1、测量的概念测量是指以确定量值为⽬的的⼀组操作。
任何测量结果都含有误差,误差⾃始⾄终存在于⼀切科学实验和测量过程之中。
测量按获得测量值的⽅法可分为直接测量、间接测量和组合测量;按测量条件的异同,测量可分为等精度测量和不等精度测量。
等精度测量也叫在重复性条件下测量,重复性测量条件为①相同的测量程序;②相同的观测者;③在相同的条件下,使⽤相同的测量仪器;④相同的地点;⑤在短时间内重复测量。
2、测量误差的概念测量误差是指测量结果减去被测量的真值。
常⽤的误差表⽰⽅法有:绝对误差、相对误差和引⽤误差。
(1)绝对误差绝对误差,即测量误差的定义0x x a i -=?=?(1-1)式中:a ?——绝对误差;——测量误差x i ——测量结果或测得值; x 0——被测量的真值。
(2)相对误差相对误差,即测量误差(绝对误差)除以被测量的真值。
由于真值通常是未知的,所以实际上⽤的是约定真值,当误差较⼩时,约定真值可⽤测得值代替,并⽤百分数表⽰ix a x a x a r ?≈'==00(100%)(1-2)式中:r ?——相对误差;x 0′——约定真值;a ?、x i 、x 0——同式(1-1)。
(3)引⽤误差引⽤误差即测量仪器的误差除以仪器的特定值,该特定值⼀般称为引⽤值,可以是测量仪器的量程或标称范围的上限。
引⽤误差可⽤百分数表⽰为%x x r mn 100??=(1-3)式中:r n ——测量仪器的引⽤误差;x ?——测量仪器的绝对误差,常⽤⽰值误差表⽰; x m ——测量仪器的量程或标称范围的上限。
仪器的准确度等级,就是根据它允许的最⼤引⽤误差来划分的。
0.1级表,表⽰该仪器允许的最⼤引⽤误差限为0.1%。
以r nm 表⽰之%x x r mm m n 100??=(1-4)式中:r nm ——最⼤引⽤误差;m x ?——仪器标称范围内出现的最⼤⽰值误差;x m ——同式(1-3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量不确定度与数据处理复习纲要§1 测量及其误差1 测量的概念测量:为确定被测对象的测量值,首先要选定一个单位,然后用这个单位与被测对象进行比较,求出它对该单位的比值──倍数,这个数即为数值。
表示一个被测对象的测量值时必须包含数值和单位两个部分。
目前,在物理学上各物理量的单位,都采用中华人民共和国法定计量单位,它是以国际单位制(SI)为基础的单位。
它是以米(长度)、千克(质量)、秒(时间)、安培(电流强度)、开尔文(热力学温度)、摩尔(物质的量)和坎德拉(发光强度)作为基本单位,称为国家单位制的基本单位;其它量(如力、能量、电压、磁感应强度等等)的单位均可由这些基本单位导出,称为国际单位制的导出单位。
2 直接测量、间接测量、等精度测量测量分为直接测量和间接测量。
直接测量是指把待测物理量直接与作为标准的物理量相比较,例如用直尺测某长度,间接测量是指按一定的函数关系,由一个或多个直接测量量计算出另一个物理量。
同一个人,用同样的方法,使用同样的仪器并在相同的条件下对同一物理量进行的多次测量,叫做等精度测量。
以后说到对一个量的多次测量,如无另加说明,都是指等精度测量。
3 测量的正确度、精密度和精确度正确度表示测量结果系统误差的大小,精密度表示测量结果随机性的大小,精确度则综合反映出测量的系统误差与随机性误差的大小。
4 误差的概念测量值x与真值X之差称为测量误差Δ,简称误差。
Δ=x-X。
误差的表示形式一般分为绝对误差与相对误差。
绝对误差使用符号±Δx。
x表示测量结果x与直值X之间的差值以一定的可能性(概率)出现的范围,即真值以一定的可能性(概率)出现在x-Δx至x+Δx区间内。
相对误差使用符号β。
由于仅根据绝对误差的大小还难以评价一个测量结果的可靠程度,还需要看测定值本身的大小,故用相对误差能更直观的表达测定值的误差大小。
绝对误差、相对误差和百分误差通常只取1~2位数字来表示。
5 误差的分类与来源一般将误差分为系统误差、随机误差、粗大误差三类。
(1)、系统误差在相同的测量条件下多次测量同一物理量时,误差的绝对值和符号保持恒定,当测量条件改变时,它也按某一确定的规律而变化,这样的误差称为系统误差。
系统误差的来源可归结为下几个方面:仪器误差、调整误差、环境误差、方法(或原理)误差、人员误差。
(2)、随机误差在相同的测量条件下多次测量同一物理量时产生的时大时小、时正时负、以不可预知的方式变化的误差称为随机误差。
随机误差产生的原因主要是由于各种不确定的因素所造成的测量值的无规则的涨落。
服从正态分布的随机误差具有下面的一些特性:单峰性:绝对值小的误差出现的概率比绝对值大的误差出现的概率大。
对称性:绝对值相等的正负误差出现的概率相同。
有界性:有一定测量条件下,误差的绝对值不超过一定限度。
抵偿性:随机误差的算术平均值随着测定次数的增加而越来越趋向于零, (3)、粗大误差用当时的测量条件不能解释为合理的误差称为粗大误差。
其产生的主要原因是实验者在操作、读数、记录、计算等方面的粗心而造成的。
含有粗大误差的测量值会明显歪曲客观事实,因而必须用适当的方法将其剔除(4)、误差的转化由于系统误差和随机误差有时难以分辨,并在一定的条件下可以相互转化,因此,现代误差理论已使用不确定度来评价测量结果,在误差分类上也不再使用系统误差这个名词,而是根据其来源及是否能用统计方法进行处理,分别归类于A 类不确定度和B 类不确定度。
6 测量结果的最佳值与随机误差的估算(1)、测量结果的最佳值——算术平均值设对某一物理量进行了几次等精度的重复测量,所得的一系列测量值分别为:x 1、x 2、…x i …x n 。
测量结果的算术平均值为:∑==ni i x n x 11。
x i 是随机变量,x 也是一个随机变量,随着测量次数n 的增减而变化。
由随机误差的上述统计特性可以证明,当测量次数n 无限增多时,算术平均值x 就是接近真值的最佳值。
(2)、随机误差的表示法随机误差的大小常用标准误差、平均误差和极限误差表示。
(3)、随机误差的估算由于真值X 无法知道,因而误差△i 也无法计算。
但在有限次测量中,算术平均值x 是真值的最佳估算值,且当∞→n 时,X x →。
所以,我们可以用各次测量值与算术平均值之差——残差或偏差来估算误差。
x x i i -=υ,υi 是可以计算的,当用υi 来计算标准误差σ时,称之为标准偏差。
a . 标准偏差使用符号σx 表示,其计算式为:12-∑=n i x υσ。
标准偏差σx 所表示的意义是:任一次测量值x i 的误差落在(±σx )范围内的概率为68.3%。
b. 平均值的标准偏差使用符号x σ表示,其计算式为:)1(2-∑==n n ni xx υσσ,平均值的标准偏差是n 次测量中任一次测量值标准误差的n1倍。
它表示在)(x x σ±范围内包含真值X 的可能性是68.3%。
7有限次测量的情况和t 因子测量次数趋于无穷只是一种理论情况,这时物理量的概率密度服从正态分布。
当次数减少时,概率密度曲线变得平坦,成为t 分布,也叫学生分布。
当测量次数趋于无限时,t 分布过渡到正态分布。
对有限次测量的结果,要使测量值落在平均值附近,具有与正态分布相同的置信概率,P =0.68,显然要扩大置信区间,扩大置信区间的方法是把σx 乘以一个大于1的因子t P 。
在t 分布下,标准偏差记为σxt = t P σx ,t P 与测量次数有关。
表1-1 t p 与n 的关系[例] 测量某一长度得到9个值:42.35,42.45,42.37,42.33,42.30,42.40,42.48,42.35,42.29(均以mm 为单位)。
求置信概率为0.68、0.95、0.99时,该测量列的平均值、标准偏差σx 。
解:计算得到平均值x =42.369mm计算得到标准偏差σx = 0.021mm 。
n =9,查表得P =0.68, t =1.07, 由式σxt = t P σx 得σxt =1.07×0.021mm=0.022mm P =0.95, t =2.31, σxt =2.31×0.021mm=0.048mm P =0.95, t =3.36, σxt =3.36×0.021mm=0.070mm8仪器误差仪器的最大允差△仪:仪器的最大允差就是指在正确使用仪器的条件下,测量所得结果的最大允许误差。
一般仪器误差的概率密度函数遵从均匀分布。
均匀分布:在△仪范围内,各种误差(不同大小和符号)出现的概率相同,区间外出现的概率为0。
9仪器的标准误差σ仪对于均匀分布的仪器最大允许误差,可计算得标准误差为:3仪仪∆=σ。
§2 有效数字及其运算测量结果的数字中,只保留一个欠准数,即数字的最后一位是欠准数,其余都是可靠数。
测量结果中所有可靠数字和一个欠准数统称为有效数字。
它们正确而有效地表示了实验的结果。
1、直接测量的读数原则直接测量读数应反映出有效数字,所以在直接测量读数时:(1)应估读到仪器最小刻度以下的一位欠准数;(2)有效数字位数的多少既与使用仪器的精度有关,又与被测量本身大小有关。
2、多次直接测量结果的有效数字取舍规则一般只取1~2位数字,因此x的末位数应取在σx所取的一位上,即x末位与σx的一位对齐。
关于x和σx尾数的取舍,常采用下列的法则:(1)遇尾数为4或4以下的数,则“舍”。
(2)遇尾数为6或6以上的数,则“入”。
(3)遇尾数为5的数,要看前一位。
前一位为奇数,则“入”,前一位为偶数则“舍”。
3、有效数字运算规则运算结果的有效数字应由误差计算结果来确定。
但是,在作误差计算以前的测量值运算过程中,可由有效数字运算规则进行初次的取舍,以简化运算过程。
有效数字的取舍的总原则是:运算结果只保留一位欠准数。
4、量具和仪器的有效数字对于标刻度的量具和仪器,如果被测量量很明确,照明好,仪器的刻度清晰,要估读到最小刻度的几分这一(如1/10、1/5、1/2)。
这最小刻度的几分之一,即为测量值的估计误差,记作△估,测量值中能读准的位数加上估读的这一位为有效数字。
§3 测量的不确定度1 不确定度的概念及计算测量不确定度是与测量结果相关联的参数,表征测量值的分散性、准确性和可靠程度,或者说它是被测量值在某一范围内的一个评定。
测量不确定度分为A类标准不确定度和B类标准不确定度。
一个完整的测量结果不仅要给出该测量值的大小,同时还应给出它的不确定度,用不确定度来表征测量结果的可信赖程度,测量结果应写成下列标准形式:Χ=x ±U (单位),Ur=±U/x×100%式中x 为测量值,对等精度多次测量而言,x 是多次测量的算术平均值x :U 为不确定度,Ur 为相对不确定度。
A 类标准不确定度A 类标准不确定度是在一系列重复测量中,用统计方法计算的分量,它的表征值用平均值的标准偏差表示,即n n n x xU x ni iA /)1()(12σ=--=∑=考虑到有限次测量服从t 分布,A 类标准不确定度应表示为:n n n x xU x p ni ipA t t /)1()(12σ=--=∑=B 类标准不确定度测量中凡是不符合统计规律的不确定度统称为B 类不确定度,记为U B 。
对一般有刻度的量具和仪表,估计误差在最小分格的1/10~1/5,通常小于仪器的最大允差△仪。
所以通常以△仪表示一次测量结果的B 类不确定度。
实际上,仪器的误差在[—△仪,△仪]范围内是按一定概率分布的。
一般而言,u B 与△仪的关系为u B =△仪/CC 称置信系数。
正态分布条件下,测量值的B 类不确定度,Ck u k U PB P B∆==仪k P称置信因子,置信概率P与k P 的关系见下表:表根据概率统计理论,在均匀分布函数条件下,一次测量值的B 类标准差U B =k P u B =k P △仪/C ,C =3,当P=0.683时,k P =1,即U B =仪∆/3。
在正态分布条件下,一次测量值的B 类标准差U B =k P u B =k P △仪/C ,C =3,当P=0.683时,k P =1,即U B =仪∆/3。
C 合成标准不确定度和展伸不确定度假设测量误差在[-△B ,△B ]范围内服从正态分布,这时B 类标准不确定度为u B =△B /C ,测量值的合成标准不确定度为,22B A U U U += P =0.68将合成标准不确定度乘以一个与一定置信概率相联系的包含因子(或称覆盖因子)K ,得到增大置信概率的不确定度,叫做扩展不确定度。
若置信概率为0.95, K=2U 0.95=2U 0.68=2,22B A U U + P =0.95若置信概率为0.99, K=3U 0.99=3U 0.68=3,22B A u u + P =0.99 。