第五章 统计学习题集 假设检验 第六章 方差分析
生物统计学习题集5

生物统计学姓名:班级:学号:第一章概论一、填空1 变量按其性质可以分为_______变量和_______变量。
2 样本统计数是总体_______的估计量。
3 生物统计学是研究生命过程中以样本来推断_______的一门学科。
4 生物统计学的基本内容包括_______、_______两大部分。
5 统计学的发展过程经历了_______、_______、_______3个阶段。
6 生物学研究中,一般将样本容量_______称为大样本。
7 试验误差可以分为_______、_______两类。
二、判断()1 对于有限总体不必用统计推断方法。
()2 资料的精确性高,其准确性也一定高。
( ) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
()4 统计学上的试验误差,通常指随机误差。
三、名词解释样本总体连续变量非连续变量准确性精确性第二章试验资料的整理与特征数的计算一、填空1 资料按生物的性状特征可分为_______变量和_______变量。
2 直方图适合于表示_______资料的次数分布。
3 变量的分布具有两个明显基本特征,即_______和______。
4 反映变量集中性的特征数是_______,反映变量离散性的特征数是_______。
5 样本标准差的计算公式s=_______。
二、判断( ) 1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
( ) 2 条形图和多边形图均适合于表示计数资料的次数分布。
()3 离均差平方和为最小。
()4 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
()5 变异系数是样本变量的绝对变异量。
三、名词解释资料数量性状资料质量性状资料计数资料计量资料普查抽样调查全距(极差)组中值算数平均数中位数众数几何平均数方差标准差变异系数四、单项选择( )1 下面变量中属于非连续性变量的是_______。
A 身高 B 体重 C 血型 D 血压( )2 对某鱼塘不同年龄鱼的尾数进行统计分析时,可做成_______图来表示。
假设检验与方差分析 习题及答案

第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × ) 样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
教育与心理统计学 第六章 方差分析考研笔记-精品

第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
第六章-假设检验和方差分析(二)

X
1 2 3 4
方差分析中基本假定
❖ 假如备择假设成立,即H1: i (i=1,2,3,4)不全相等
至少有一种总体旳均值是不同旳 有系统误差
❖ 这意味着四个样本可能来自均值不同旳四个 正态总体,因而样本均值“不是很接近”
f(X)
X
3 1 2 4
第二节 单原因方差分析
一、单原因方差分析旳环节 二、方差分析中旳多重比较
1、原因或因子 ▪ 所要检验旳对象称为因子 ▪ 要分析饮料旳颜色对销售量是否有影响,颜色是要检
验旳原因或因子
2、水平 ▪ 原因旳详细体现称为水平 ▪ A1、A2、A3、 A4四种颜色就是原因旳水平
3、观察值 ▪ 在每个原因水平下得到旳样本值 ▪ 每种颜色饮料旳销售量就是观察值
方差分析旳基本思想和原理
2、对前面旳例子
▪ H0: 1 = 2 = 3 = 4
• 颜色对销售量没有影响
▪ H0: 1 ,2 ,3, 4不全相等
• 颜色对销售量有影响
构造检验旳统计量
1、为检验H0是否成立,需拟定检验旳统计量 2、构造统计量需要计算
▪ 水平旳均值 ▪ 全部观察值旳总均值 ▪ 离差平方和 ▪ 均方(MS)
水平旳均值 假定从第i个总体中抽取一种容量为ni旳简朴随机样本,第i个总
数
▪ SSE 旳自由度为n-k
构造检验旳统计量
1、SSA旳均方也称组间方差,记为MSA,计算公式为
MSA SSA k 1
前例的计算结果:MSA 76.8455 25.6152 4 1
2、SSE旳均方也称组内方差,记为MSE,计算公式为
MSE SSE nk
前例的计算结果:MSE 39.084 2.4428 20 4
《统计学》-第5章-习题答案

第五章方差分析思考与练习参考答案1.试述方差分析的基本思想。
解答:方差分析的基本思想是,将观察值之间的总变差分解为由所研究的因素引起的变差和由随机误差项引起的变差,通过对这两类变差的比较做出接受或拒绝原假设的判断的。
2.方差分析有哪些基本假设条件?如何检验这些假设条件?解答:(1)在各个总体中因变量都服从正态分布;(2)在各个总体中因变量的方差都相等;(3)各个观测值之间是相互独立的。
正态性检验:各组数据的直方图/峰度系数、偏度系数/Q-Q图,K-S检验*等方差齐性检验:计算各组数据的标准差,如果最大值与最小值的比例小于2:1,则可认为是同方差的。
最大值和最小值的比例等于1.83<2。
也可以采用Levene检验方法。
独立性检验:检查样本数据获取的方式,确定样本之间无相关性。
3.对三个不同专业的学生的统计学成绩进行比较研究,每个专业随机抽取6人。
根据数据得到的方差分析表的部分内容如表5-21。
请完成该表格。
如果显著性水平α=0.05,能认为三个专业的考试成绩有显著差异吗?表5-21 不同专业考试成绩的方差分析表差异源SS df MS F组间193.0 ________ ________ ________组内819.5 ________ ________总计1012.5 ________解答:表5-21 不同专业考试成绩的方差分析表差异源SS df MS F组间193.0 ____2_ __ ____96.5____ 1.766321组内819.5 ____15____ 54.63333总计1012.5 __ 17____查f为三个专业的成绩无显著差异。
根据以下背景资料和数据回答4-7题。
为测试A、B、C、D、E五种节食方案,一位营养学家选择了50名志愿者随机分成五组,每组采用一种方案测量两个月后每个人的降低的体重,得到的实验数据如表5-22。
表5-22 不同节食方案的降低的体重(公斤)序号 方案A 方案B 方案C 方案D 方案E 1 6.5 2.9 8 5.1 11.5 2 11.6 5.5 11.9 2.5 13.2 3 7.7 4.3 8.5 1.5 11 4 8.7 3.6 8.9 2.2 13.1 5 8.4 3.9 9.1 1.4 13.8 6 4.1 6.7 11.4 3.1 12.8 7 8.7 4.5 12.6 5.4 12 8 6.6 1.7 12.4 1.9 11.5 9 7.1 6.5 9.4 4.1 14.6 10 8.9 5.4 10.6 3.6 13.74.不同节食方案的实验效果的描述统计资料如表5-23。
假设检验方差分析

方差分析是通过比较不同组别之间的差异来检验假设
的一种统计方法。
02
它通过将总变异性分解为组间变异性和组内变异性,
来评估组间差异是否显著。
03
方差分析的基本思想是,如果各组之间存在显著差异
,那么组间变异性应该大于组内变异性。
方差分析的应用场景
01 比较不同组别之间的平均值是否存在显著差异。 02 检验一个或多个分类变量对连续变量的影响。 03 在实验设计中,用于评估不同处理或条件下的结
进行统计检验
根据样本数据和选择的统计量, 计算相应的值并进行统计检验。
提出假设
根据研究问题和数据情况,提 出原假设和备择假设。
确定显著性水平
确定一个合适的显著性水平, 用于判断假设是否成立。
做出推断
根据统计检验的结果,做出拒 绝或接受原假设的推断。
03 方差分析的原理及应用
方差分析的基本思想
01
提高数据分析的全面性和准确性。
04
加强假设检验和方差分析的理论研究,深入探讨其数 学原理和理论基础,为方法的改进和创新提供理论支 持。
THANKS FOR WATC
多因素方差分析用于比较多个分类变量与一个连续变量的关系。
详细描述
例如,比较不同品牌、不同型号、不同生产年份手机的使用寿命,通过多因素方差分析可以判断这些 因素对手机使用寿命的影响是否有显著差异。
05 结论
假设检验和方差分析的重要性
假设检验是统计学中一种重要的统计推断方法,通过检验假设是否成立,可以判断样本数据是否支持 或拒绝原假设,从而得出科学可靠的结论。
04 实际应用案例
单因素方差分析
总结词
单因素方差分析用于比较一个分类变 量与一个连续变量的关系。
大学统计学 第6章 假设检验与方差分析

35%
16
30%
14
12
25%
10
20%
8
`
15%
6
10%
4
2
5%
0
0%
50-60
70-80
90-100
统计学导论
第六章 假设检验与方差分析
第一节 假设检验的基本原理 第二节 总体均值的假设检验 第三节 总体比例的假设检验 第四节 单因子方差分析 第五节 双因子方差分析 第六节 Excel在假设检验与方差分析
记为 H1:。150
整理课件
6-7
三、检验统计量
所谓检验统计量,就是根据所抽取的样本计 算的用于检验原假设是否成立的随机变量。
检验统计量中应当含有所要检验的总体参数, 以便在“总体参数等于某数值”的假定下研 究样本统计量的观测结果。
检验统计量还应该在“H0成立”的前提下有 已知的分布,从而便于计算出现某种特定的 观测结果的概率。
为 =x 149.8克,样本标准差s=0.872克。问该
生产线的装袋净重的期望值是否为150克(即 问生产线是否处于控制状态)?
整理课件
6-4
所谓假设检验,就是事先对总体的参数 或总体分布形式做出一个假设,然后利用抽 取的样本信息来判断这个假设(原假设)是 否合理,即判断总体的真实情况与原假设是 否存在显著的系统性差异,所以假设检验又 被称为显著性检验。
量所得结果落入接受域的概率。
问题,对于 和 大小的选择有
不同的考虑。例如,在例 6-1 中,如果检验者站在卖方 的立场上,他较为关心的是不要犯第一类错误,即不 要发生产品本来合格却被错误地拒收这样的事情,这
时, 要较小。反之,如果检验者站在买者的立场上,
第六章方差分析

2se( 2 LSD检验)
x
n0
x1 x2
n0
第三节双因素方差分析
1、试验指标:衡量试验结果的标准 2、因素(factor):也叫因子,是指对试验指标有影响,在研究中加以(控制)考虑的试验
4
条件。 3、可控因子:在试验中可以人为地加以调控的因子浓度、温度等 4、非控因子:不能人为调控的因素(气象、环境等) 5、固定因素:指因素的水平是经过特意选择的 6、随机因素:指因素的水平是从该因素水平总体中随机抽出的样本 7、水平(level):每个因素的不同状态(从质或量方面分成不同的等级) (因素是一个抽象的概念,水平则是一个较为具体的概念) 8、处理:指对试验对象施以不同的措施(对单因素试验而言,水平和处理是一致的,一个 水平就是一个处理;对多因素试验而言,处理就是指水平与水平的组合) 9、固定效应(fixed effect):由固定因素所引起的效应。 10、随机效应(random effect):由随机因素引起的效应。 11、二因素方差分析:是指对试验指标同时受到两个试验因素作用的试验资料的方差分析。 12、固定模型:二因素都是固定因素 13、随机模型:二因素均为随机因素 14、混合模型:一个因素是固定因素,一个因素是随机因素 15、主效应(main effect):各试验因素的相对独立作用 16、互作(interaction):某一因素在另一因素的不同水平上所产生的效应不同。 17、因素间的交互作用显著与否关系到主效应的利用价值 如果交互作用不显著,则各因素的效应可以累加,各因素的最优水平组合起来,即为最优的 处理组合。 如果交互作用显著,则各因素的效应就不能累加,最优处理组合的选定应根据各处理组合的 直接表现选定。有时交互作用相当大,甚至可以忽略主效应。 二因素间是否存在交互作用有专门的统计判断方法,有时也可根据专业知识判断。 (一)无重复观测值的二因素方差分析 依据经验或专业知识,判断二因素无交互作用时,每个处理可只设一个观测值,即假定 A 因素有 a 各水平,B 因素有 b 个水平,每个处理组合只有一个观测值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 假设检验 第六章 方差分析
1、某厂生产一种产品,原月产量服从)14,75(N 。
设备更新后,为了考察产量是否提高,抽查了6个月的产量,其平均产量为78。
问在显著水平5%条件下,设备是否值得更新?
2、某工厂对所生产的产品进行质量检验,规定:次品率不得超过0.01,方可出厂。
现从一批产品中随机抽查80件,发现次品2件。
试问在0.05的显著水平下,这批产品是否可以出厂?
3、已知某种电子元件的使用寿命服从标准差为100小时的正态分布,要求平均寿命不得低于1000小时。
现在从一批这种电子元件中随机抽取25件,测得平均寿命为950小时。
试在0.02 的显著性水平下,检验这批元件是否合格.
4、在正常生产情况下,某厂生产的无缝钢管的内径服从均值为54mm 、 标准差为0.9mm 的正态分布。
某日从当天生产的产品中随机抽取10根,测得内径分别为:53.8,54.0,55.1,54.2,52.1,54.2,55.0,55.8,55.4,55.5(单位:mm )。
试检验该日产品生产是否正常(α=5%)。
5、某专家认为A 地男孩入学率明显高于女孩,小学男女学生比例至少是6:4。
从A 地小学中随机抽取400个学生的调查结果是:男生258人,女生142人.问当α=5%时,调查结果是否支持该专家的观点?
6、某饮料厂生产一种新型饮料,其颜色有四种分别为:橘黃色、粉色、绿色、和无色透明。
随机从5家商场收集了前一期其销售量,数据如下表:
数据计算结果如下:
组间平方和为76.8445,组内平方和为39.084。
问饮料的颜色是否对产品的销售量产生显著的影响?
{66.8)3,16(05.0=F ,24.3)16,3(05.0=F ,29.5)16,3(01.0=F ,69.26)3,16(01.0=F }。