函数图像的对称专题重点
函数的奇偶性、周期性与对称性(重点)-备战2023年高考数学一轮复习考点微专题(原卷版)

考向08 函数的奇偶性、周期性与对称性【2022年新高考全国Ⅰ卷】(多选题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【2022年新高考全国II 卷】已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .11.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称. (2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称; 函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称. (3)若奇函数()y f x =在0x =处有意义,则有(0)0f =; 偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇. (8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-. ③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++ ④函数2()log (1)a f x x x =+或函数2()log (1)a f x x x =+. 注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1xmf x m m R a =-∈+. 偶函数:①函数()()x x f x a a -=±+. ②函数()log (1)2mx a mxf x a =+-. ③函数(||)f x 类型的一切函数. ④常数函数 2.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x af x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数3.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.4.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-. (2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(1)如果一个奇函数()f x 在原点处有定义,即(0)f 有意义,那么一定有(0)0f =. (2)如果函数()f x 是偶函数,那么()(||)f x f x =.2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性3.函数周期性常用结论对()f x 定义域内任一自变量的值x : (1)若()()f x a f x +=-,则2(0)T a a =>. (2)若1()()f x a f x +=,则2(0)T a a =>. (3)若1()()f x a f x +=-,则2(0)T a a =>. 4.对称性的三个常用结论(1)若函数()y f x a =+是偶函数,则函数()y f x =的图象关于直线x a =对称.(2)若对于R 上的任意x 都有(2)()f a x f x -=或()(2)f x f a x -=+,则()y f x =的图象关于直线x a =对称.(3)若函数()y f x b =+是奇函数,则函数()y f x =的图象关于点(,0)b 中心对称. 5.两个奇偶函数四则运算的性质(1)两个奇函数的和仍为奇函数; (2)两个偶函数的和仍为偶函数; (3)两个奇函数的积是偶函数; (4)两个偶函数的积是偶函数;(5)一个奇函数与一个偶函数的积是奇函数。
函数关于某点对称的问题

函数关于某点对称的问题函数关于某点对称的问题是数学中的一个重要概念。
在平面上,两点关于某点对称指的是,以这个点为对称中心,将一个点关于这个点对称后,会得到另一个点。
在函数中,如果一个函数的图像关于某点对称,意味着将函数图像以这个点为对称中心进行对称操作后,会得到与原函数图像完全一致的图像。
这是一种特殊的对称性,它可以帮助我们更好地理解函数的性质和特点。
首先,我们来考虑一些基本的函数关于原点(0,0)的对称性。
对于奇函数来说,如果一个函数满足f(-x)=-f(x),则函数关于原点对称。
奇函数一般表现为关于原点对称的图像,比如函数y=x,y=|x|等。
对于偶函数来说,如果一个函数满足f(-x)=f(x),则函数关于原点对称。
偶函数一般表现为关于y轴对称的图像,比如函数y=x²,y=|x|等。
其次,我们来考虑一些函数关于其他点对称的情况。
假设我们有一个函数f(x),图像关于点(a,b)对称,即对于任意x,有f(x)=2b-f(x-a)。
其中,a表示点的横坐标偏移量,b表示点的纵坐标偏移量。
这种情况下,我们可以通过将函数图像以点(a,b)为对称中心进行对称操作,从而得到与原函数图像完全一致的图像。
这种对称性在函数的图像研究中非常有用,可以帮助我们更好地理解函数的行为。
函数关于某点对称的性质可以帮助我们进行函数图像的描绘和分析。
首先,我们可以利用对称性来确定函数的图像在某一区间的性质。
比如,在一个函数关于原点对称的情况下,如果我们知道函数在区间[0,+∞)上是递增的,那么根据对称性,我们可以得出函数在区间(-∞,0]上也是递增的。
这样,我们就可以通过研究函数在非负半轴上的变化情况,来推断整个函数图像的性质。
其次,函数关于某点对称的性质也可以帮助我们求解函数方程和函数不等式。
比如,如果一个函数满足f(x)=f(2a-x),即关于点(a,f(a))对称,那么我们可以通过这个对称性来简化函数方程的求解。
函数图象的对称性

3、函数的周期性、图像对称性的相互关系:
(1)若x a和x b是函数f ( x)的对称轴,则函数的周 期为T ?
f (2a x) f ( x)
f (2b x) f ( x) T 2(b a)
f (2a x) f (2b x)
(2)若(a,0)和(b,0)是函数f ( x)的对称中心,则函数的 周期为T ?
2 、函数图像关于点 (a, 0) 对称的定义:
奇函数f (0 x) f (0 x) 图像关于点 0,0)对称 (
f (a x) f (a x) 或f (2a x) f ( x)
到(a,0)距离相等的点的函数值 互为相反数 sin( x) sin( x)
函
数
——函数图像的对称性
1、函数图像关于直线 x=a 对称的定义:
特例:偶函数 (0 x) f (0 x) 图像关于直线 0对称 f x
f (a x) f (a x) 或f (2a x) f ( x)
到直线x a距离相等的点的函数值 相等 cos( x) cos( x)
“双对称函数一定是周期函数”
3、函数的周期性、图像对称性的相互关系:
T (3) 若函数 f ( x)周期为 T , 对称轴为 x a, 则x) f ( x)
f (2a x) f ( x)
2a T T x a 2 2
f (2a x) f (T x)
T (4) 若函数 f ( x)周期为 T , 对称中心 (a,0), 则(a ,0)是对称中心 2
《天府高考》 24 P (3) y f ( x 2)是偶函数, y f ( x)关于x 1对称
函数对称性的总结

函数对称性的总结函数对称性是数学中一个重要的概念,在各个领域都有广泛应用。
理解和应用函数对称性有助于我们更好地理解和解决数学问题。
本文将对函数对称性的概念、性质和应用进行总结。
函数对称性的概念:在数学中,函数对称性是指函数具有某种变换性质,使得在一定的条件下,函数在变换前后保持不变。
具体来说,如果对于定义域上的任意一个元素x,都存在一个元素y,使得对称变换后的x,会得到y,在函数对称变换之后,函数的图像也会发生相应的变化。
函数对称性可以分为轴对称、中心对称和周期对称等。
1.轴对称:一个函数在平面上如果具有轴对称性,比如存在一个轴使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是轴对称函数。
轴对称函数的图像具有左右对称的特点。
比如,y = x^2 就是一个轴对称函数,其图像关于y轴对称。
2.中心对称:一个函数在平面上如果具有中心对称性,比如存在一个点使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是中心对称函数。
中心对称函数的图像具有上下左右对称的特点。
比如,y = sin(x) 就是一个中心对称函数,其图像关于原点对称。
3.周期对称:一个函数如果具有周期对称性,那么在一定的周期内,函数的变换可以形成循环。
即,在给定的周期内,函数的某个值与另一个值相等。
周期对称函数的图像在周期内具有相似的形状和变化趋势。
比如,y = sin(x) 就是一个周期对称函数,其周期为2π。
函数对称性的性质:1.对称轴或对称中心是函数对称性的重要特征。
通过找到函数的对称轴或对称中心,可以更好地理解函数的变化规律和性质。
2.函数对称性能够简化函数的分析和计算过程。
根据函数对称性的特点,我们可以通过分析对称图形的一部分,推断出对称图形的其他部分;通过对称性可以简化函数的复杂性,并提供更方便的计算方法。
3.函数对称性能够提供问题求解的启示。
函数对称性在实际问题中具有重要的应用价值,比如建筑设计中的对称线、电路中的交流信号分析等。
函数的各种对称性

函数对称性的探究函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。
函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一、函数自身的对称性探究定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。
推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2.函数y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)推论:函数y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。
知识点:函数的对称性总结

知识点:函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。
函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一、函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。
推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。
函数的奇偶性与对称性分析

函数的奇偶性与对称性分析在数学领域中,函数的奇偶性以及对称性是重要的概念。
通过分析函数的奇偶性和对称性,我们可以推导出函数的性质和特点,进而解决一些相关的问题。
本文将介绍函数的奇偶性和对称性,并讨论它们对函数图像、奇偶函数的性质以及对称轴的位置等方面的影响。
一、函数的奇偶性函数的奇偶性是指函数的性质,即在自变量取相反数时,函数的值是否相等。
如果函数满足$f(-x) = f(x)$,则称该函数为偶函数;如果函数满足$f(-x) = -f(x)$,则称该函数为奇函数。
1. 奇函数的性质奇函数具有以下性质:- 奇函数在原点处对称,即图像关于原点对称。
- 当函数的定义域包含原点时,奇函数的值为零$f(0)=0$。
- 奇函数的图像在第一象限和第三象限中对称,即对于任意$x>0$,有$f(x)=-f(-x)$。
2. 偶函数的性质偶函数具有以下性质:- 偶函数在y轴上对称,即图像关于y轴对称。
- 当函数的定义域包含原点时,偶函数的值为零$f(0)=0$。
- 偶函数的图像在第一象限和第二象限中对称,即对于任意$x>0$,有$f(x)=f(-x)$。
二、函数的对称性函数的对称性是指函数的图像相对于某个轴线或点具有对称关系。
1. 关于y轴的对称性如果函数满足$f(-x) = f(x)$,则函数的图像关于y轴对称。
在坐标系中,可以通过将x坐标取相反数,观察函数值是否相等来判断函数是否关于y轴对称。
2. 关于x轴的对称性如果函数满足$f(x) = f(-x)$,则函数的图像关于x轴对称。
在坐标系中,可以通过将y坐标取相反数,观察函数值是否相等来判断函数是否关于x轴对称。
3. 关于原点的对称性如果函数满足$f(-x) = -f(x)$,则函数的图像关于原点对称。
在坐标系中,可以通过将x和y坐标取相反数,观察函数值是否相等来判断函数是否关于原点对称。
三、函数图像的绘制1. 偶函数的图像对于偶函数,可以仅绘制一侧的图像,然后通过关于y轴的对称性得到整个图像。
函数对称性的总结

参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。
2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。
3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。
4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。
5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。
6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。
对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。