图形的几何变换
几何变换的认识和基本原理

几何变换的认识和基本原理几何变换是指通过对平面上的点、线、面进行位置、形状或尺寸上的改变,从而得到一个新的图形。
在计算机图形学和计算机视觉等领域,几何变换是非常重要的基础知识。
本文将介绍几何变换的认识和基本原理。
一、平移变换平移变换是指将一个图形沿着某个方向平行移动一定的距离。
平移变换可以用以下公式表示:[x', y'] = [x + dx, y + dy]其中,(x, y)是原始图形上的一个点,(dx, dy)是平移的距离,(x', y')是平移后得到的新点的坐标。
二、旋转变换旋转变换是指将一个图形绕着某个中心点按照一定的角度旋转。
旋转变换可以用以下公式表示:[x', y'] = [x*cosθ - y*sinθ, x*sinθ + y*cosθ]其中,(x, y)是原始图形上的一个点,θ是旋转的角度,(x', y')是旋转后得到的新点的坐标。
三、缩放变换缩放变换是指将一个图形按照一定的比例因子放大或缩小。
缩放变换可以用以下公式表示:[x', y'] = [s*x, s*y]其中,(x, y)是原始图形上的一个点,s是缩放的比例因子,(x', y')是缩放后得到的新点的坐标。
四、对称变换对称变换是指将一个图形关于某一直线或某一点进行对称。
对称变换可以分为关于x轴对称、关于y轴对称、关于原点对称等。
不同类型的对称变换具体的公式略有不同,但原理都是将图形上的点映射到其关于对称轴的对称位置。
五、仿射变换仿射变换是指将一个图形通过平移、旋转和缩放等基本变换来进行综合变换。
仿射变换可以用以下矩阵表示:[x', y'] = [a*x + b*y + c, d*x + e*y + f]其中,a、b、c、d、e、f为变换矩阵中的参数,(x, y)是原始图形上的一个点,(x', y')是变换后得到的新点的坐标。
图形的几何变换

图形的几何变换图形的几何变换是指对于一个图形,在平面上或空间中进行比例、旋转、平移、对称等操作后,得到的新图形。
这种操作可以改变图形的大小、方向、位置等特征,广泛运用于数学、物理、美术、计算机图形等领域。
以下从不同变换类型的角度分析图形的几何变换。
一、比例变换比例变换是指将一个图形沿着某个中心点或轴线进行等比例伸缩的变换。
其结果通常是一个形状相似但大小不同的新图形。
比例变换可以分为放大和缩小两种情况,当比例因子大于1时,为放大;比例因子小于1时,为缩小。
比例变换常见的应用包括模型制作、图形的等比例缩放等。
二、旋转变换旋转变换是指将一个图形沿着某个轴心或轴线进行旋转的变换。
旋转变换可分为顺时针旋转和逆时针旋转两种情况,其结果是一个相似但方向不同的新图形。
旋转变换的角度通常用弧度制表示,旋转角度为正时为逆时针旋转,为负时为顺时针旋转,常见的应用包括风车的运动、建筑设计的转角变换等。
三、平移变换平移变换又叫做移动变换,是指将一个图形沿着某个方向进行平移的变换。
平移变换可以将图形整体沿着平移向量的方向进行移动,其结果是一个与原图形相同但位置不同的新图形。
平移变换常见的应用包括机器人的运动、物体的位移等。
平移变换也可以看作是比例变换的特殊情况,比例因子为1,即不改变图形的大小。
四、对称变换对称变换是指将一个图形沿着某个轴线进行翻折的操作。
对称变换可以分为对称、反对称和正交对称三种类型。
对称变换的结果通常是一个与原图形相等但位置镜像对称的新图形。
对称变换在分形几何、美术设计等领域都有着广泛的应用。
五、仿射变换仿射变换是指图形在平面上或空间中进行非等比例伸缩、旋转、平移和投影等操作时的变换。
仿射变换的结果通常是一个与原图形相似但有略微变形的新图形。
仿射变换包括平移变换、旋转变换、比例变换和剪切变换等。
其应用领域包括医学图像处理、计算机图形学等。
总结图形的几何变换在现代科技和艺术中有着广泛的应用。
比例变换常用于造型、模型制作和图形的等比例缩放;旋转变换常用于旋转花纹、风车运动、建筑转角的变化等;平移变换常用于运动控制、物体的位移等;对称变换常用于几何分形、美术设计等领域;仿射变换则是结合了以上变换操作的高级变换,其应用范围更加广泛。
图形几何变换

例. 相对直线y=1/2*x的反射变换
Y
Y
Y
原图
X
Y
平移
X
旋转
X
Y Y
反射
X
逆向旋转 X
逆向平移 X
1 0 x cos sin 0 1 0 0 T 0 1 y sin cos 0 0 1 0
0 0 1 0
0 1 0 0 1
cos sin 0 1 0 x
•sin
0
cos 0 0 1 y
0
1
0
p
y
1 0 0 1 1
Y
(4)关于y=x轴对称
x=y p(x, y)
p ' (y, x)
X
p'x 0 1 0 px (d)关于x=y对称
p'
y
1
0
0
p
y
1 0 0 1 1
Y
x=-y (5)关于y=-x轴对称
P(x, y)
X P' (-y, -x)
( e) 关于x=- y对称
px sin( ) py cos( )
写成矩阵表达式为:
p'x cos sin 0 px
p'
y
sin
cos
0
p
y
1 0
0 1 1
当
p'x cos
p'
y
sin
1 0
sin cos
0
0 px
0
p
y
1 1
其逆变换
px cos sin 0 p'x
•sin
0
cos 0
0 1
取 45o,s1 1,s2 2
计算机图形学之图形变换

4 T
3
2 p
1
0
012 34 567 8
线段和多边形的平移可以通过顶点的
平移来实现。同样线段和多边形的其它几 何变换也可以通过对顶点的几何变换来实 现。
2. 旋转变换(Rotation) 二维旋转有两个参数:
旋转中心: 旋转角:
?
6 P’
5
4
3
P
2
1
0
012 34 567 8
设OP与x轴的夹角为 则:
由于采用齐次坐标矩阵表示几何变换, 多个变换的序列相应地可以用矩阵链乘来表 示。
需要注意:先作用的变换其矩阵在右边, 后作用的变换其矩阵在左边。
变换函数
平移变换 void glTanslate{fd}(TYPE x, TYPE y, TYPE z);
旋转变换 void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z); 绕矢量v=(x,y,z)T逆时针方向旋转angle指定的角度。 旋转角度的范围是0~360度。当angle=0时, glRotate()不起作用。
二维旋转有两个参数: 旋转中心: 旋转角:
上述变换可以分解为三个基本变换:
•平移:
•旋转:
•平移: 回原位。
使旋转中心移到坐标原点; 使旋转中心再移
二维旋转有两个参数: 旋转中心: 旋转角:
因此上述变换可以写成矩阵乘积形式:
4. 5 基本三维几何变换(Basic three-dimensional geometric transformation)
1. 矩阵表示(Matrix representation) 前面三种变换都可以表示为如下的矩
阵形式
几何变换

CBACHBA几何变换几何变换几何变换是把一个几何图形变换成另一个几何图形的方法。
对称、平移、旋转变换是几何变换中的差不多变换。
对称变换:如果把一个图形变到它关于直线l 的轴对称图形,如此的变换叫做关于直线l 的对称变换,又称反射变换,直线l 称为对称轴,我们常选用线段的垂直平分线、角平分线、等腰三角形的底边上的高作为对称轴来解题。
已知:⊿ABC 中,∠A<60°,试在⊿ABC 的边AB 、AC 上分别找一点P 、Q ,使BQ+QP+PC 最小。
在⊿ABC 中,AH 是高,已知∠BAC = 45°,BH = 2,CH = 3求⊿ABC 的面积。
旋转变换:把图形绕定点O 转动角度α得到图形的变换称为旋转变换,点O 称为旋转中心,α叫做旋转角,若α=180°,这种专门的旋转变换叫做中心对称变换,这时旋转中心叫做对称中心。
旋转性质有:(1)在旋OCBADFNE BA F CBEADM N转变换下两点之间的距离不变。
(2)在旋转变换下两直线的夹角不变,且对应直线的夹角等于旋转角;设O 是正三角形ABC 内一点,已知∠AOB = 115°,∠BOC = 125°,求以OA ,OB ,OC 为边构成的三角形的各角。
设E 、F 各为正方形ABCD 的边BC 和DC 上的点, ∠EAF = 45°,AN ⊥EF 于N 。
求证:(1)AN=AD ;(2)EF AB S S AEF ABCD :2:=∆正方形平移变换:把几何图形沿某一确定的方向移动一定的距离的变换。
例:已知:四边形ABCD 中,AD=BC ,E 、F 分别是AB 分别是AB 、CD 的中点,AD 、EF 、BC 的延长线分别交于M ,N两点求证:∠AME =∠BNE练习:1、设P 是等边三角形ABC 内一点,∠APB ,∠BPC ,∠CPA 的大小之比是OCBAO BCDA5:6:7,则求以PA ,PB ,PC 的长为边构成的三角形的三个内角之比(从小到大)。
几何形的变换

几何形的变换几何形的变换是指通过平移、旋转、翻转和放缩等操作,使得原有的几何形状发生变化。
这些变换可以用来探索几何美学、解决几何问题以及创造出各种奇妙的图案。
一、平移变换平移变换是指将几何形状沿着一个方向移动一定的距离,而形状和大小保持不变。
在平面几何中,平移只有一个参数,即平移向量的大小和方向。
平移变换可以用于构造对称图形,移动点的位置以及改变空间内的物体位置。
例如,我们可以通过平移变换在平面上构造一个正方形。
首先,选择一个点作为正方形的顶点,将这个点平移到正方形的另一个顶点位置,然后将这个新位置的点再次平移,如此重复直到构成正方形的四个顶点。
二、旋转变换旋转变换是指绕一个固定点按照一定的角度将几何形状旋转。
旋转变换可以是顺时针或逆时针方向,可以是一个完整的圆周旋转,也可以是一个部分角度的旋转。
旋转变换常用于制作对称图形、解决几何问题以及在计算机图形学中进行三维模型的旋转操作。
例如,在制作花纹图案时,可以通过旋转一个花朵的形状重复堆叠得到整个图案。
三、翻转变换翻转变换是指将几何形状绕一个固定的线对称翻转,使得形状按照对称轴左右对称。
翻转变换有水平翻转和垂直翻转两种形式。
翻转变换常用于制作对称图形、解决几何问题以及进行三维模型的对称操作。
例如,在制作字母、数字或者其他具有对称特点的图形时,可以通过水平或垂直翻转得到完整的图形。
四、放缩变换放缩变换是指按照一定的比例因子调整几何形状的大小。
放缩变换可以是增大或缩小形状的尺寸,比例因子可以是一个常数或者一个向量。
放缩变换常用于调整图像的大小、制作图形的透视效果以及在几何问题中进行比例关系的推导。
例如,在绘制地图时,可以通过放缩变换将地球的三维形状映射到平面上,从而得到精确的地理信息。
综上所述,几何形的变换是通过平移、旋转、翻转和放缩等操作使得形状发生变化的过程。
这些变换可以应用于各个领域,包括几何美学、几何问题的解决以及计算机图形学等。
通过灵活运用几何形的变换,我们能够创造出丰富多样的图案和形状,带来视觉上的享受和数学上的挑战。
基本的几何变换

基本的几何变换几何变换是数学中一个重要的概念,指的是通过平移、旋转、缩放等操作来改变几何图形的形状、大小或位置。
在计算机图形学和计算机视觉领域,几何变换也扮演着至关重要的角色。
本文将介绍几个基本的几何变换,包括平移、旋转、缩放和镜像。
1. 平移在几何变换中,平移是指通过将图形沿着指定的方向移动一定的距离来改变图形的位置。
平移操作可以用以下公式表示:x' = x + dxy' = y + dy其中(x, y)是原始图形上的坐标,(x', y')是平移后的坐标,dx和dy 分别是在x和y方向上的平移量。
2. 旋转旋转是指通过围绕一个指定的点或轴旋转图形来改变图形的方向或角度。
旋转操作可以用以下公式表示:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中(x, y)是原始图形上的坐标,(x', y')是旋转后的坐标,θ表示旋转的角度。
3. 缩放缩放是指通过改变图形的尺寸来改变图形的大小。
缩放操作可以用以下公式表示:x' = x * scaleXy' = y * scaleY其中(x, y)是原始图形上的坐标,(x', y')是缩放后的坐标,scaleX和scaleY分别表示在x和y方向上的缩放比例。
4. 镜像镜像是指通过将图形沿着一个轴对称折叠来改变图形的位置或方向。
镜像操作可以用以下公式表示:x' = -xy' = -y其中(x, y)是原始图形上的坐标,(x', y')是镜像后的坐标。
这些基本的几何变换可以单独应用于图形,也可以组合在一起以实现更复杂的效果。
通过灵活组合这些变换操作,我们可以实现各种各样的几何变换,用于图像处理、游戏开发、计算机辅助设计等领域。
总结几何变换是一种重要的数学概念,可以通过平移、旋转、缩放和镜像等操作来改变几何图形的形状、大小和位置。
几何变换的基本概念与性质

几何变换的基本概念与性质几何变换是指在平面或空间中对图形进行变换的操作。
通过对图形的平移、旋转、缩放和对称等操作,可以改变图形的位置、形状和大小。
几何变换在数学、物理和计算机图形学等领域都有广泛应用,具有重要的理论和实际价值。
本文将介绍几何变换的基本概念和性质,以及其在不同领域的应用。
一、平移变换平移变换是指将图形按照指定的方向和距离进行移动的操作。
在平面几何中,平移变换在坐标系中的表示为{(x,y)→(x+a,y+b)},其中a和b分别表示沿x轴和y轴的平移距离。
平移变换可以保持图形的形状和大小不变,只改变其位置。
例如,将一个矩形图形沿x轴平移10个单位,结果是矩形整体右移10个单位。
平移变换具有以下性质:1. 平移变换不改变图形的形状和大小。
2. 平移变换满足平移合成律,即多次平移变换的结果与一个平移变换等效。
二、旋转变换旋转变换是指将图形按照指定的中心点和角度进行旋转的操作。
在平面几何中,旋转变换在坐标系中的表示为{(x,y)→[x*cosθ-y*sinθ,x*sinθ+y*cosθ]},其中θ表示旋转的角度。
旋转变换可以改变图形的位置、形状和大小,但保持图形的某些性质不变,如图形的对称性或平行关系。
旋转变换具有以下性质:1. 旋转变换不改变图形的对称性和重心位置。
2. 旋转变换满足旋转合成律,即多次旋转变换的结果与一个旋转变换等效。
3. 在平面几何中,任意图形都可以通过旋转变换得到相似图形。
三、缩放变换缩放变换是指将图形按照指定的比例进行放大或缩小的操作。
在平面几何中,缩放变换在坐标系中的表示为{(x,y)→(kx,ky)},其中k表示缩放的比例因子。
缩放变换可以改变图形的大小,但保持图形的形状和对称性不变。
缩放变换具有以下性质:1. 缩放变换不改变图形的形状和对称性。
2. 缩放变换满足缩放合成律,即多次缩放变换的结果与一个缩放变换等效。
四、对称变换对称变换是指将图形按照指定的直线对称、点对称或中心对称进行镜像的操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、要求
实现平移变换、比例变换、旋转变换三种基本几何变换;
实现镜像变换、错切变换;
二、运行环境
本次上机在WIN-TC 中进行。
三、直线的生成——用Bresenham算法实现
1、算法基本原理
图形的几何变换一般是指对图形的几何信息经过变换后产生新的图形,图形几何变换既可以看作是坐标系不动而图形变动,变动后的图形在坐标系中的坐标值发生变化;出可以看作图形不动而坐标系变动,变动后的图形在新坐标系下具有新的坐标值。这两种情况本质上都是一样的,都是图形由新的坐标值表示,因此是新产生的图形。图形几何变换包括比例变换、对称变换、错切变换、旋转变换、平移变换及其复合变换。图形上所有的点在几何变换前后的坐标关系一般用解析几何方法可以求得,但这些几何关系用矩阵方法表示,运算更为方便。
沿y轴方向关于x的错切
2、对程序中变量的说明
3、源程序
4、运行结果
5、个人总结
图形基本几何变换是指比例变换、对称变换、错切变换、旋转变换和平移变换等。变换通过矩阵运算均可以表示为表示几何图形的点阵的一维矩阵和表示变换的三维矩阵相乘的形式,即P’=P·T,具体如下:
平移变换
比例变换
旋转变换
对称变换
对称于x轴 对称于y轴 对称于原点
对称于y=x 对称于y=-x
错切变换
沿x轴方向关于y的错切
《计算机图形学》上机实习报告(一)——基本图形的生成
一、实习目的和要求
1、目的
深入学习三种基本几何变换的原理和方法,实现机制,掌握几何变换的共同特点;
通过程序的编写和运行,学习基本几何变换在程序上的实现方法,这就要求掌握结构体、一维数组的基本性质和使用方法;