双闭环三相异步电机调压调速系统实验报告
双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验r2 r2+Rs1 r2+Rs2 r2+Rs3sm sm1 sm2 s Tem图6-1整个调速系统采用了速度,电流两个反馈控制环。
这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。
在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。
异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。
但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。
2.双闭环异步电机调压调速系统的机械特性。
转子变电阻时的机械特性:3.三相异步电机的调速方法三种类型:转差功率消耗型:调压、变电阻等调速方式,转速越低,转差功率消耗越大。
转差功率馈送型:控制绕线转子异步电机的转子电压,利用转差功率可实现调节转速的目的。
如串级调速。
转差功率不变型:转差功率很小,而且不随转速变换,如改变磁极对数调速,变频调速。
1)定子调压调速当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电势减少,转(2)空载电压为200V时n/(r/min) 1281 1223 1184 1107 1045I G/A 0.10 0.11 0.12 0.13 0.13U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.28312.闭环系统静特性n/(r/min) 1420 1415 1418 1415 1416 1412I G/A 0.11 0.14 0.16 0.19 0.21 0.26U G/V 203 200 201 200 200 199 M/(N·m) 0.2394 0.2795 0.3080 0.3777 0.3496 0.4482 静特性曲线:与开环机械特性比较,闭环静特性比开环机械特性硬得多,且随着电压降低,开环特性越来越软。
电力拖动自动控制系统实验报告

电力拖动自动控制系统实验报告实验一双闭环可逆直流脉宽调速系统一,实验目的:1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。
2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。
3.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数整定。
二,实验内容:1.PWM控制器SG3525的性能测试。
2.控制单元调试。
3.测定开环和闭环机械特性n=f(Id)。
4.闭环控制特性n=f(Ug)的测定。
三.实验系统的组成和工作原理图6—10 双闭环脉宽调速系统的原理图在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。
双闭环脉宽调速系统的原理框图如图6—10所示。
图中可逆PWM变换器主电路系采用MOSFET 所构成的H型结构形式,UPW为脉宽调制器,DLD为逻辑延时环节,GD为MOS管的栅极驱动电路,FA为瞬时动作的过流保护。
脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。
由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—10组件或MCL—10A组件。
4.MEL-11挂箱5.MEL—03三相可调电阻(或自配滑线变阻器)。
6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件。
7.直流电动机M03。
8.双踪示波器。
五.注意事项1.直流电动机工作前,必须先加上直流激磁。
2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。
双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告
实验目的:
1. 理解双闭环不可逆直流调速系统的原理和特点。
3. 熟悉实验设备的使用和实验过程。
实验原理:
双闭环不可逆直流调速系统由速度环和电流环两个闭环组成,其基本原理如下:
1. 速度环控制
在速度环内部,输入为期望转速,输出为电压控制器的输出信号。
速度环主要根据实
际转速和期望转速之间的差异,计算出电压控制器的控制量,并根据电压控制器的输出改
变电机的电压,以达到调速的目的。
实验步骤:
1. 准备实验设备:电机、电压变压器、电流反馈电阻、示波器、信号源、功率放大器、控制器等。
2. 按照实验原理中的模型,建立电机的电压-转速模型和电机的电流-转矩模型。
3. 根据模型,编写控制算法。
4. 将实验设备连接好,将模型和算法输入控制器。
5. 设置期望转速和电流控制量,并启动电机。
6. 分析实验结果,评估控制系统的性能。
实验结果:
本次实验中,我们成功建立了双闭环不可逆直流调速系统的模型,并利用控制器实现
了系统的控制。
我们通过改变期望转速和电流控制量,观察了系统的实际转速和转矩变化。
实验结果表明,双闭环控制系统的性能稳定,具有较好的调速性能和响应速度。
结论:。
调速实验1-4

1、简述实验中观察到的现象,对实验中出现的问题加以分析、解释。
2、画出U/F曲线。
3、画出异步电动机的机械特性n=f(Te)曲线。
4、思考题:如何改变电动机的加速度、减速度?
5、写出实验小结。
实验四速度闭环三相异步电机调压调速系统实验
一.实验目的
3)直流电动机的电枢电流不要超过额定值使用,转速也不要超过1.2倍的额定值。以免影响电机的使用寿命,或发生意外。
4)DJK04与DJK02-1不共地,所以实验时须短接DJK04与DJK02-1的地。
实验二、双闭环晶闸管不可逆直流调速系统实验
一、实验目的
1、了解双闭环不可逆直流调速系统的原理及组成。
2、掌握双闭环不可逆直流调速系统的调试方法和步骤。
⑴、通过触摸面板上LO/RE切换键进行切换。
⑵、通过对输入端子参数(n36~n39)的设定来切换。
1、 触摸面板的操作方法
触摸面板操作有两种功能:一种是用面板上的RUN键和STOP/RESET键来控制电机的起动、停止。另一种是用于参数设定。
1) 指示灯显示说明
正常时:接通电源后,RUN灯闪亮、ALARM灯灭。指示灯FREF、FOUT、IOUT、MNTR、F/R、LO/RE、PRGM中有灯亮,指示窗口有数据显示。
U09:显示过去最后一次发生过的异常内容。
U10:制造商管理用。
F/R:灯亮时,可用 或 键,选择电动机的运转方向(正/
反转)。 FOR:正转 rev:反转
LO/RE:灯亮时,可用 或 键,选择本地/远程模式。
rE:远程 LO:本地
PRGM:。灯亮时,可用 或 键,选择要设定的参数,再用
键显示该参数的内容,用 或 键修改该
2013 运动控制(一)实验指导书

运动控制系统实验指导书实验一不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.实验系统组成及工作原理采用闭环调速系统,可以提高系统的动静态性能指标。
转速单闭环直流调速系统是常用的一种形式。
实验图1一1所示是转速单闭环直流调速系统的实验线路图。
实验图1一1转速单闭环直流调速系统图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V供电,通过与电动机同轴刚性连接的测速发电机TG检测电动机的转速,并经转速反馈环节FBS分压后取出合适的转速反馈信号U n,此电压与转速给定信号U*经速度调节器ASR综合调节,ASR的输出作为移相触发器GT的控制电n压U ct,由此组成转速单闭环直流调速系统。
图中DZS为零速封锁器,当转速给定电压U*和转速反馈电压U n均为零时,DZS的输出信号使转速调节n器ASR锁零,以防止调节器零漂而使电动机产生爬行。
三、实验设备及仪器1.教学实验台。
2.直流电动机。
3.双踪示波器。
四.实验内容1.求取调速系统在无转速负反馈时的开环工作机械特性。
调节给定电压U g,使直流电机空载转速n o=1500转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取5-6点,读取整流装置输出调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器,使电机稳定运行。
调节直流发电机负载电阻,在空载至额定负载范围内测取5-6点,读3.测取调速系统在带转速负反馈时的无静差闭环工作的静特性a.接积分电容器,可预置7uF,使ASR成为PI(比例一积分)调节器。
b.调节给定电压U g,使电机空载转速n o=1500转/分。
在额定至空载五.注意事项1.直流电动机工作前,必须先加上直流激磁。
3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。
交流异步电机调速系统实验报告

交流异步电机调速系统实验报告引言在电力系统中,电机调速是一个非常重要且复杂的问题。
随着技术的不断发展,异步电机调速系统成为了广泛应用的一种方案。
本实验旨在通过搭建和调试一个交流异步电机调速系统,来研究其调速性能和控制策略。
实验目的1.理解交流异步电机调速系统的工作原理;2.掌握电机调速系统的基本组成和实验搭建方法;3.研究不同控制策略对电机调速性能的影响;4.分析实验结果,评价不同控制策略的优劣。
实验原理1.异步电机工作原理:异步电机由主电路和励磁电路组成。
主电路中的三相对称电压产生一个旋转磁场,而励磁电路中的电压和电流则产生感应转子电动势和转矩,使得电机运转起来。
2.异步电机调速原理:异步电机调速主要通过控制转子电阻、定子电压以及改变电机的励磁电流来实现。
常见的调速方法有直接转矩控制(DTC)、矢量控制(VC)等。
实验设备和步骤1.实验设备:–交流异步电动机–实验控制器–电压调节器–电流测量仪–速度测量仪–控制软件2.实验步骤:1.搭建电机调速系统的硬件连接,确保各设备按照要求连接并接通电源。
2.在控制软件中选择合适的控制策略,并设置调速参数。
3.运行实验控制器,观察电机的调速性能,并记录实验数据。
4.根据实验数据分析电机的调速性能,并评价不同控制策略的优劣。
实验结果分析根据实验数据,我们可以得出以下结论:1.不同控制策略对电机调速性能的影响:–直接转矩控制(DTC)可以实现较好的转矩和速度响应,但对转子电阻参数变化较为敏感。
–矢量控制(VC)具有较好的转矩和速度响应特性,并且对转子电阻参数变化不敏感。
2.不同电机负载对调速系统的影响:–在轻载情况下,不同控制策略的性能相对较为接近。
–在重载情况下,矢量控制(VC)表现出较好的调速稳定性和承载能力。
结论本实验通过搭建和调试交流异步电机调速系统,研究了不同控制策略对电机调速性能的影响,并分析了不同负载下的调速系统性能。
通过实验结果,我们得出了以下结论:1.矢量控制(VC)相比直接转矩控制(DTC)具有更好的转矩和速度响应特性,且对转子电阻参数变化不敏感。
双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

第1章绪论1.1 双闭环三相异步电动机调压调速系统旳原理和构成调压调速即通过调整通入异步电动机旳三相交流电压大小来调整转子转速旳措施。
理论根据来自异步电动机旳机械特性方程式:其中,p为电机旳极对数;w1为定子电源角速度;U1为定子电源相电压;R2’为折算到定子侧旳每相转子电阻;R1为每相定子电阻;L11为每相定子漏感;L12为折算到定子侧旳每相转子漏感;S为转差率。
图1-1 异步电动机在不一样电压旳机械特性由电机原理可知,当转差率s基本保持不变时,电动机旳电磁转矩与定子电压旳平方成正比。
因此,变化定子电压就可以得到不一样旳人为机械特性,从而到达调整电动机转速旳目旳1.2 双闭环三相异步电动机调压调速系统旳工作原理系统主电路采用3个双向晶闸管,具有体积小。
控制极接线简朴等长处。
A.B.C为交流输入端,A 3.B3.C3为输出端,接向异步电动机定子绕组。
为了保护晶闸管,在晶闸管两端接有阻容器吸取装置和压敏电阻。
控制电路速度给定指令电位器BP1所给出旳电压,经运算放大器N构成旳速度调整器送入移相触发电路。
同步,N还可以得到来自测速发电机旳速度负反馈信号或来自电动机端电压旳电压反馈信号,以构成闭环系统,提高调速系统旳性能。
移相触发电路双向晶闸管有4种触发方式。
本系统采用负脉冲触发,即不管电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。
负脉冲触发所需要旳门极电压和电流较小,故轻易保证足够大旳触发功率,且触发电路简朴。
TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够旳移相范围,TS采用DY11型接法。
移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器旳一次侧第2章双闭环三相异步电动机调压调速系统旳设计方案2.1 主电路设计调压电路变化加在定子上旳电压是通过交流调压器实现旳。
目前广泛采用旳交流调压器由晶闸管等器件构成。
它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角旳大小来调整加到定子绕组两端旳端电压。
《电力拖动自动控制系统》实验指导书(自编)-(2)

《电力拖动自动控制系统》实验指导书(自编)-(2)-CAL-FENGHAI.-(YICAI)-Company One1《电力拖动自动控制系统》实验指导书昆明理工大学信自学院自动化系2005年9月目录实验须知----------------------------------------------------------------------2实验一系统调试-----------------------------------------------------------3实验二参数测试-----------------------------------------------------------9实验三双闭环系统的静特性研究-------------------------12实验四双闭环调速系统动特性研究----------------------------------15实验五逻辑无环流可逆调速系统的研究----------------------------17实验六错位选触无环流可逆系统-------------------------------------22实验七双闭环三相异步电动机调压调速系统----------------------26实验八双闭环三相绕线型异步电动机串级调速系统-------------29附录1双闭环不可逆直流调速系统主电路和控制电路连线图--32附录2逻辑无环流直流可逆调速系统主电路和控制电路连线图--33实验须知实验课是教学中的重要环节之一,通过实验,是理论联系实际,加深理解和巩固所学的有关理论知识,培养、锻炼和提高对实际系统的调试和分析、解决问题的能力,同时通过实验也培养严谨的科学态度和良好的作风,以达到工程技术人员应有的本领,因此要求每个学生不必须认真对待实验课,要求作到:一:实验前预习,要求:1、了解所有实验系统的工作原理2、明确实验目的,各项实验内容、步骤和做法3、拟定实验操作步骤,画出实验记录表格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动控制系统专题实验
实
验
报
告
2016年5月
6.1双闭环三相异步电机调压调速系统
一.实验目的
(1)熟悉晶闸管相位控制交流调压调速系统的组成与工作原理。
(2)熟悉双闭环三相异步电机调压调速系统的基本原理。
(3)掌握绕线式异步电机转子串电阻时在调节定子电压调速时的机械特性。
(4)掌握交流调压调速系统的静特性和动态特性。
熟悉交流调压系统中电流环和转速环的作用。
二.实验内容
(1)测定绕线式异步电动机转子串电阻时的人为机械特性。
(2)测定双闭环交流调压调速系统的静特性。
(3)测定双闭环交流调压调速系统的动态特性。
三.实验设备
(1)电源控制屏(NMCL-32);
(2)低压控制电路及仪表(NMCL-31);
(3)触发电路和晶闸管主回路(NMCL-33);
(4)可调电阻(NMCL-03);
(5)直流调速控制单元(NMCL-18);
(6)电机导轨及测速发电机(或光电编码器);
(7)直流发电机M03;
(8)三相绕线式异步电机;
(9)双踪示波器;
(10)万用表。
四.实验原理
1.系统原理
双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器(TVC)及三相绕线式异步电动机M(转子回路串电阻)。
控制系统由零速封锁器(DZS)、电流调节器(ACR)、速度调节器(ASR)、电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器(AP1)等组成。
其系统原理图如图6-1所示。
整个调速系统采用了速度、电流两个反馈控制环。
这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。
在稳定运行情况下,电流环对电网波动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。
异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。
但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。
2.三相异步电机的调速方法
交流调速系统按转差功率的处理方式可分为三种类型。
转差功率消耗型:异步电机采用调压、变电阻等调速方式,转速越低时,转差功率的消耗越大,效率越低。
转差功率馈送型:控制绕线转子异步电机的转子电压,利用其转差功率可实现调节转速的目的,这种调节方式具有良好的调速性能和效率,如串级调速。
转差功率不变型:这种方法转差功率很小,而且不随转速变化,效率较高,列如磁极对数调速、变频调速等。
如何处理转差功率在很大程度上影响着电机调速系统的效率。
五.实验方法
双闭环交流调压调速系统主回路和控制回路如图连接,NMCL-32的“三相交流电源”开关拨向“交流调速”。
给定电位器RP1和RP2左旋到最大位置,可调电阻NMCL-03左旋到最大位置。
注意:图中主回路中接入的是交流电流表和交流电压表。
图2-1b 双闭环交流调压调速系统控制回路
1.移相触发电路的检测
(1)推上空气开关,主电源暂不上电。
用示波器观察NMCL—33的双脉冲观察孔,应有双窄脉冲,且间隔均匀,幅值相同,相位差60;
(2)将面板上的Ublf端接地,调节偏移电压Ub,使触发角在30°~180°范围内可调,调试完成后,将U b左旋到最大位置。
(3)将正组触发脉冲的六个键开关接通,测试正桥晶闸管的脉冲是否正常,正常情况下,晶闸管阴极和控制极之间应有幅值为1-2V的双脉冲。
2.控制单元调试
(1)速度反馈系数的调试
首先,断开ACR的7端,给定电压Ug直接与Uct连接,形成开环调速系统。
断开M03的励磁电源和限流电阻RG,闭合电源使电机M09空载运行,调节Ug使转速达到额定转速约为1420r/min。
然后取出FBS3端与NMCL-18中ASR的1端的连接线,调节速度反馈FBS的电位器使得它的输出3和4端之间的电压为3V 测试完成后按图的控制回路重新连接。
(2)电流反馈系数的测试
断开ASR的3端与ACR的3端,给定电压Ug直接连接到ACR的3端,形成电流单闭环系统,电位器左旋到底使Uct=0,Ub左旋到底使得ɑ=0。
断开发电机M03的励磁电源和限流电阻R G,闭合主回路电源负给定电压为3V,M09空载运行,然后断开NMCL-33中电流反馈If与ACR的1端的连接线,调节电位器使得三相异步电机M09的转速n=0,最后再回调电流反馈If的电位器RP使得电机刚要转动还没转动时立即停止,则电流环便调试完成。
3.开环机械特性的测试
(1)断开NMCL—18的ASR的“3”至NMCL-33的Uct的连接线,NMCL-31的G(给定)的Ug端直接加至Uct,且Ug调至零。
直流电机励磁电源开关闭合。
电机转子回路接入每相为10(左右的三相电阻。
(2)NMCL-32的“三相交流电源”开关拨向“交流调速”。
合上主电源,即按下主控制屏绿色“闭合”开关按钮,这时候主控制屏U 、V 、W 端有电压输出。
(3)调节给定电压Ug ,使电机空载转速n0=1300转/分,调节直流发电机负载电阻,在空载至一定负载的范围内测取7~8点,读取直流发电机输出电压Ud ,输出电流id 以及被测电动机转速n 。
并计算三相异步电动机的输出转矩。
(4)调节Ug ,降低电机端电压,在1/3Ue 及2/3Ue 时重复上述实验,以取得一组人为机械特性。
注:采用直流发电机,转矩可按下式计算
n P R I U I M O S G G G /)(55.92
++=
式中 :
M ——三相异步电动机电磁转矩; I G ——直流发电机电流;
U G ——直流发电机电压; R S ——直流发电机电枢电阻;
P 0——机组空载损耗。
不同转速下取不同数值:n=1500r/min ,Po=13.5W ;n=1000r/min ,Po=10W ;n=500r/min ,Po=6W 。
4.系统闭环特性的测定
调节Ug ,使转速至n =1420r/min ,从轻载按一定间隔做到额定负载,测出闭环静特性n =f(M)。
系统动态特性的测试,用慢扫描示波器测试并记录如下波形,即:
(1)突加突减给定电压Ug 启动电机M09时转速n ,ASR 输出“3”端的动态波形。
(2)电机M09稳定运行,突加突减负载时的n,ASR 输出“3”的动态波形。
六.实验结果
3. M=9.55(IGUG+IG2 RS+P0)/n RS 由实验5.1测得为26.5Ω
(
4.(2)突加给定:
7uF 2uF
(4
)系统动态特性的测定
突减给定电压:突加给定电压:
突减负载:突加负载:
七、思考题:
1.三相绕线式异步电机转子回路的目的是什么?不串电阻能否正常运行?
转子回路串接是为了使启动电流减小,若不串电阻可能会导致启动电流过大而导致不能正常运行。
2.为什么交流调压调速系统不宜用于长期处于低速运行的生产机械和大功率设备上?
因为交流调压调速在低速时转差功率损耗大、效率低。