《平面直角坐标系》经典练习题(9)

合集下载

平面直角坐标系找规律100题

平面直角坐标系找规律100题

以下是关于在平面直角坐标系中寻找规律的100道题目:1. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并继续这个规律。

2. 连接点(-1, 0), (0, 1), (1, 0), (0, -1), (-1, 0) 形成一个图形。

这个图形是什么?3. 找到缺失的坐标:(2, 5), (4, 10), (6, ?)。

4. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并继续这个规律。

5. 连接点(1, 1), (2, 2), (3, 3), (4, 4), ... 形成一条直线。

这条直线的斜率是多少?6. 找到缺失的坐标:(3, 6), (5, ?), (7, 14)。

7. 绘制点(-1, 0), (-2, 0), (-3, 0), (-4, 0), ... 并继续这个规律。

8. 连接点(0, 1), (1, 0), (0, -1), (-1, 0), (0, 1) 形成一个图形。

这个图形是什么?9. 找到缺失的坐标:(2, 4), (4, ?), (6, 12)。

10. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并找出这个规律的方程。

11. 连接点(1, 2), (2, 4), (3, 6), (4, 8), ... 形成一条直线。

这条直线的斜率是多少?12. 找到缺失的坐标:(2, 5), (4, ?), (6, 11)。

13. 绘制点(-1, -1), (0, 0), (1, 1), (2, 2), ... 并继续这个规律。

14. 连接点(-1, 1), (-2, 2), (-3, 3), (-4, 4), ... 形成一条直线。

这条直线的斜率是多少?15. 找到缺失的坐标:(3, 6), (5, ?), (7, 13)。

16. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并找出这个规律的方程。

(04)平面直角坐标系解答题专项练习60题(有答案)ok

(04)平面直角坐标系解答题专项练习60题(有答案)ok

平面直角坐标系解答题专项练习60题(有答案)1.如图所示,四边形ABCD是梯形,四边形OBCD是边长为1个单位长度的正方形,∠OAB=45°(1)写出点A,B,C,D坐标;(2)求梯形ABCD的面积.2.已知长方形ABCD的顶点坐标为A(1,1),B(2,1),C(2,3),D(1,3).(1)在直角坐标系中画出这个长方形;(2)怎样平移才能使长方形ABCD关于x轴对称;(3)怎样变换坐标,才能使长方形变成面积为1的正方形?3.如图,每个小正方形的边长为单位长度1.(1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标;(2)点C与E的坐标什么关系?(3)直线CE与两坐标轴有怎样的位置关系?4.在直角坐标平面内,已知点A(0,5)和点B(﹣2,﹣4),BC=4,且BC∥x轴.(1)在图中画点C的位置,并写出点C的坐标;(2)连接AB、AC、BC,判断△ABC的形状,并求出它的面积.5.如图,四边形ABCD各顶点的坐标分别为(﹣2,8),B(﹣11,6),C(﹣14,0),D(0,0).(1)计算这个四边形的面积;(2)如果把原来ABCD各个顶点的纵坐标保持不变,横坐标增加2,画出变化后的四边形A1B1C1D1,所得的四边形A1B1C1D1面积有是多少?6.已知点A(10,0),B(10,8),C(5,0),D(0,8),E(0,0),请在下面的平面直角坐标系中,(1)分别描出A、B、C、D、E五个点,并顺次连接这五个点,观察图形像什么字母;(2)要图象“高矮”不变,“胖瘦”变为原来图形的一半,坐标值应发生怎样的变化?7.如图,长方形OABC中,O为平面直角坐标系的原点,A,C两点的坐标分别为(3,0),(0,5),点B在第一象限内.(1)写出点B的坐标;(2)若过点C的直线CD交AB于点D,且把AB分为4:1两部分,写出点D的坐标;(3)在(2)中,计算四边形OADC的面积.8.如图,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a﹣4|+(b﹣2)2=0,c=a+b.(1)求A、B、C三点的坐标,并在坐标系中描出各点;(2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.9.在平面直角坐标系中,O为原点.(1)点A的坐标为(3,﹣4),求线段OA的长;(2)点B的坐标为(2,2),点C的坐标为(5,6),求线段BC的长.10.在直角坐标平面内,已知点C在x轴上,它到点A(2,1)和点B(3,4)的距离相等,求点C的坐标.11.如图,△AOB中,A,B两点的坐标分别为(2,4)、(6,2),求:△AOB的面积.(△AOB的面积可以看作一个长方形的面积减去一些小三角形的面积)12.如下图所示,△ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若O,A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.13.如图,在平面几何直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣6,0)、B(3,0)、C(﹣7,8).(1)求线段AB的长.(2)求△ABC的面积S.14.如图,在平面直角坐标系中,点B、C在x轴上,OB>OC,点A在y轴正半轴上,AD平分∠BAC,交x轴于点D.(1)若∠B=30°,∠C=50°,求∠DAO的度数?(2)试写出∠DAO与∠C﹣∠B的关系?(不必证明)(3)若点A在y轴正半轴上运动,当点A运动至点P时,请你作出△BPC及其角平分线PQ,并直接写出∠QPO与∠PBC、∠PCB三者的关系?15.写出满足条件的A、B两点的坐标:(1)点A在x轴上,位于原点右侧,距离原点2个单位长度;(2)点B在x轴上方,y轴左侧,距离每条坐标轴都是2个单位长度.16.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?17.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC﹣BC=5,求AB的最小值;(3)若A(﹣2,1),B(6,1),在第一、三象限角平分线上是否存在点P,使△ABP的面积为16?若存在,求出P点坐标;若不存在,说明理由.18.若点P(2x﹣1,x+3)在第二、四象限的角平分线上,求点P到x轴的距离.19.五边形ABCDE的顶点坐标分别为A(0,6),B(﹣3,﹣3),C(﹣1,0),D(1,0),E(3,3),将五边形ABCDE看成经过一次平移后得A1B1C1D1E1.其中顶点A的对应点是A1(﹣3,10).(1)请写出其它对应点的坐标;(2)请指出这一平移的平移方向和平移距离.20.如图,坐标平面内有两个点A和B其中点A的坐标为(x1,y1),点B的坐标为(x2,y2),求AB的中点C的坐标.21.在直角坐标系中,△ABC满足,∠C=90°,AC=2,BC=1,点A,C分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点C随着在正y轴上运动.(1)当A在原点时,求原点O到点B的距离OB;(2)当OA=OC时,求原点O到点B的距离OB;(3)求原点O到点B的距离OB的最大值,并确定此时图形应满足什么条件?22.已知A(﹣2,0)、B(1,4),在x轴上求一点C,使S△ABC=12.23.已知实数a,b,c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0.(1)求a,b,c的值,并在平面直角坐标系中,描出点A(0,a),B(b,0),C(b,c)三点;(2)如果在第二象限内有一点P(m,1),请用含m的式子表示三角形POA的面积;(3)在(2)的条件下,是否存在一点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.24.如图,已知网格上最小的正方形的边长为1.(1)分别写出点A、B、C的坐标;(2)求△ABC的面积.25.已知点A(﹣4,﹣1),B(2,﹣1)(1)在y轴上找一点C,使之满足S△ABC=12.求点C的坐标(写必要的步骤);(2)在直角坐标系中找一点C,能满足S△ABC=12的点C有多少个?这些点有什么特征?26.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣2,1),且|a+2b+1|+(3a﹣4b+13)2=0.(1)求a,b的值;(2)在y轴上存在一点D,使得△COD的面积是△ABC面积的两倍,求出点D的坐标.(3)在x轴上是否存在这样的点,存在请直接写出点D的坐标,不存在请说明理由.27.若点A(﹣2,1)、B(4,﹣1)都在平面内,则可画出几个以A、B为两个顶点的正方形,分别写出这几个正方形的另外两个顶点的坐标.28.如图,这是一个在平面直角坐标系中描述出来的某地的地图.(1)请根据要求找出相应的点.A村的坐标是(﹣5,4),B村的坐标与A村的坐标关于y轴对称,C村的坐标与点B的坐标关于原点对称,D村在x轴上,并且BD∥y轴,请在图上标明这四点和它们的坐标;(2)四个村庄之间都有笔直的公路相连,构成了一个四边形,计划沿B、C、D三个村庄构成的三角形中BD边上的高修建一条小路,请你画出这条小路,不要求写作法,并写出C点到x轴的距离为_________ ;(3)请你用两种方法求△BCD的面积.29.如图,已知长方形ABC0中,边AB=8,BC=4.以点0为原点,0A、OC所在的直线为y轴和x轴建立直角坐标系.(1)点A的坐标为(0,4),写出B、C两点的坐标;(2)若点P从C点出发,以2单位/秒的速度向C0方向移动(不超过点O),点Q从原点0出发,以1单位/秒的速度向0A方向移动(不超过点A),设P、Q两点同时出发,在它们移动过程中,四边形OPBQ的面积是否发生变化?若不变,求其值;若变化,求变化范围.30.在坐标平面内描出点A(2,0),B(4,0),C(﹣1,0),D(﹣3,0).(1)分别求出线段AB中点,线段AC中点及线段CD中点的坐标,则线段AB中点的坐标与点A,B的坐标之间有什么关系?对线段AC中点和点A,C及线段CD中点和点C,D成立吗?(2)已知点M(a,0),N(b,0),请写出线段MN的中点P的坐标.31.已知如图,四边形ABCD的四个顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).(1)试计算四边形ABCD的面积.(2)若将该四边形各顶点的横坐标都加2,纵坐标都加3,其面积怎么变化?为什么?32.如图,在平面直角坐标系中,A(﹣3,4),B(﹣1,2),O为坐标原点,求△AOB的面积?33.在直角坐标系中,A(﹣4,0),B(2,0),点C在y轴正半轴上,且S△ABC=18.(1)求点C的坐标;(2)是否存在位于坐标轴上的点P,S△APC=S△PBC?若存在,请求出P点坐标;若不存在,说明理由.34.在平面直角坐标系中,已知O是原点,四边形ABCD是长方形,A、B、C的坐标分别是A(﹣3,1),B(﹣3,3),C (2,3).(1)求点D的坐标;(2)将长方形ABCD以每秒1个单位长度的速度水平向右平移,2秒钟后所得的四边形A1B1C1D1四个顶点的坐标各是多少?(3)平移(2)中长方形A1B1C1D1,几秒钟后△OB1D1的面积等于长方形ABCD的面积?35.如图,是小明家O和学校A所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)商场B、学校A、公园C、停车场P分别在小明家的什么方向?(3)若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?36.如图所示,游艇A和B在湖中作直线运动,已知游艇B的速度是游艇A的1.5倍,出发时,游艇A的位置为(50,20),当B追上A时,此时的位置为(110,20),求出发时游艇B的位置.(游艇的大小忽略不计)37.如图,是某战役缴获敌人防御工事坐标地图的碎片,依稀可见:一号暗堡A的坐标为(4,3),五号暗堡B的坐标为(﹣2,3).另有情报得知敌军指挥部的坐标为(﹣3,﹣2).请问你能找到敌军的指挥部吗?38.一艘船上午8时从A港出发向东航行,10时到达B港,再折向南航行,11时30分到达C港.已知A,B两港相距40千米,B,C相距30千米,请选取适当的比例,建立直角坐标系,在直角坐标系中画出航线示意图,并求这艘船航行的平均速度.39.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6时,(1)A6距x轴是米;(2)若机器人从A6走到A7,A6A7长为多少?写出A7的坐标.40.如图,是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场、公园、停车场分别在小明家的什么方位?哪两个地方的方位是相同的?(3)若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?41.七年级(6)班有35名学生参加广播操比赛,队伍共7排5列,如果把第一排从左到右第4个同学的位置用(1,4)表示,那么站在队伍最中间的小明的位置应该怎么表示?(6,5)表示什么位置?42.如图,三个圆的半径分别为10km,20km,30km,OA在北偏东30°方向处,OB与正北方向夹角为35°,C在正南处,A,B,C分别是位于三环,二环,一环上的三所学校,请用方向角和距离表示这三所学校位置.43.已知:在平面直角坐标系中,△ABC的边AB在x轴上,且AB=3,A点坐标为(﹣2,0),C点的坐标为(2,4).①画出符合条件的三角形ABC,写出B点坐标;②求三角形ABC的面积.44.如图,四边形OABC是长方形,顶点坐标为A(6,0),B(6,4),C(0,4),O(0,0),线段AB,BC中点分别为M,N.(1)请求M,N的坐标,从中你发现M的横坐标与A,B横坐标有什么关系,纵坐标呢?(2)求AC的中点坐标.45.如图,在平面直角坐标系中,三角形三个顶点坐标为A(﹣5,4),B(﹣1,5),C(﹣2,1).(1)在坐标系中描出A,B,C三点,指出三角形ABC在第几象限内;(2)求三角形ABC面积.46.已知点P的坐标为(﹣2m,m﹣6),根据下列条件分别确定字母m的值或取值范围.(1)点P在y轴上;(2)点P在一、三象限的角平分线上;(3)点P在第三象限.47.如图,已知边长为1的正方形OABC在平面直角坐标系中,B,C两点在第二象限内,OA与x轴的夹角为60°,那么C点坐标为多少?B点坐标为多少?48.已知平面直角坐标系内点M(4a﹣8,a+3),分别根据下列条件求出点M的坐标:(1)点M到y轴的距离为2;(2)点N的坐标为(3,﹣6),并且直线MN∥x轴.49.如图,在长方形ABCD中,边AB=8,BC=4,以点O为原点,OA,OC所在的直线为y轴和x轴,建立直角坐标系.(1)点A的坐标为(0,4),则B点坐标为_________ ,C点坐标为_________ ;(2)当点P从C出发,以2单位/秒速度向CO方向移动(不过O点),Q从原点O出发以1单位/秒速度向OA方向移动(不过A点),P,Q同时出发,在移动过程中,四边形OPBQ的面积是否变化?若不变,求其值;若变化,求其变化范围.50.如图,△ABC中,任意一点P(a,b)经平移后对应点P1(a﹣2,b+3),将△ABC作同样的平移得到△A1B1C1.(1)求A1,B1,C1的坐标;(2)指出这一平移的平移方向和平移距离.51.把自然数按下图的次序排在直角坐标系中,每个自然数就对应着一个坐标.例如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(﹣1,2).那么,2004的对应点的坐标是什么?52.如图,一粒子在区域{(x,y)|x≥0,y≥0}内运动,在第1秒内它从原点运动到点B1(0,1),接着由点B1→C1→A1,然后按图中箭头所示方向在x轴,y轴及其平行线上运动,且每秒移动1个单位长度,求该粒子从原点运动到点P(16,44)时所需要的时间.53.已知点M(2a﹣5,a﹣1),分别根据下列条件求出点M的坐标.(1)点N的坐标是(1,6),并且直线MN∥y轴;(2)点M在第二象限,横坐标和纵坐标互为相反数.54.九年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移(a,b)=(m﹣i,n﹣j),并称a+b 为该生的位置数.若某生的位置数为10,则当m+n取最小值,求m•n的最大值.55.如图:一个粒子在第一象限内及x轴,y轴上运动,在第一分钟内,它从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位.(1)当粒子所在位置分别是(1,1),(2,2),(3,3),(4,4)时,所经过的时间分别是多少?(2)在第2004分钟后,这个粒子所在的位置的坐标是多少?56.在平面直角坐标系中,A(1,2),B(3,1),点P在x轴负半轴,S△PAB=3,求P点坐标.57.在平面直角坐标系中,P(1,4),点A在坐标轴上,S△PAO=4,求P点坐标.58.如图,已知B(0,0),C(2,0),画直角坐标系.写出每个正方形的顶点坐标,在如图中分别求出三个正方形面积.59.将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是_________ .60.如图:小聪第一次向东走1米记作(1,0),第二次向北走2米记作(1,2),第三次向西走3米记作(﹣2,2),第四次向南走4米记作(﹣2,﹣2),第五次向东走5米记作(3,﹣2),第六次向北走6米记作(3,4),第七次向西走7米记作(﹣4,4),第八次向南走8米记作(﹣4,﹣4)第九次向东走9米记作(5,﹣4)…如此下去,第2009次走后记作什么?参考答案:1.解:(1)∵四边形OBCD是边长为1个单位长度的正方形,∴OB=OD=1,∵∠OAB=45°,∴OA=OB=1,∴点A(﹣1,0),B(0,1),C(1,1),D(1,0);(2)S梯形ABCD =(BC+AD)•CD=(1+2)×1=2.解:(1)长方形ABCD如图所示;(2)由图可知,向下平移2个单位长度;(3)横坐标不变,纵坐标变成原来的一半3.解:(1)多边形ABCDEF各个顶点A、B、C、D、E、F的坐标分别是A(﹣4,0)、B(﹣2,3)、C(2,3)、D(3,0)、E(2,﹣3)、F(0,﹣3);(2)点C(2,3)、点E(2,﹣3)的横坐标相同,纵坐标互为相反数;(3)观察图形可知,直线CE垂直于x轴,平行于y轴4.解:(1)如图所示:在直角坐标系中描出两点;C1(﹣6,﹣4),C2(2,﹣4);(2)①根据图象∠ABC1>90°,得出△ABC1是钝角三角形,=BC1•9=×4×9=18.∵AC1==,AC2==,∴△ABC2是等腰三角形,=×4×9=18.5.解:(1)将四边形ABCD进行割补法分解成三个直角三角形和一个长方形求解:S四边形ABCD =×2×8+×2×9+×3×6+9×6=80;(2)如图所示:平移后A1B1C1D1的面积80不变.6.解:(1)如图所示,即为所要求作的图形,像字母M;((3分)(2)横坐标变为原来的一半,纵坐标不变7.解:(1)∵A,C两点的坐标分别为(3,0),(0,5),∴点B的横坐标为3,纵坐标为5,∴点B的坐标为(3,5);(2)若AD为4份,则AD=5×=4,此时点D的坐标为(3,4),若AD为1份,则AD=5×=1,此时点D的坐标为(3,1),综上所述,点D的坐标为(3,4)或(3,1);(3)AD=4时,四边形OADC的面积=(4+5)×3=,AD=1时,四边形OADC的面积=(1+5)×3=9,综上所述,四边形OADC 的面积为或98.解:(1)根据题意得,a﹣4=0,b﹣2=0,解得a=4,b=2,∴c=4+2=6,∴点A(0,4),B(2,2),C(6,4);(2)S△ABC =×6×2=6,点Q在x轴上时,S△COQ =OQ•4=6,解得OQ=3,∴点Q的坐标为(﹣3,0)或(3,0),点Q在y轴时,S△COQ =OQ•6=6,解得OQ=2,∴点Q的坐标为(0,﹣2)或(0,2),综上所述,点Q的坐标为(﹣3,0)或(3,0)或(0,﹣2)或(0,2);(3)S四边形BCPO=S△BOP+S△CBP,=×(2﹣m)×2+×(2﹣m)×(6﹣2),=2﹣m+4﹣2m,=6﹣3m (2)如图,CM=|6﹣2|=4,BM=|5﹣2|=3,则由勾股定理,得.…(6分)10.解:设点C坐标为(x,0).(1分)利用两点间的距离公式,得,.(1分)根据题意,得AC=BC,∴AC2=BC2.即(x﹣2)2+1=(x﹣3)2+16.(2分)解得x=10.(1分)所以,点C的坐标是(10,0)11.解:过点A、B分别作x轴、y轴的垂线CE、CF交点为C,垂足分别为E、F∵A(2,4)、B(6,2)∴OE=AC=4,EA=CB=BF=2,OF=6,∴S ECFO=6×4=24 …(2分)S△AOE =×4×2=4 …(4分)S△ACB =×4×2=4 …(6分)S△BOF =×6×2=6 …(8分)∴S△AOB=S ECFO﹣S△AOE﹣S△ACB﹣S△BOF=24﹣4﹣4﹣6=10 …(10分)∴△AOB的面积是10∴S△OAB =×5×4=10;(2)若△OAP的面积是△OAB面积的2倍,O,A两点的位置不变,则△OAP的高应是△OAB高的2倍,即△OAP的面积=△OAB面积×2=×5×(4×2),∴P点的纵坐标为8或﹣8,横坐标为任意实数;(3)若△OBM的面积是△OAB面积的2倍,且B(2,4),O(0,0)不变,则△OBM的底长是△OAB底长的2倍,即△OBM的面积=△OAB的面积×2=×(5×2)×4,∴M点的坐标是(10,0)或(﹣10,0)13.解:(1)AB的长为:3﹣(﹣6)=9;(2)∵C(﹣7,8),∴△ABC的AB边上的高为8,∴S△ABC =AB•8=×9×8=3614.解:(1)∵∠B=30°,∠C=50°,∴∠BAC=100°.又AD是∠BAC的角平分线,∴∠BAD=∠BAC=50°,∴∠ADB=50°+50°=100°,又∵AD是BC边上的高,∴∠AOD=90°,∵∠AOD+∠DAO=∠ADB=100°,∴∠EAD=10°,(2)由图知,∠DAO=∠BAD﹣∠CAO=∠BAC﹣∠CAO=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=90°﹣∠B ﹣∠C﹣90°+∠C=(∠C﹣∠B),(3)如图所示:由图知:∠QPO=∠BPQ﹣∠CPO=∠BPC﹣∠CPO=(180°﹣∠PBC﹣∠PCB)﹣(90°﹣∠PCB)=(∠PCB﹣∠PBC)15.解:(1)∵点A在x轴上,位于原点右侧,距离原点2个单位长度∴横坐标为2,纵坐标为0,∴A(2,0);(3分)(2)∵点B在x轴上方,y轴左侧,∴点B在第二象限,∵点B距离每条坐标轴都是2个单位长度,∴B(﹣2,2)16.解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1)17.解:(1)由三角形的三边关系知,AC﹣BC<AB<AC+BC,即:8﹣2<AB<8+2,∴6<AB<10,又∵△ABC的周长为奇数,而AC、BC为偶数,∴AB为奇数,故AB=7或9;(2)∵AC﹣BC=5,∴AC、BC中一个奇数、一个偶数,又∵△ABC的周长为奇数,故AB为偶数,AB>AC﹣BC=5,得AB的最小值为6;(3)存在.由A(﹣2,1),B(6,1)两点坐标可知:AB ∥x轴,且AB=6﹣(﹣2)=8,而△ABP的面积为16,由三角形计算面积公式可知,点P 到AB的距离为4,即P点纵坐标为5或﹣3,又P点在第一、三象限角平分线上,故P点坐标为(5,5)或(﹣3,﹣3)18.解:因为点P (2x﹣1,x+3)在第二、四象限的角平分线上,所以2x﹣1+x+3=0,所以,.所以,点P到x 轴的距离为19.解:(1)根据A(0,6),A1(﹣3,10)可得横坐标减3,纵坐标加4,∵B(﹣3,﹣3),C(﹣1,0),D(1,0),E(3,3),∴B1(﹣6,1),C1(﹣4,4),D1(﹣2,4),E1(0,7);(2)平移方向是由A到A1的方向,AA1==5,平移距离是5个单位长度20.解:过点C作CM⊥x轴于点M,过点A作AN⊥x轴于点N,过点B作BP⊥x轴于点P,则点P的坐标为(x2,0),点N的坐标为(x1,0)由探究的结论可知,MN=MP,∴点M 的坐标为(,0),∴点C 的横坐标为同理可求点C 的纵坐标为∴点C 的坐标为(,).故答案为:(,).21.解:(1)当A点在坐标原点时,如图,AC在y轴上,BC⊥y轴,所以.目的是从特殊情况理解题意,考察勾股定理的基本应用与计算.(2)当OA=OC时,如图,△OAC是等腰直角三角形,AC=2.所以∠1=∠2=45°,.过点B作BE⊥OA于E,过点C作CD⊥OC,且CD与BE交于点D,则∠3=90°﹣∠ACD=90°﹣(90°﹣45°)=45°.又BC=1,所以,,因此.(3)解法一:如图所示,设∠ACO=θ,过C作CD⊥OC,由于∠BCA=90°,所以∠BCD=θ.由AC=2,BC=1,可以得B点的坐标为B(cosθ,sinθ+2cosθ).则l2=OB2=cos2θ+(sinθ+2cosθ)2=cos2θ+sin2θ+4sinθcosθ+4cos2θ=1+2sin2θ+4cos2θ=3+2sin2θ+2(2cos2θ﹣1)=3+2sin2θ+2cos2θ==当时,,所以.解法二:如图,取AC的中点E,连接OE,BE.在Rt△AOC中,OE是斜边AC 上的中线,所以.在△ACB中,BC=1,,所以.若点O,E,B 不在一条直线上,则,若点O,E,B在一条直线上,则,所以当点O,E,B在一条直线上时,OB取到最大值,最大值是.当O,E,B在一条直线上时,OB取到最大值时,从下图可见,OE=1,.∠CEB=45°,但CE=OE=1,22.解:如图,过点B作BD⊥x轴于点D.∵B(1,4),∴BD=4.∴S△ABC =AC•BD=12,∴AC=6.∵A(﹣2,0),∴C(4,0)或(﹣6,0)23.解:(1)∵|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0,∴a﹣2=0,b﹣3=0,c﹣4=0,∴a=2,b=3,c=4,∴点A、B、C在平面直角坐标系中的位置如1图所示.(2)如图2,过点P作PD⊥y轴,则PD=﹣m,故三角形POA的面积=OA•PD=×2×(﹣m)=﹣m,即三角形POA的面积是﹣m;(3)存在.理由如下:如图2,过点A做AE⊥BC于点E.则AE=3.故△ABC的面积是6.∵S四边形ABOP=S△AOB+S△AOP=3﹣m,∴设存在点P使四边形ABOP的面积与△ABC的面积相等,即3﹣m=6,解得m=﹣3,∴P(﹣3,1)24.解:(1)A(﹣2,5);B(﹣5,2);C(﹣1,0);(2)△ABC的面积=4×5﹣×3×3﹣×1×5﹣×2×4=925.解:(1)如图,∵A(﹣4,﹣1),B(2,﹣1),∴AB=2﹣(﹣4)=6,S△ABC =AB•CD=×6•CD=12,解得CD=4,当点C在y轴的正半轴时,点C的坐标为(0,3),当点C在y轴的负半轴时,点C的坐标为(0,﹣5);(2)∵到x轴距离等于4的点有无数个,∴在平面内使△ABC的面积为12的点有无数个,这些点到直线AB的距离等于4.26.解:(1)∵|a+2b+1|+(3a﹣4b+13)2=0,∴,解得:;(2)∵A(a,0),B(b,0),C(﹣2,1),∴AB=4,∴S△ABC =×4×1=2,∵△COD的面积是△ABC面积的两倍,∴S△COD=4,∴•OD×2=4,∴OD=4,∴点D的坐标为:(0,4),(0,﹣4);(3)∵S△COD=4,且点D在x轴上,∴•OD×1=4,∴OD=8,∴点D的坐标为:(8,0),(﹣8,0)27.解:以A、B为两个顶点的正方形可画出三个,如图所示:□AQBP、□ABFE、□ABDC;①以AB为一条对角线时,另两个顶点分别为P(2,3),Q (0,﹣3),②以AB为一条边时,若另两顶点在直线AB的上方,则其坐标分别为E(0,7),F(6,5);若另两顶点在直线AB的下方,则其坐标分别为C(﹣4,﹣5),D(2,﹣7)28.解:(1)如图,各点的坐标为:A(﹣5,4),B(5,4),C(﹣5,﹣4),D(5,0);(2)连接BC、CD、DB,得△BCD,作出BD边上的高CE,如图所示.C点到x轴的距离为4;(3)方法1:S△BCD ==;方法2:S△BCD=S△COD+S△BOD==29.解:(1)∵长方形ABCO中,OC=AB=8,AB=8,BC=4,∴B的坐标是(8,4),C的坐标是(8,0);(2)设OQ=t,CP=2t,则AQ=4﹣t;S△ABQ =AB•AQ=×8(4﹣t)=16﹣4t,S△BCP =PC•BC=×2t×4=4t,则S四边形OPBQ=S长方形ABCO﹣S△ABQ﹣S△BCP=32﹣(16﹣4t)﹣4t=16.故四边形OPBQ的面积不随t的增大而变化30.解:(1)线段AB中点坐标为(3,0),线段AC中点坐标为(0.5,0),线段CD中点的坐标为(﹣2,0),线段AB中点的坐标是点A,B的坐标的和的一半,对线段AC中点和点A,C及线段CD中点和点C,D成立;(2)线段MN的中点P 的坐标为(,0)31.解:(1)四边形ABCD的面积=S△ADE+S梯形CDEF+S△CFB=7+×[(5+7)×5]+5=42;(2)∵四边形各顶点的横坐标都加2,纵坐标都加3,相当于把四边形向右平移2个单位长度,再向上平移三个单位长度,∴四边形的面积不变32.解:过点A、B分别作x轴的垂线交x轴于点C、D.∵A(﹣3,4),B(﹣1,2),∴OC=3,AC=4,OD=1,BD=2;∴S△AOC =×OC•AC=×3×4=6,S=OD•BD=×1×2=1,S梯形ACDB ==×2=6,∴S△AOB=S△BOD+S梯形ACDB﹣S△AOC=1+6﹣6=133.解:(1)设C点坐标为(0,t)(t>0),∵S△ABC =×6×t=18,解得t=6,∴点C的坐标为(0,6);(2)存在.设P点坐标为(a,0),根据题意得|a+4|×6=×|a﹣2|×6,解得a1=﹣6,a2=,∴P点坐标为(﹣6,0)或(,0)34.解:(1)点D的坐标(2,1);(2)长方形ABCD以每秒1个单位长度的速度水平向右平移,2秒钟后所得的四边形A1B1C1D1四个顶点的坐标A1(﹣3+2,1),B1(﹣3+2,3),C1(2+2,3),D1(2+2,1)即A1(﹣1,1),B1(﹣1,3),C1(4,3),D1(4,1);(3)设x秒后△OBD面积等于长方形ABCD的面积∴长方形ABCD向右平移各点纵坐标不变,横坐标加x即可∴平移后ABCD四个顶点的坐标分别是:A(﹣3+x,1),B(﹣3+x,3),C(2+x,3),D(2+x,1)连接OA,作AE⊥x轴,AF⊥y轴∴AD=|(﹣3+x)﹣(2+x)|=5,AB=|3﹣1|=2,∴AF=|﹣3+x|,AE=1则①当x≤3时,S△OBD=S△OAD+S△ABD﹣S△OBA=AD•AE ﹣AB•AF+AB•AD=×5×1﹣×2×|﹣3+x|+×2×5=﹣|﹣3+x|S□ABCD=AD×AB=2×5=10∵S△OBD=S□ABCD∴15/2﹣|﹣3+x|=10∴|﹣3+x|=﹣,方程无解②当x>3时,S△OBD=S△OAD+S△OBA+S△ABD=AD•AE+AB•AF+AB•AD=×5×1+×2×|﹣3+x|+×2×5=+|﹣3+x|S□ABCD=AD×AB=2×5=10∵S△OBD=S□ABCD∴15/2+|﹣3+x|=10∴|﹣3+x|=∴﹣3+x=±解得:x1=(舍去),x2=∴当秒后三角形OBD的面积等于长方形ABCD的面积35.解:以小明家为坐标原点,东西方向为x轴,南北方向为y轴,建立坐标系.(1)图中距小明家距离相同的是A与C;(2)商场B在小明家的北偏西30°方向;学校A在小明家的东北方向;公园C、停车场P在小明家的南偏东60°方向.(3)学校距离小明家400m,而OA=2cm,即比例尺为1:20000.故商场距离小明家2.5×20000÷100=500(m);停车场距离小明家4×20000÷100=800(m)36.解:设出发时B的位置为(x,20),由题意得,110﹣x=1.5×(110﹣50),解得x=20,所以,出发时游艇B的位置为(20,20)37.解:敌军指挥部如图所示.38.解:比例尺1:100000作图这艘船航行的平均速度(40+30)÷(2+1.5)=20(千米/时)39.解:(1)当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12),所以A6距x轴是12米;(2)若机器人从A6走到A7,是向西走21米,A6A7=3×7=21米,点A7的坐标是(9﹣21=﹣12,18﹣6=12),即(﹣12,12)40.解:(1)∵点C为OP的中点,∴OC=OP=×4=2cm,∵OA=2cm,∴距小明家距离相同的是学校和公园;(2)学校北偏东45°,商场北偏西30°,公园南偏东60°,停车场南偏东60°;公园和停车场的方位相同;(3)图上1cm表示:400÷2=200m,商场距离小明家:2.5×200=500m,停车场距离小明家:4×200=800m41.解:∵第一排从左到右第4个同学的位置用(1,4)表示,∴队伍最中间小明在第4排第3列,∴小明的位置为(4,3);(6,5)表示第6排第5列42.解:A在北偏东30°方向,到点O的距离为30km;B在北偏西35°方向,到点O的距离为20km;C在南面,到点O的距离为10km43.解:①△ABC如图所示,点B在点A的左边时,﹣2﹣3=﹣5,所以,点B的坐标为(﹣5,0),点B在点A的右边时,﹣2+3=1,所以,点B的坐标为(1,0);②△ABC的面积=×3×4=6.44.解:(1)∵四边形OABC是长方形,顶点坐标为A(6,0),B(6,4),C(0,4),O(0,0),线段AB,BC中点分别为M,N,∴M点坐标为:(6,2),N(3,4),可以发现M的横坐标与A,B横坐标相等,纵坐标是两点纵坐标和的一半;(2)由(1)可得出:AC的中点坐标横坐标为点A,O横坐标和的一半,纵坐标为C,O纵坐标和的一半,即AC中点C的坐标为:(3,2)45.解:(1)△ABC如图所示,在第二象限;(2)△ABC面积=4×4﹣×3×3﹣×1×4﹣×1×4,=16﹣4.5﹣2﹣2,=16﹣8.5,=7.5.46.解:(1)∵点P(﹣2m,m﹣6)在y轴上,∴﹣2m=0,∴m=0;(2)∵点P(﹣2m,m﹣6)在一、三象限的角平分线上,∴﹣2m=m﹣6,∴m=2;(3)∵点P(﹣2m,m﹣6)在第三象限,∴,由①得,m>0,由②得,m<6,所以,0<m<647.解:如图,∵OA与x轴的夹角为60°,四边形OABC 为正方形,∴∠COE=180°﹣60°﹣90°=30°,∴CE=CO•sin30°=1×=,OE=CO•cos30°=1×=,∵点C在第二象限,∴点C 的坐标为(﹣,);∵OA与x轴的夹角为60°,∴∠AOD=90°﹣60°=30°,∴OD=AO÷cos30°=1÷=,AD=AO×tan30°=1×=,∴BD=AB﹣AD=1﹣,在Rt△BDF中,∠DBF=∠AOD=30°,∴BF=BD•cos30°=(1﹣)×=﹣=,DF=BD•sin30°=(1﹣)×=﹣,∴OF=OD+DF=+﹣=,∵点B在第二象限,∴点B 的坐标为(,)48.解:(1)∵点M到y轴的距离为2,∴4a﹣8=2或4a﹣8=﹣2,解得a=或a=,当a=时,a+3=+3=,当a=时,a+3=+3=,所以,点M的坐标为(2,)或(﹣2,);(2)∵点N(3,﹣6),直线MN∥x轴,∴a+3=﹣6,解得a=﹣9,∴4a﹣8=4×(﹣9)﹣8=﹣36﹣8=﹣44,∴点M(﹣44,﹣6).49.解:(1)∵长方形ABCD中,AB=8,BC=4,∴CD=AB=8,∴B(8,4),C(8,0);故答案为:(8,4),(8,0);(2)设运动时间为t,则CP=2t,AQ=4﹣t,S四边形OPBQ=S矩形ABCD﹣S△ABQ﹣S△BPC,=4×8﹣×8(4﹣t )﹣×4t,=32﹣16+4t﹣4t,=16,所以,四边形OPBQ的面积不变,为1650.解:(1)∵原来点A的坐标为(1,1),B的坐标为(﹣1,﹣1),C的坐标为(4,﹣2),点P(a,b)经平移后对应点P1(a﹣2,b+3),∴A1(﹣1,4);B1(﹣3,2);C1(2,1);(2)将△ABC平移得到△A1B1C1,平移的方向是由A到A1的方向,平移的距离为线段AA1的长度,AA1==,即平移的距离为个单位长度51.解:观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.452=2025,由2n+1=45得n=22,所以2025的坐标为(22,﹣22).2004=2025﹣21,22﹣21=1,所以2004的坐标是(1,﹣22)52.解:设粒子从原点到达A n、B n、C n时所用的时间分别为a n、b n、c n,则有:a1=3,a2=a1+1,a3=a1+12=a1+3×4,a4=a3+1,a5=a3+20=a3+5×4,a6=a5+1,a2n﹣1=a2n﹣3+(2n﹣1)×4,a2n=a2n﹣1+1,∴a2n﹣1=a1+4[3+5+…+(2n﹣1)]=4n2﹣1,a2n=a2n﹣1+1=4n2,∴b2n﹣1=a2n﹣1﹣2(2n﹣1)=4n2﹣4n+1,b2n=a2n+2×2n=4n2+4n,c2n﹣1=b2n﹣1+(2n﹣1)=4n2﹣2n,c2n=a2n+2n=4n2+2n=(2n)2+2n,∴c n=n2+n,∴粒子到达(16,44)所需时间是到达点c44时所用的时间,再加上44﹣16=28(s),所以t=442+447+28=2008(s)53.解:(1)∵直线MN∥y轴,∴2a﹣5=1,解得a=3,∴a﹣1=3﹣1=2,∴点M的坐标为(1,2);(2)∵横坐标和纵坐标互为相反数,∴2a﹣5+a﹣1=0,解得a=2,∴2a﹣5=2×2﹣5=﹣1,a﹣1=2﹣1=1,∴点M的坐标为(﹣1,1)54.解:由题意得,a+b=m﹣i+n﹣j=10,m+n=10+(i+j),∵m、n、i、j表示行数与列式,∴当i=j=1时,m+n取最小值,此时,n=12﹣m,m•n=m(12﹣m)=﹣(m﹣6)2+36,∴当m=6时,m•n有最大值3655.解:(1)粒子所在位置与运动的时间的情况如下:位置:(1,1)运动了2=1×2分钟,方向向左,位置:(2,2)运动了6=2×3分钟,方向向下,位置:(3,3)运动了12=3×4分钟,方向向左,位置:(4,4)运动了20=4×5分钟,方向向下;(2)到(44,44)处,粒子运动了44×45=1980分钟,方向向下,故到2004分钟,须由(44,44)再向下运动2004﹣1980=24分钟,到达(44,20)56.解:设P点坐标为(a,0),a<0,如图,作AC⊥x轴于C,BD⊥x轴于D,∵S△APC+S梯形ACDB=S△PAB+S△PBD,∴(1﹣a)×2+×(1+2)×2=3+(3﹣a)×1,解得a=﹣1,∴P点坐标为(﹣1,0)57.解:当点P在x轴上时,设P(x,0),∵S△PAO=4,A(1,4)∴|x|×4=4,解得x=±2,∴P(﹣2,0)或(2,0);当点P在y轴上时,设P(0,y),∵S△PAO=4,A(1,4)∴|y|×1=4,解得x=±8,∴P(﹣8,0)或(8,0).综上所述,P点坐标为(﹣2,0)或(2,0)或(﹣8,0)或(8,0)58.解:建立平面直角坐标系如图所示,A(1,1),D(﹣1,1),E(0,2);F(2,2),G(3,1);P(0,﹣2),H(2,﹣2);正方形ABDF的面积=×2×2=2,正方形ACGF的面积=×2×2=2,正方形BPHC的面积=2×2=459.解:由图可知,前6排共有:1+2+3+4+5+6=21个,∵(7,2)表示第7排从左到右第2个数,∴(7,2)表示表示23.故答案为:2360.解:∵第四次走后的坐标为(﹣2,﹣2),第八次走的坐标为(﹣4,﹣4),2008÷4=502,∴第2008次走后的坐标为((﹣2×502,﹣2×502),∴第2009次走后的坐标为(﹣2×502+2009,﹣2×502),即(1005,﹣1004)。

平面直角坐标系内点的特征经典练习题

平面直角坐标系内点的特征经典练习题

【题型3】各象限内坐标的特征已知点M(a,b)当a>0,b>0时,M在第______象限;当a______,b_______时,M在第四象限;当a______,b_______时, M在第二象限;当a<0,b<0时,M在第______象限. 【变式训练】1.点A(-2,8)在第象限,点B(9,-2)在第象限,点C(-3,2)在第____象限, 点D(-3,-2)在第象限, 点F(3,2)在第象限.2.当x>0,y>0时,点P(x,y)在第象限 ,点Q(-x,y)在第象限;若x<0,y>0,点P(x,y)在第象限 ,点Q(-x,y)在第象限.3. 已知P(x,y)在第二象限,且|x|=2,|y|=1,则P的坐标是_________;若P(x,y)在第三象限,且|x|=2,|y|=1,则P的坐标是_________;P(x,y)在第四象限,且|x|=2,|y|=1,则P的坐标是_________.4. 若点A(m,-2)在第三象限,则点B(2,m)在第象限.5.若P(a,b)在第四象限,则Q点(b,-a)在第象限.6.在平面直角坐标系中,点(-1,m2+1)一定在第象限.7.在直角坐标系中,点P(2x-6,x-5)在第四象限中,则x的取值范围是;若点p在第三象限,则x的取值范围是 .【题型4】坐标轴上的点的特征与点到坐标轴的距离1.已知点P的坐标为(a+2,b-3),若点P在x轴上,则b=_ ;若点P在y轴上,则a= ;若点P在第二象限,则a_ _,b_ .2. 点M(-6,5)到x轴的距离是_____,到y轴的距离是.【变式训练】1.点M(-5,-8)到x轴的距离是,到y轴的距离是______.点N(4.5,-9)到x轴的距离是_____,到y轴的距离是______.2.P(0,4)在,M(0,-4)在,E(-2,0)在,M(3,0)在,若y轴上的点P到x轴的距离为4,则点P的坐标为 .3.已知x轴上的点P到y轴的距离为3,则点P的坐标为 .4.如果点P(m+3,m+1)在直角坐标系的 x 轴上,P点的坐标为 .5.点P(m+3,m+1)在x轴上,则P点坐标为;点P(m+3,m+1)在y轴上,则P 点坐标为 .6.点P (m ,2m -1)在x 轴上,则P 点的坐标是 ;若点P (m ,2m -1)在y 轴上,则P 点的坐标是 .7.点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 .8.已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 .【题型5】平行于坐标轴和角平分线上的点1.已知点A(1,2),若AC ∥X 轴, AC=5,则点C 的坐标是 __________.若AC ∥y 轴, AC=5,则点C 的坐标是 .2.若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是 .【变式训练】1. 已知点A(-1,4),若AC ∥X 轴, AC=6,则点C 的坐标是 _______.若AC ∥y 轴,AC=5,则点C 的坐标是 .2.若点A (),3a -,点B ()2,b 且AB//x 轴,则A_____ ,B ;若点A ()2,m ,点B (),6n -且AB//y 轴,则A ,B .3.已知,A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .4.已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为_______________.5.在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 .6.当b=______时,点B(-3,|b-1|)在第二、四象限角平分线上.7. 正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为A (-2,3),B (-2,-2),C (3,-2),则第四个顶点D 的坐标为 .。

2020年九年级中考数学一轮复习 平面直角坐标系 练习(含答案)

2020年九年级中考数学一轮复习 平面直角坐标系 练习(含答案)

2020年中考数学一轮复习平面直角坐标系一、单选题1.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)2.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系的第四象限内有一点P,点P到x轴的距离为4,到y轴的距离为3,则点P的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)4.如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)5.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.﹣2<a<0 B.0<a<2C.a>2 D.a<06.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30) B.(8,10) C.(9,10) D.(10,10)8.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)9.在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为())C.()D.(﹣1,1)A.(1,1)B.(010.直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(+1,+1)二、填空题11.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.12.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若()P 1,1-,()Q 2,3,则P ,Q 的“实际距离”为5,即PS SQ 5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B 两个小区的坐标分别为()A 3,1,()B 5,3-,若点()M 6,m 表示单车停放点,且满足M 到A ,B 的“实际距离”相等,则m =______.14.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)三、解答题15.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为______,A n的坐标(用n的代数式表示)为______.(2)2020米长的护栏,需要两种正方形各多少个?16.已知△ABC中,点A(-1,2),B(-3,-2),((3,-3),试解決下列问题:(1)在直角坐标系中画出△ABC.(2)求△ABC的面积17.在直角坐标系中,△ABC的三个顶点的位置如图所示,现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得△A′B′C′(其中B′、C′分别是B、C的对应点).(2)(1)中所得的点B′,C′的坐标分别是,.(3)求出△ABC的面积.18.在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.19.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面积为______;(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.答案1.C 2.B 3.A 4.C 5.B 6.B 7.C 8.C 9.D10.A11.3612.(-2,-2)13.0.14.1(21,2)n n --15.解:(1)∵A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2, ∵小正方形的边长为1,∴A 1,A 2,A 3,…,A n 各点的横坐标依次大3, ∴A 3(5+3,2),A n (()132333n -++++n L 个,2),即A 3(8,2),A n (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.16.解:(1)△ABC 如图所示:(2)△ABC的面积是13.17.(1)如图所示:△A′B′C′即为所求;(2)点B′的坐标是;(5,3),点C′的坐标是:(8,4);故答案为(5,3),(8,4);(3)△ABC的面积为:6−12×1×2−12×1×2−12×3=52.18.(1)∵a、b60.b-=∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.19.(1)解:如图1中,∵|a+3|+(b-a+1)2=0,∴a=-3,b=4,∵点C(0,-3),D(-4,-3),∴CD=4,且CD∥x轴,∴△BCD的面积=1212×4×3=6;故答案为-3,-4,6.(2)证明:如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)解:如图3中,结论:BECBCO∠∠=定值=2.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-3),D(-4,-3),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,∴BEC BCO∠∠=2。

《平面直角坐标系》经典练习题

《平面直角坐标系》经典练习题

《平面直角坐标系》章节复习考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M(-2,3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、点P(m,1)在第二象限内,则点Q(-m,0)在()A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上4、若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、在平面直角坐标系中,点(12),在第四象限,则实数x的取值范围是.A x x--6、对任意实数x,点2(2)-,一定不在P x x x..()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如果a-b<0,且ab<0,那么点(a,b)在( )A、第一象限B、第二象限C、第三象限,D、第四象限.考点2:点在坐标轴上的特点x轴上的点纵坐标为0, y轴上的点横坐标为0.坐标原点(0,0)1、点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)2、已知点P(m,2m-1)在y轴上,则P点的坐标是。

考点3:考对称点的坐标知识解析:1、关于x轴对称: A(a,b)关于x轴对称的点的坐标为(a,-b)。

2、关于y轴对称: A(a,b)关于y轴对称的点的坐标为(-a,b)。

3、关于原点对称: A (a ,b )关于原点对称的点的坐标为(-a ,-b )。

1、点M (2-,1)关于x 轴对称的点的坐标是( ).A . (2-,1-)B . (2,1)C .(2,1-)D . (1,2-)2、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( ).A . (-3,2)B . (3,-2)C . (-2,3)D . (2,3)3、若点A (2,a )关于x 轴的对称点是B (b ,-3)则ab 的值是 .4、 在平面直角坐标系中,点A (1,2)关于y 轴对称的点为点B (a ,2),则a = .5、点A (1-a ,5),B (3,b )关于y 轴对称,则a+b =______.6、如果点(45)P -,和点()Q a b ,关于y 轴对称,则a 的值为 .考点4:考平移后点的坐标知识解析:1、将点(x ,y )向右(或左)平移a 个单位长度,可以得到对应点(x +a ,y )(或(x -a ,y ));2、将点(x ,y )向上(或下)平移b 个单位长度,可以得到对应点(x ,y +b )(或(x ,y -b )).1、 在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.2、将点P (-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P /,则点P /的坐标为 。

最新人教版初中数学七年级下册期末复习(三)《平面直角坐标系》练习题

最新人教版初中数学七年级下册期末复习(三)《平面直角坐标系》练习题

期末复习(三) 平面直角坐标系考点一确定字母的取值范围【例1】若点P(a,a-2)在第四象限,则a的取值范围是( )A.-2<a<0B.0<a<2C.a>2D.a<0【分析】根据每个象限内的点的坐标特征列不等式(组)求解.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解答】根据第四象限内的点横坐标为正,纵坐标为负,得0,20,aa>-<⎧⎨⎩解得0<a<2.故选B.【方法归纳】解答此类题的关键是根据平面直角坐标系内点的特征,列出一次不等式(组)或者方程(组),解所列出的不等式(组)或者方程(组),得到问题的解.1.如果m是任意实数,那么点P(m-4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是__________.考点二用坐标表示地理位置【例2】2008年奥运火炬在我省传递(传递路线:昆明—丽江—香格里拉),某校学生小明在我省地图上设定临沧位置点的坐标为(-1,0),火炬传递起点昆明位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标__________.【分析】因为设定临沧位置点的横坐标为-1,昆明位置点的横坐标为1,所以可以得到每个小方格的边长为1,且y轴在这两座城市之间的竖直直线上;同理得到x轴在临沧所在的水平线上,从而得到如右图的平面直角坐标系,利用平面直角坐标系得出香格里拉所在位置点的坐标.【解答】(-1,4)【方法归纳】在平面内如果已知两点的坐标求第三个点的坐标时,通常根据已知两点的横坐标和纵坐标分别确定y轴和x轴的位置,从而建立平面直角坐标系,然后求出第三个点的坐标.3.如图,如果用(0,0)表示梅花的中心O,用(3,1)表示梅花上一点A,请用这种方式表示梅花上点B为( )A.(1,-3)B.(-3,1)C.(3,-1)D.(-1,3)4.如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.中国象棋的走棋规则中有“象飞田字”的说法,如图,象在点P处,走一步可到达的点的坐标记作__________.考点三图形的平移与坐标变换【例3】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)【解析】由△ABC在平面直角坐标系中的位置可知点C的坐标为(3,3),将△ABC向下平移5个单位,再向左平移2个单位后,点C的横坐标减2,纵坐标减5,所以平移后C点的坐标是(1,-2).故选B.【方法归纳】在平面直角坐标系中点P(x,y)向右(或左)平移a个单位后的坐标为P(x+a,y)[或P(x-a,y)];点P(x,y)向上(或下)平移b个单位后的坐标为P(x,y+b)[或P(x,y-b)].6.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度,再向下平移三个单位长度得到△A′B′C′,则点B′的坐标是( )A.(0,-1)B.(1,2)C.(2,-1)D.(1,-1)7.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=__________.考点四直角坐标系内图形的面积【例4】在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为( ) A.15 B.7.5 C.6 D.3【解析】∵点A到x轴的距离为3,而OB=2,∴S△ABO=12×2×3=3.故选D.【方法归纳】求平面直角坐标系中平面图形的面积时,常常利用平行于坐标轴的线段当底,点的横或者纵坐标的绝对值当高.不规则图形的面积常常通过割补法转化为几个规则图形的面积求解.8.已知:点A、点B在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A__________,B__________;(2)求△AOB的面积.考点五规律探索型【例5】如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2 015的坐标为__________.【解析】要求A2 015的坐标,可先从简单的点的坐标开始探究,发现其中的规律.从各点的位置可以发现:A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1);A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2);A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3);….因为A3(-1,1),A7(-2,2),观察坐标系可知:A11(-3,3),A15(-4,4),其横、纵坐标互为相反数.把A3、A7、A11、A15右下角的数字提出来,可整理为:3=3+4×0;A3(-1,1)7=3+4×1;A7(-2,2)11=3+4×2;A11(-3,3)15=3+4×3 A15(-4,4)…………因为2 015=3+4×503,所以A2 015(-504,504).【方法归纳】规律探究题往往是从个例、特殊情况入手,发现其中的规律,从而推广到一般情况,用适当的式子表示出来即可,这是近几年来考试的一个热点.9.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)复习测试一、选择题(每小题3分,共30分)1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B的坐标是( )A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)2.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位4.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将△ABC向左平移5个单位后,A点的对应点A′的坐标是( )A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)5.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)6.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A.3B.4C.5D.67.如图,与①中的三角形相比,②中的三角形发生的变化是( )A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位8.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g[f(2,-3)]=( )A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)9.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n 是自然数)的坐标为( )A.(1,2n)B.(2n,1)C.(n,1)D.(2n-1,1)10.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有( )A.4种B.6种C.8种D.10种二、填空题(每小题4分,共20分)11.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为__________.12.若点A(x,y)的坐标满足(y-1)2+|x+2|=0,则点A在第__________象限.13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN 平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为__________.14.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是__________,破译“正做数学”的真实意思是__________.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 015次运动后,动点P的坐标是__________.三、解答题(共50分)16.(8分)如图,是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?17.(8分)如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O 为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?18.(8分)某地为了城市发展,在现有的四个城市A,B,C,D附近新建机场E.试建立适当的直角坐标系,写出点A,B,C,D,E的坐标.19.(12分)如图,三角形ABC三个顶点坐标分别为A(3,-2),B(0,2),C(0,-5),将三角形ABC沿y轴正方向平移2个单位,再沿x轴负方向平移1个单位,得到三角形A1B1C1.(1)画出三角形A1B1C1,并分别写出三个顶点的坐标;(2)求三角形的面积A1B1C1.20.(14分)如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?参考答案变式练习1.D2.(-65,145) 3.B 4.A 5.(0,2),(4,2) 6.D 7.28.(1)(-1,2) (3,-2)(2)S△AOB=12×1×1+12×1×3=2.9.B复习测试1.B2.B3.D4.B5.A6.C7.A8.B9.B 10.B11.答案不唯一,如:(2,2)或(0,0) 12.二13.(2,4) 14.(x+1,y+2) “祝你成功”15.(2 015,2)16.(1)A(2,3)、B(5,2)、C(3,9)、D(7,5)、E(6,11);(2)在原点北偏东45°的点是点F,其坐标为(12,12).17.(1)湖心岛(2.5,5)、光岳楼(4,4)、山陕会馆(7,3).(2)不是,因为根据题目中点的位置确定可知水平数轴上的点对应的数在前,竖直数轴上的点对应的数在后,是有序数对.18.答案不唯一.如以点A作为坐标原点,经过点A的水平线作为x轴,经过点A的竖直线作为y轴,每个小方格的边长作为1单位长,建立平面直角坐标系,图略,A(0,0)、B(8,2)、C(8,7)、D(5,6)、E(1,8).19.(1)图略,△A1B1C1即为所求,三个顶点的坐标A1(2,0),B1(-1,4),C1(-1,-3).(2)由题意可得出:三角形的面积A1B1C1与△ABC面积相等,则三角形A1B1C1的面积为:12×3×7=21 2.20.(1)将四边形分割成长方形、直角三角形,图略,可求出各自的面积:S长方形①=9×6=54,S直角三角形②=12×2×8=8,S直角三角形③=12×2×9=9,S直角三角形④=12×3×6=9.所以四边形的面积为80.(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形就是将原来的四边形向右平移两个单位长度形成的,所以其面积不变,还是80.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。

平面直角坐标系知识点及经典练习题

平面直角坐标系知识点及经典练习题

平面直角坐标系一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。

1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 五、特殊位置点的特殊坐标:六、用坐标表示平移:见下图一、判断题(1)坐标平面上的点与全体实数一一对应( )(2)横坐标为0的点在轴上( )(3)纵坐标小于0的点一定在轴下方( ) (4)到轴、轴距离相等的点一定满足横坐标等于纵坐标( ) (5)若直线轴,则上的点横坐标一定相同( ) (6)若,则点P ()在第二或第三象限( )(7)若,则点P ()在轴或第一、三象限( )坐标轴上点P (x ,y )连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴 Y 轴 原点 平行X 轴 平行Y 轴第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0) (0,y) (0,0) 纵坐标相同横坐标不同横坐标相同纵坐标不同 x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0 (m,m) (m,-m) P (x ,y ) P (x ,y -a )P (x -a ,y ) P (x +a ,y ) P (x ,y +a ) 向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位二、选择题1、若点P ()n m ,在第二象限,则点Q ()n m --,在( )A .第一象限B .第二象限C .第三象限D .第四象限2、点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)3、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是 ( )A .相等B .互为相反数C .互为倒数D .相等或互为相反数4、在平面直角坐标系中,点()2,12+-m 一定在 ( )A .第一象限B .第二象限C .第三象限D .第四象限5、如果a -b <0,且ab <0,那么点(a ,b)在 ( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.6、如上右图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是 ( )A 、点AB 、点BC 、点CD 、点D 7、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,- 1)、(-1,2)、(3,-1),则第四个顶点的坐标为 ( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)8、若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( )A.1个 B.2个 C.3个 D.4个9、已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( )A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤310、过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为 ( )A .(0,2)B .(2,0)C .(0,-3)D .(-3,0)11、线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),则点B (-4,–1)的对应点D 的坐标为 ( )A .(2,9)B .(5,3)C .(1,2)D .(– 9,– 4)12、到x 轴的距离等于2的点组成的图形是 ( )A. 过点(0,2)且与x 轴平行的直线B. 过点(2,0)且与y 轴平行的直线C. 过点(0,-2)且与x 轴平行的直线D. 分别过(0,2)和(0,-2)且与x 轴平行的两条直线三、填空题1、已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m .2、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是3、5,则坐标是 .已知点M(2m+1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m= 3、直线a 平行于x 轴,且过点(-2,3)和(5,y ),则y=4、若│3-a │+(a-b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_______.5、已知点P 的坐标(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是__________。

(完整版)八年级数学平面直角坐标系测试题

(完整版)八年级数学平面直角坐标系测试题

《平面直角坐标系》练习题一、选择题(4分×6=24分)1.点A(4,3-)所在象限为()A、第一象限B、第二象限C、第三象限D、第四象限2.点B(0,3-)在()上A、在x轴的正半轴上B、在x轴的负半轴上C、在y轴的正半轴上D、在y轴的负半轴上3.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A 、(3,2)B、(3,3-)-)C、(2,3-)D、(2,2-4.若点P(x,y)的坐标满足xy=0,则点P 的位置是()A 在x轴上B在y轴上C是坐标原点D 在x轴上或在y轴上5.某同学的座位号为(4,2),那么该同学的所座位置是()A 第2排第4列B 第4排第2列C 第2列第4排D不好确定6.线段AB两端点坐标分别为A(4,1-),B(1,4-),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()A、A1(0,5-),B1(3-) B 、A1(7,3),B1(0,5),8-C、A1(4,5-)B1(-8,1)D、A1(4,3)B1(1,0)二、填空题(1分×50=50分)7.分别写出数轴上点的坐标:-1A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限 10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。

11.如图,写出表示下列各点的有序数对:A ( , );B ( , );C ( , );D ( , );E ( , );F ( , );G ( , );H ( , );I ( , )12.根据点所在位置,用“+”“-”或“0”填表:11109876543113111098741-113.在平面直角坐标系中,将点)5,2(-向右平移3个单位长度,可以得到对应点坐标(,);将点)5-向左平移3个单位长度,2(-可得到对应点(,);将点)5,2(+向上平移3单位长度可得对应点(,);将点)5,2(-向下平移3单位长度可得对应点(,)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面直角坐标系》章节复习
考点1:考点的坐标与象限的关系
知识解析:各个象限的点的坐标符号特征如下:
(特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在平面直角坐标中,点M (-2,3)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 3、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )

A .x 轴正半轴上
B .x 轴负半轴上
C .y 轴正半轴上
D .y 轴负半轴上 4、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限 5、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 6、对任意实数x ,点2(2)P x x x -,一定不在..
( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
7、如果a -b <0,且ab <0,那么点(a ,b)在( )
A 、第一象限
B 、第二象限
C 、第三象限,
D 、第四象限.
考点2:点在坐标轴上的特点
`
x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)
1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )
A .(0,-2)
B .(2,0)
C .(4,0)
D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。

考点3:考对称点的坐标 知识解析:
1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。

2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。

3、关于原点对称: A (a ,b )关于原点对称的点的坐标为(-a ,-b )。

'
1、点M (2-,1)关于x 轴对称的点的坐标是( ).
A . (2-,1-)
B . (2,1)
C .(2,1-)
D . (1,2-)
2、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( ).
A . (-3,2)
B . (3,-2)
C . (-2,3)
D . (2,3)
3、若点A (2,a )关于x 轴的对称点是B (b ,-3)则ab 的值是 .
4、 在平面直角坐标系中,点A (1,2)关于y 轴对称的点为点B (a ,2),则a = .
5、点A (1-a ,5),B (3,b )关于y 轴对称,则a+b=______.
6、如果点(45)P -,和点()Q a b ,关于y 轴对称,则a 的值为 .
考点4:考平移后点的坐标 :
知识解析:
1、将点(x ,y )向右(或左)平移a 个单位长度,可以得到对应点(x +a ,y )(或(x -a ,y ));
2、将点(x ,y )向上(或下)平移b 个单位长度,可以得到对应点(x ,y +b )(或(x ,y -b )). 1、 在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______. 2、将点P (-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P /,则点P /的坐标为 。

3.在平面直角坐标系中,已知线段AB 的两个端点分别是A ( 4 ,-1). B (1, 1) 将线段AB 平移后得到线段A 'B ',若点A '的坐标为 (-2 , 2 ) ,则点 B '的坐标为( )
A.( -5 , 4 )
B.( 4 , 3 )
C.( -1 , -2 )
D.(-2,-1)
4、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( )
A .2
B .3
C .4
D .5
5、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .
考点5:点到直线的距离

点P (x,y )到x 轴,y 轴的距离分别为|y|和|x|,
)
b
x
1、点M (-6,5)到x 轴的距离是_____,到y 轴的距离是______.
2、已知点P (x ,y )在第四象限,且│x │=3,│y │=5,则点P 的坐标是( ) A .(-3,5) B .(5,-3) C .(3,-5) D .(-5,3)
3、已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 。

4、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 .
考点6:平行于X 轴、Y 轴的直线的特点
平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的横坐标相同 1、已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.
;
2、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是 _____________.
3、如果点A (),3a -,点B ()2,b 且AB x ()2,m (),6n -y 6、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为__________________________. 考点7:角平分线的理解
第一、三象限角平分线的点横纵坐标相同(y=x ); 第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)
1、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2)
2、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。

3、当b=______时,点B(-3,|b-1|)在第二、四象限角平分线上.
4、如图,如果
所在的位置坐标为(-1,-2),
所在的位置坐标为(2,-2),则
所在位置
坐标为 .



]

5、如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( ).
A.(-1,1)
B.(-2,-1)
C.(-3,1)
D.(1,-2) 考点8:面积的求法(割补法)
1、已知:A(3,1),B(5,0),E(3,4),则△ABE 的面积为________.
$
2、如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD 的面积。

3、在直角坐标系中,已知点A (-5,0),点B (3,0),△ABC 的面积为12,试确定点C 的坐标特点.

考点10:考有规律的点的坐标
1、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.
(1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数);
O 1
A 1
A 2 A 3

A 5
A 6
A 7
A 8 A 9
A 10
A 11 A 12
x
1234567
-1o 123456
-1-2
x
y C
D A B
(3)指出蚂蚁从点A100到点A101的移动方向.。

相关文档
最新文档