2007届高三三角平面向量单元测试题1
高考数学总复习平面向量单元测试题

B
x
(17)解 (Ⅰ )记 P(x, y), 由 M(-1,0), N(1, 0) 得 PM = - MP =(-1-x, -y) PN = - NP =(1-x, -y),
MN = - NM =(2, 0), ∴ MP ·MN =2(1+x), PM ·PN =x 2+y2-1, NM ·NP =2(1-x).
标
为
(
)
1
C ( , -5)
2
5,若 (a b) c 5 ,则 a与c的夹角为 (
)
2
A 30°
B 60°
C 120°
D
150°
(5) 为 了 得 到 函 数 y = sin(2x- ) 的 图 像 , 可 以 将 函 数 y = cos2x 的 图 像
6
(
)
A 向右平移 个单位长度
6
B 向右平移 个单位长度
坐标系 .
设 |AB|=c,|AC|=b, 则 A(0,0),B(0,0),C(0,0).
y
且 |PQ|=2a,|BC|=a. 设点 P 的坐标为 (x,y), 则 Q(- x, - y),
C Q
∴ BP =(x - c, y), CQ =( - x, - y- b).
BC =( - c, b), PQ =(-2 x, -2 y).
即 | a - t e |2≥ |a - e|2 ∴ t 2 2a et 2a e 1 0
即 (2a e)2 4(2a e 1) 0 即(a e 1)2 0 a e 1 0
二填空题 :
2
a e e 0 e(a e) 0
2
11.
3 [ 解析 ] :向量 OA (k,12), OB (4,5), OC ( k,10) ,
2007高考数学平面向量试题汇编

2007年高考数学平面向量试题汇编一、选择题1.(全国1文理)已知向量(5,6)a =- ,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向解.已知向量(5,6)a =- ,(6,5)b =,30300a b ⋅=-+= ,则a 与b 垂直,选A 。
2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、(广东文4理10)若向量,a b 满足||||1a b == ,,a b 的夹角为60°,则a a a b ⋅+⋅ =______;答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯= ,4、(天津理10) 设两个向量22(2,cos )a λλα=+- 和(,sin ),2m b m α=+ 其中,,m λα为实数.若2,a b = 则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+- ,(,sin ),2m b m α=+ 2,a b = 可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是(A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅(D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅ ,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若=2,=λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+- =1233CA CB + ,4 λ=32,选A 。
2007年高考数学试题分类汇编(三角函数向量)

实用文档2007全国普通高等学校招生考试数学分类解析(三角向量)一、选择题1、(2007年北京卷理1).已知cos tan 0θθ<,那么角θ是( C )A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角D.第一或第四象限角2、(2007年北京卷理4).已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( A )A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD =3、(2007年重庆卷理5)在ABC ∆中,,75,45,300===C A AB 则BC =( A )A.33-B.2C.2D.33+ 4、(2007年重庆卷文6)下列各式中,值为23的是B A ︒-︒15cos 15sin 2 B ︒-︒15sin 15cos 22 C 115sin 22-︒ D ︒+︒15cos 15sin 22 5、(2007年浙江卷理2)若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =,则( D )A .126ωϕπ==,B .123ωϕπ==,C .26ωϕπ==,D .23ωϕπ==,实用文档6、(2007年浙江卷理7)若非零向量,a b 满足+=a b b ,则(C ) A.2>2+a a b B.22<+a a b C.2>+2b a b D. 22<+b a b7、(2007年浙江卷文2)已知cos()2πϕ+=,且||2πϕ<,则tan ϕ=C(A)-3(B) 3(C)8、(2007年浙江卷文9)若非零向量a 、b 满足|a 一b |=|b |,则A(A) |2b |>|a 一2b | (B) |2b |<|a 一2b | (C) |2a |>|2a 一b | (D) |2a |<|2a 一b | 9、(2007年陕西卷理4)已知sin α=55,则sin 4α-cos 4α的值为A (A )-51(B)-53 (C)51 (D) 5310、(2007年辽宁卷4).若向量a 与b 不共线,0≠a b ,且⎛⎫- ⎪⎝⎭a a c =ab a b ,则向量a与c 的夹角为(D ) A .0B .π6C .π3D .π211、(2007年辽宁卷7).若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =(C )A .(12)-,B .(12),C .(12)-,D .(12)-,实用文档12、(2007年江西卷理3).若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于(A )A.2-B.12-C.12D.213、(2007年江西卷理5).若π02x <<,则下列命题中正确的是( D ) A.3sin πx x < B.3sin πx x >C.224sin πx x <D.224sin πx x >14、(2007年江西卷文2).函数5tan(21)y x =+的最小正周期为(B ) A.π4B.π2C.π D.2π15、(2007年江西卷文4).若tan 3α=,4tan 3β=,则tan()αβ-等于( D ) A.3-B.13-C.3D.1316、(2007年江西卷文8).若π02x <<,则下列命题正确的是( B ) A.2sin πx x <B.2sin πx x >C.3sin πx x <D.3sin πx x >17、(2007年湖南卷理4).设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( A ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b18、(2007年湖南卷文2).若O E F ,,是不共线的任意三点,则以下各式中成立的实用文档是( B ) A .EF OF OE =+ B .EF OF OE =- C .EF OF OE =-+D .EF OF OE =--19、(2007年湖北卷理2).将π2cos 36xy ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为(A )A.π2cos 234xy ⎛⎫=+- ⎪⎝⎭ B.π2cos 234xy ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭20、(2007年湖北卷文1).tan690°的值为( A )A.D.21、(2007年湖北卷文9).设(43)=,a ,a 在b,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214),B .227⎛⎫- ⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28),22、(2007年海南宁夏卷理2).已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b (D )A.(21)--,B.(21)-,C.(10)-, D.(12)-,实用文档23、(2007年海南宁夏卷理9).若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( C )A.2-B.12-C.12D.224、(2007年福建卷理4).对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若22=a b ,则=a b 或-a =bD .若a b =a c ,则b =c25、(2007年海南宁夏卷理3).函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是(A )26、(2007年广东卷理3).若函数21()sin ()2f x x x R =-∈,则f(x)是DxCD实用文档(A )最小正周期为2π的奇函数; (B )最小正周期为π的奇函数; (C )最小正周期为2π的偶函数; (D )最小正周期为π的偶函数;27、(2007年福建卷理5).已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象(A )A .关于点0π⎛⎫⎪3⎝⎭,对称 B .关于直线x π=4对称 C .关于点0π⎛⎫⎪4⎝⎭,对称 D .关于直线x π=3对称 28、(2007年福建卷文3).sin15cos75cos15sin105+等于(D ) A.0B.12D.129、(2007年福建卷文5).函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图象( A )A.关于点π03⎛⎫⎪⎝⎭,对称 B.关于直线π4x =对称 C.关于点π04⎛⎫⎪⎝⎭,对称 D.关于直线π3x =对称 30、(2007年福建卷文8).对于向量a ,b ,c 和实数λ,下列命题中真命题是( B ) A.若0=a b ,则0=a 或0=b B.若0λ=a ,则0λ=或0=a实用文档C.若22=a b ,则=a b 或=-a bD.若=a b a c ,则=b c31、(2007年江苏卷1).下列函数中,周期为2π的是(D ) A .sin 2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x =32、(2007年江苏卷5).函数()sin ([,0])f x x x x π=∈-的单调递增区间是(D )A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 33、(2007年天津卷理3).“2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( A ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件34、(2007年天津卷文9)设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( A )A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数35、(2007年四川卷文8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为AA.4a-5b=3B.5a-4b=3C.4a+5b=14实用文档D.5a+4b=1236、(2007年上海卷理14)、在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有B A 、1个 B 、2个 C 、3个 D 、4个37、(2007年山东卷理5)函数sin 2cos 263y x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期和最大值分别为( A ) A .π,1B .πC .2π,1D .2π38、(2007年山东卷理11)在直角ABC △中,CD 是斜边AB 上的高,则下列等式不成立的是( C )A .2AC AC AB = B .2BC BA BC = C .2AB AC CD = D .22()()AC AB BA BC CD AB⨯=39、(2007年山东卷文4).要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象(A ) A .向右平移π6个单位 B .向右平移π3个单位实用文档C .向左平移π3个单位 D .向左平移π6个单位 40、(2007年山东卷文)5.已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( C ) A .1BC .2D .441、(2007年全国卷二理1).sin 210=( D ) AB. C .12D .12-42、(2007年全国卷二理2).函数sin y x =的一个单调增区间是( C )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭, 43、(2007年全国卷二理5).在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( A )A .23B .13C .13-D .23-44、(2007年全国卷二理9).把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( C ) A .3e 2x -+B .3e 2x +-C .2e 3x -+D .2e 3x +-45、(2007年全国卷一理1)α是第四象限角,5tan 12α=-,则sin α=(D )实用文档A .15B .15-C .513D .513-46、(2007年全国卷一理3)已知向量(56)=-,a ,(65)=,b ,则a 与b (A ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向47、(2007年全国卷一理12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( A ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,48、(2007年安徽卷理6)函数π()3sin(2)3f x x =-的图象为C①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C . 其中正确的个数有( C )个 (A )0(B )1 (C )2 (D )349、(2007年北京卷文3).函数()sin 2cos 2f x x x =-的最小正周期是(B ) A.π2B.π C.2π D.4π二、填空题1、(2007年安徽卷理13)在四面体O-ABC 中,D c b a ,,,===为BC 的中实用文档点,E 为AD 的中点,则OE = 111244++a b c (用a ,b ,c 表示).2、(2007年北京卷理11).在ABC △中,若1tan 3A =,150C =,1BC =,则AB =10 3、(2007年北京卷文11).已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是3-4、(2007年重庆卷文13)在△ABC 中,AB =1,B C =2,B =60°,则AC = 3 。
(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。
平面向量单元测试 Word版 含答案

平面向量一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在边长为3的等边三角形ABC 中,2CD DB = ,则AB CD ⋅等于( )A.-B .3-C .3D.【答案】C2.12、无论),,(321x x x a =,),,(321y y y b =,),,(321z z z c =,是否为非零向量,下列命题中恒成立的是( ) A . 232221232221332211,cos y y y x x x y x y x y x b a ++⋅++++>=<B .若//,//,则//C . c b a ∙∙)()(c b a ∙∙=D .【答案】D3.下列物理量:①质量 ②速度 ③位移 ④力 ⑤加速度 ⑥路程,其中是向量的有( )A .2个B .3个C .4个D .5个【答案】C4.已知,a b均为单位向量,它们的夹角为60︒,那么3a b += ( )A .B .C . 4D . 13【答案】A5.在周长为16的PMN ∆中,6MN =,则PM PN ⋅的取值范围是( )A. [7,)+∞B.(0,16)C. (7,16] D .[7,16)【答案】D6.设e 1,e 2是夹角为450的两个单位向量,且a=e 1+2e 2,b=2e 1+e 2,,则|a+b|的值( ) A .23 B .9 C .2918+ D .223+ 【答案】D7.对于非0向时a,b,“a//b ”的正确是( )A .充分不必要条件B . 必要不充分条件C .充分必要条件D . 既不充分也不必要条件 【答案】A8.已知的夹角是( )A .B .C .D .【答案】C9.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ=( )A .14B .12C .1D .2 【答案】B 10.在ABC ∆中,b AC c AB ==,。
平面向量单元测试题(含答案)

平面向量单元测试题(含答案) 平面向量单元检测题学校:______ 姓名:______ 学号:______ 成绩:______一、选择题(每小题5分,共60分)1.若ABCD是正方形,E是CD的中点,且AB=a,AD=b,则BE的长度为()A。
b-1/2a。
B。
a-1/2b。
C。
b+1/2a。
D。
a+1/2b2.下列命题中,假命题是()A。
若a-b=0,则a=bB。
若ab=0,则a=0或b=0C。
若k∈R,ka=0,则k=0或a=0D。
若a,b都是单位向量,则XXX成立3.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m为()A。
-2.B。
2.C。
-1/2.D。
不存在4.已知非零向量a⊥b,则下列各式正确的是()A。
a+b=a-b。
B。
a+b=a+b。
C。
a-b=a-b。
D。
a+b=a-b5.在边长为1的等边三角形ABC中,设BC=a,CA=b,AB=c,则a·b+b·c+c·a的值为()A。
3/2.B。
-3/2.C。
1/2.D。
06.在△OAB中,OA=(2cosα,2sinα),O B=(5cosβ,5sinβ),若OA·OB=-5,则△OAB的面积为()A。
3.B。
3/2.C。
53.D。
53/27.在四边形ABCD中,AB=a+2b,BC=-4a-b,CD=-5a-3b,则四边形ABCD的形状是()A。
长方形。
B。
平行四边形。
C。
菱形。
D。
梯形8.把函数y=cos2x+3的图象沿向量a平移后得到函数y=sin(2x-π/6),则向量a的坐标是()A。
(π/3,-3)。
B。
(π/6,3)。
C。
(π/12,-3)。
D。
(-π/12,3)9.若点F1、F2为椭圆x^2/4+y^2/9=1的两个焦点,P为椭圆上的点,当△F1PF2的面积为1时,PF·PF的值为()A。
4.B。
1.C。
3.D。
平面向量经典试题(含答案)
平面向量1.(2007年天津理15)如图,在ABC △中,12021B A C A B A C ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,BC =由正弦定理得sin C ∠=,则c o s C ∠=,在A D C ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则AD =coc ADC ∠=,138||||cos ,(33AD BC AD BC AD BC ⋅=⋅==-. 〖答案〗83-.2.(浙江省09年高考省教研室第一次抽样测试数学试题(理)5)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13 B 、12C 、 2D 、3 〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tb AP t -+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB=12. 〖答案〗B .3(江苏省南通市2008-2009学年度第一学期期末调研测试数学试卷13) .在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ . 〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.ABDCABOPab(第2题图)〖答案〗5π12. 4.【2010·茂名市二模】如右图,在ABC ∆中,04,30A B B C A B C ==∠=,AD 是边BC 上的高,则AD AC ⋅的值等于 ( )A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5(2007年山东理11). 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( )A .2AC AC AB =⋅ B . 2BC BA BC =⋅ C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除 B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C .6.(2009湖北卷理)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π答案 B解析 直接用代入法检验比较简单.或者设(,)a x y ''=v ,根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '7.(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________.第4题图答案: 4/3解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =-代入条件得2433u u λλ==∴+= 8. (2008·广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.(2009昆明市期末)在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32B .97 C .98 D .1答案:B10.(2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1]D.[-1,6]答案:A11.(2006四川)如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.(江西省五校2008届高三开学联考)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.(山东省博兴二中高三第三次月考)已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,=41,=21,AD 与BC 相交于点M ,设=a ,=b .试用a 和b 表示向量______OM a b =+. 解 设=m a +n b ,则=-=m a +n b -a =(m-1)a +n b .=-=21-=-a +21b . 又∵A 、M 、D 三点共线,∴与共线. ∴存在实数t,使得=t , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n tm ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵=-OC =m a +n b -41a =(m-41)a +n b .=-=b -41a =-41a +b .又∵C 、M 、B 三点共线,∴与共线. 8分∴存在实数t 1,使得=t 1,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴=71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=,e 2=, 则=+=-3e 2-e 1, =+=2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λ=-3λe 2-λe 1,a b∴=μ=2μe 1+μe 2,∴=-=(λ+2μ)e 1+(3λ+μ)e 2,另外BA =+=2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴=54,=53,∴AP ∶PM=4∶1. 方法二 设=λ, ∵AM =21(+)=21+43, ∴=2λ+43λ. ∵B 、P 、N 三点共线,∴-=t(-),∴=(1+t)-t AN∴⎪⎪⎩⎪⎪⎨⎧-=+=t t λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1. 16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C 17.( 2010年高考全国卷I 理科11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 4-(B)3-(C) 4-+(D)3-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB ∙22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()3PA PB ∙=-+.18.(2010年高考福建卷理科7)若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)3⎡-+∞⎣B. )3⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3x y x -=≥,解得220001(3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为0x ≥,所以当0x 时,O P F P ⋅取得最小值4313⨯+=3+OP FP ⋅的取值范围是[3)++∞,选B 。
平面向量与解三角形单元检测题(含答案)
平面向量与解三角形单元检测题、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的)1.设 x , y € R,向量 a = (x, 1) , b = (1 , y ) , c = (2 , — 4),且 a 丄 c, b II c ,则| a + b | =( )C . 2 :5D . 10uuu 1 uuu uur um 2 uuu 2•在△ ABC 中, N 是 AC 边上一点,且 AN = 2 NC ,P 是 BN 上的一点,若 AP = m AB + 9 AC ,则实数m 的值为()C . 1D . 33. 已知点 A ( — 1 , 1),巳1 , 2) , Q — 2, — 1) , D (3 , 4),则向量A B 在&方向上的投影为C.4•在直角坐标系xOy 中,XB= (2,1) , AC= (3 , k ),若三角形 ABC 是直角三角形,则 k 的可能值个数是()A. 1 B . 2 C . 3 D . 45.已知向量a 与b 的夹角为120°, |a | = 3, |a + b | =卫,则|b |等于 ().A . 5B . 4C . 3D. 16•在四边形 ABCD 中, AC= (1 , 2) , B D- ( — 4, 2),则该四边形的面积为B. 2 '5 C .5 D . 107.如图所示,非零向量;::.=a , =b ,且BCLOA,C 为垂足,若|-訂'=入a (入工0),贝U 入=()&在△ ABC 中,sin 2A <sin 2B+sin 2C-sin Bsin C,贝U A 的取值范围是( )n n(C)(0, — ] (D)[ — , n )3 3nn(A)(0, ] (B )[ , n )6 6 9.设△ ABC 的内角代B,C所对边分别为a, b, c.若b+ c= 2a, 3sin A= 5sin B,则角C10. 在平面直角坐标系中,若O为坐标原点,则A, B, C三点在同一直线上的等价条件为存在唯一的实数入,使得O G= x O AF(1 —入)脸立,此时称实数入为“向量6快于O和3B勺终点共线分解系数”. 若已知R(3, 1) , P2(—1,3),且向量OP与向量a= (1,1)垂直,则“向量OP 关于OP和OP的终点共线分解系数”为()A.—3 B . 3 C . 1 D . —1二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)uir um11. ______________ 在平面直角坐标系xOy中,已知OA = ( —1, t), OB = (2,2).若/ ABO=90°,则实数t的值为.12. 已知a= (1,2) , b= (1 ,入),若a与b的夹角为钝角,则实数入的取值范围是______ 13. ___________________________________________________________ 已知正方形ABC啲边长为2, E为CD的中点,贝U XE- B D= __________________________ .n14. 设e1, e2为单位向量,且e1, e2的夹角为—,若a= & + 3e2, b= 2e1,则向量a在b方3向上的射影为_________ .15. ____________________________________________________________________ 若非零向量a, b满足| a| = | b| , (2 a+ b) • b= 0,则a与b的夹角为_______________________ .三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16. 已知△ ABC勺角A B, C所对的边分别是a, b, c,设向量m^ (a, b) , n= (sin B, sin A, P= ( b— 2, a— 2).(1)若m// n,求证:△ ABC为等腰三角形;n(2)若ml p,边长c = 2,角C=—,求△ ABC的面积.17. 在△ ABC 中,角A,B,C 的对边分别为a,b,c,已知sin Asin B+sin Bsin C+cos 2B=1.(1)求证:a,b,c成等差数列;(2) 若CnS,求a的值.3 b118. 在△ ABC中,a、b、c分别是角A B C所对的边,且a= c+bcos C.2(1)求角B的大小;(2)若&ABC=、、3 ,求b的最小值.2C 2A 3 19. 在△ ABC中,角A B, C的对边分别为a, b, c,若a cos + c cos?= ?b.(1)求证:a, b, c成等差数列;(2)若/ B= 60°, b= 4,求厶ABC勺面积.20. △ ABC 为一个等腰三角形形状的空地 ,腰AC 的长为3(百米),底AB 的长为4(百米).现决定在空地内筑一条笔直的小路 EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为S 和S 2.(1)若小路一端E 为AC 的中点,求此时小路的长度; ⑵若小路的端点E 、F 两点分别在两腰上,求S1的最小值.S2参考答案:2x — 4= 0,x = 2,1. B由题意可知解得—4— 2y = 0,y =— 2.故 a + b = (3 , — 1), |a + b | =你.uuu 1 uuu uuu 1 uuuuur uuu 2 uuu uuu 2 2.选B 如图,因为AN = ^NC ,所以 AN = -AC ,AP = = m AB + - AC = m AB +&93uur2 1AN ,因为B, P , N 三点共线,所以3= 1,所以mi= 3.3. A 解析 AB= (2 , 1), S D= (5 , 5),所以A i B 在6[方向上的投.AB - cr> 形為. .=• -J --1 Cl)_2X5+1X5― 15 __3曲一护5挖 2sin B sin C2 cos B cosCsin A(1) 证明:b(2) 如图,点 ocos Ac 2a ;O 是厶ABC 外一点,设 AOB(0)21•已知△ ABC 的角A, B, C 所对的边分别是 a ,b , c ,且满足OA=2OB2,当b C 时,求平面四边形OACBT 积的最最大值。
高中数学新人教A版:三角恒等和平面向量单元测试卷(含答案)
三角函数和平面向量单元测试卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( )A.57B.61 C .57D .61解析:由题意可得a·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a·b =16+81-36=61. 答案:B2.已知角α的终边经过点P (4,-3),则2sin α+cos α的值等于( ) A .-35B .45C .25D .-25解析:因为α的终边过点P (4,-3), 所以x =4,y =-3,r =|OP |=5, 所以sin α=y r =-35,cos α=45,所以2sin α+cos α=2×⎝⎛⎭⎫-35+45=-25. 答案:D3.下列各向量中,与a =(3,2)垂直的是( ) A .(3,-2) B .(2,3) C .(-4,6)D .(-3,2)解析:因为(3,2)·(-4,6)=3×(-4)+2×6=0. 答案:C4.为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin 2x 的图象上所有的点( ) A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度解析:因为y =sin ⎝⎛⎭⎫2x -π3=sin 2⎝⎛⎭⎫x -π6, 所以将函数y =sin 2x 的图象向右平行移动π6个单位长度,可得y =sin ⎝⎛⎭⎫2x -π3的图象. 答案:D5.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于( ) A .30° B .60° C .120°D .90°解析:设a ,b 的夹角为θ,由c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a ·b =0⇒a ·b =-1⇒cos θ=a ·b |a ||b |=-12且0°≤θ≤180°⇒θ⇒120°.故选C. 答案:C6.(2015·广东卷)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +sin 2x B .y =x 2-cos x C .y =2x +12xD .y =x 2+sin x解析:A 项,定义域为R ,f (-x )=-x -sin 2x =-f (x ),为奇函数,故不符合题意;B 项,定义域为R ,f (-x )=x 2-cos x =f (x ),为偶函数,故不符合题意;C 项,定义域为R ,f (-x )=2-x +12-x =2x +12x =f (x ),为偶函数,故不符合题意;D 项,定义域为R ,f (-x )=x 2-sin x ,-f (x )=-x 2-sin x ,因为f (-x )≠-f (x ),且f (-x )≠f (x ),故为非奇非偶函数.答案:D7.如果点P (sin θcos θ,2cos θ)位于第三象限,那么角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:因为点P 位于第三象限,所以⎩⎪⎨⎪⎧sin θcos θ<0,2cos θ<0,所以⎩⎪⎨⎪⎧cos θ<0,sin θ >0,所以θ在第二象限. 答案:B8.若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z) B .x =k π2+π6(k ∈Z) C .x =k π2-π12(k ∈Z) D .x =k π2+π12(k ∈Z)解析:将函数y =2sin 2x 的图象向左平移π12个单位长度,得到函数y =2sin 2⎝⎛⎭⎫x +π12=2sin ⎝⎛⎭⎫2x +π6的图象.由2x +π6=k π+π2(k ∈Z),得x =k π2+π6(k ∈Z),即平移后图象的对称轴为x =k π2+π6(k ∈Z).答案:B9.(2015·课标全国Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析:由图象知,周期T =2⎝⎛⎭⎫54-14=2, 所以2πω=2,所以ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,所以f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,所以f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z. 答案:D10.将函数y =sin ⎝⎛⎭⎫2x -π3图象上的点P ⎝⎛⎭⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )A .t =12, s 的最小值为π6B .t =32, s 的最小值为π6C .t =12, s 的最小值为π3D .t =32, s 的最小值为π3解析:因为点P ⎝⎛⎭⎫π4,t 在函数y =sin ⎝⎛⎭⎫2x -π3的图象上,所以t =sin ⎝⎛⎭⎫2×π4-π3=sin π6=12.所以P ⎝⎛⎭⎫π4,12.将点P 向左平移s (s >0)个单位长度得P ′⎝⎛⎭⎫π4-s ,12. 因为P ′在函数y =sin 2x 的图象上,所以sin 2⎝⎛⎭⎫π4-s =12,即cos 2s =12,所以2s =2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z),所以s 的最小值为π6. 答案:A11.函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递增区间是( ) A.⎣⎡⎦⎤-π2+2k π,π2+2k π(k ∈Z) B.⎣⎡⎦⎤π2+2k π,3π2+2k π(k ∈Z) C.⎣⎡⎦⎤5π12+k π,11π12+k π(k ∈Z) D.⎣⎡⎦⎤-π12+k π,5π12+k π(k ∈Z) 解析:由题意可得y =-3sin ⎝⎛⎭⎫2x -π3,由π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,得5π12+k π≤x ≤11π12+k π,k ∈Z ,所以原函数的单调递增区间是⎣⎡⎦⎤5π12+k π,11π12+k π(k ∈Z). 答案:C12.化简cos 2⎝⎛⎭⎫x 2-7π8-cos 2⎝⎛⎭⎫x 2+7π8=( ) A .-22sin x B.22sin x C .-22cos x D.22cos x 解析:cos 2⎝⎛⎭⎫x 2-7π8-cos 2⎝⎛⎭⎫x 2+7π8= ⎣⎡⎦⎤cos ⎝⎛⎭⎫x 2-7π8+cos ⎝⎛⎭⎫x 2+7π8.⎣⎡⎦⎤cos ⎝⎛⎭⎫x 2-7π8-cos ⎝⎛⎭⎫x 2+7π8= ⎝⎛⎭⎫2cos x 2cos 7π8·⎝⎛⎭⎫2sin x 2sin 7π8=⎝⎛⎭⎫2sin 7π8cos 7π8·⎝⎛⎭⎫2sin x 2cos x 2=sin7π4·sin x =sin ⎝⎛⎭⎫2π-π4·sin x = -sin π4·sin x =-22sin x .答案:A二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 解析:因为sin 2α=-sin α,所以2sin αcos α=-sin α. 因为α∈⎝⎛⎭⎫π2,π,sin α≠0, 所以cos α=-12.又因为α∈⎝⎛⎭⎫π2,π,所以α=23π, 所以tan 2α=tan 43π=tan ⎝⎛⎭⎫π+π3=tan π3= 3. 答案:314.(2014·陕西卷)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.解析:因为a ∥b ,所以sin 2θ×1-cos 2θ=0,所以2sin θcos θ-cos 2θ=0,因为0<θ<π2,所以cos θ >0,所以2sin θ=cos θ,所以tan θ=12. 答案:1215.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为________.解析:如图,由条件可知BC →=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·⎝ ⎛⎭⎪⎫12AB →+34AC →=34AC →2-14AB →·AC →-12AB →2. 因为△ABC 是边长为1的等边三角形,所以|AC →|=|AB →|=1,∠BAC =60°, 所以BC →·AF →=34-18-12=18.答案:1816.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R.若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z.又ω-(-ω)≤2πω2,即ω2≤π2,所以ω2=π4,所以ω=π2.答案:π2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a·b ; (2)若a -b 与a 垂直,求θ.解:(1)因为a ∥b ,所以θ=0°或180°, 所以a·b =|a ||b |cos θ=±2. (2)因为a -b 与a 垂直,所以(a -b )·a =0,即|a |2-a·b =1-2cos θ=0, 所以cos θ=22. 又0°≤θ ≤180°,所以θ=45°.18.(本小题满分12分)已知角α的终边过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求式子sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值.解:(1)因为|OP |=⎝⎛⎭⎫452+⎝⎛⎭⎫-352=1,所以点P 在单位圆上, 由正弦函数定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α,由(1)得sin α=-35,P 在单位圆上,所以由已知条件得cos α=45.所以原式=54.19.(本小题满分12分)如图所示,在平面直角坐标系中,锐角α和钝角 β的终边分别与单位圆交于A ,B 两点.(1)若A ,B 两点的纵坐标分别为45,1213,求cos( β-α)的值;(2)已知点C 是单位圆上的一点,且OC →=OA →+OB →,求OA →和OB →的夹角θ.解:(1)设A ⎝⎛⎭⎫x 1,45,B ⎝⎛⎭⎫x 2,1213,则x 21+⎝⎛⎭⎫452=1,又x 1>0,所以x 1=35,所以A ⎝⎛⎭⎫35,45. x 22+⎝⎛⎭⎫12132=1,又x 2<0,所以x 2=-513,所以B ⎝⎛⎭⎫-513,1213. 所以sin α=45,cos α=35,sin β=1213,cos β=-513,所以cos( β-α)=cos βcos α+sin βsin α=⎝⎛⎭⎫-513×35+1213×45=3365.(2)根据题意知|OA →|=1,|OB →|=1,|OC →|=1,又OC →=OA →+OB →, 所以四边形CAOB 是平行四边形. 又|OA →|=|OB →|,所以▱CAOB 是菱形,又|OA →|=|OB →|=|OC →|,所以△AOC 是等边三角形, 所以∠AOC =60°,所以∠AOB =120°, 即OA →与OB →的夹角θ为120°.20.(本小题满分12分)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值. 解:(1)f (x )=23sin (π-x )sin x -(sin x -cos x )2 =23sin2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎫2x -π3+3-1, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z),所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z)⎣⎡⎦⎤或⎝⎛⎭⎫k π-π12>k π+5π12(k ∈Z ). (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1, 把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象,再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1, 所以g ⎝⎛⎭⎫π6=2sin π6+3-1= 3. 21.(本小题满分12分)(2015·广东卷)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)若m ⊥n ,则m·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, 所以tan x =1.(2)因为m 与n 的夹角为π3,所以m·n =|m |·|n |cos π3,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎫x -π4=12. 又因为x ∈⎝⎛⎭⎫0,π2,所以x -π4∈⎝⎛⎭⎫-π4,π4, 所以x -π4=π6,即x =5π12.22.(2015·重庆卷)(本小题满分12分)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象.当x ∈⎣⎡⎦⎤π2,π时,求g (x )的值域. 解:(1)f (x )=12sin 2x -3cos 2x =12sin 2x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最小值为-2+32.(2)由条件可知g (x )=sin ⎝⎛⎭⎫x -π3-32. 当x ∈⎣⎡⎦⎤π2,π时,有x -π3∈⎣⎡⎦⎤π6,2π3, 从而y =sin ⎝⎛⎭⎫x -π3的值域为⎣⎡⎦⎤12,1, 那么y =sin ⎝⎛⎭⎫x -π3-32的值域为⎣⎢⎡⎦⎥⎤1-32,2-32. 故g (x )在区间⎣⎡⎦⎤π2,π上的值域是⎣⎢⎡⎦⎥⎤1-32,2-32.。
高三数学平面向量多选题专项训练单元学能测试试卷
高三数学平面向量多选题专项训练单元学能测试试卷一、平面向量多选题1.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案:D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.2.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是答案:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得3R =,所以ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()23B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.3.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+答案:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.4.在ABC 中,AB =1AC =,6B π=,则角A 的可能取值为( )A .6π B .3π C .23π D .2π 答案:AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅,即2132BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD 【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题. 5.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =3答案:AB由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB . 【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.6.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .32OA OB OC ++=D .ED 在BC 方向上的投影为76答案:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可.由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),(,)33E A B C D -, 设123(0,),3),(1,),(,3O y y BO y DO y ∈==-,BO ∥DO , 所以2313y y =-,解得:32y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(,33ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.7.在ABC 中,若30B =︒,23AB =,2AC =,则C 的值可以是( ) A .30°B .60°C .120°D .150°答案:BC 【分析】由题意结合正弦定理可得,再由即可得解. 【详解】由正弦定理可得,所以, 又,所以, 所以或. 故选:BC. 【点睛】本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.解析:BC 【分析】由题意结合正弦定理可得3sin 2C =,再由()0,150C ∈︒︒即可得解. 【详解】由正弦定理可得sin sin AB AC C B =,所以123sin 32sin 22AB B C AC ⨯⋅===, 又30B =︒,所以()0,150C ∈︒︒, 所以60C =︒或120C =︒. 故选:BC. 【点睛】本题考查了正弦定理的应用,考查了运算求解能力,属于基础题. 8.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =,则( )A .12AF AD AB =+B .1()2EF AD AB =+ C .2133AG AD AB =-D .3BG GD =答案:AB 【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误 【详解】 ,即A 正确 ,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有 ∴,即C 错误 同理 ,解析:AB 【分析】由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1||||2GF GE AG CG == ∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C 错误 同理21212()()33333BG BF BA BC CF BA AD AB =+=++=- 211()333DG DF DA AB DA =+=+,即1()3GD AD AB =-∴2BG GD =,即D 错误 故选:AB 【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系 9.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=答案:ABD 【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项. 【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确, ,所以D 正确. 故选:ABD解析:ABD 【分析】 首先理解aa表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】a a 表示与向量a 同方向的单位向量,所以1a a=正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,aa a=不正确,cos 0a a aa a a a a a a⋅==⨯=,所以D 正确. 故选:ABD 【点睛】本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a表示与向量a 同方向的单位向量.10.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λabB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-答案:AB 【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.11.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-答案:BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为,,且,所以,即C 结论正确; 因为,解析:BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD 【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题. 12.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=答案:AB 【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为,正确;,由向量加法知正确; ,不满足加法运算法则,错误; ,所以错误. 故选:A B. 【点睛】本题主要考查了向量加法的解析:AB 【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为0ABBA AB AB,正确;AB BCAC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误;0,AB AB +=,所以00AB +=错误.故选:A B . 【点睛】本题主要考查了向量加法的运算,属于容易题.13.(多选)若1e ,2e 是平面α内两个不共线的向量,则下列说法不正确的是( ) A .()12,e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ有无数多对C .1λ,1μ,2λ,2μ均为实数,且向量1112e e λμ+与2212e e λμ+共线,则有且只有一个实数λ,使()11122122e e e e λμλλμ+=+D .若存在实数λ,μ,使120e e λμ+=,则0λμ==答案:BC 【分析】由平面向量基本定理可判断出A 、B 、D 正确与否,由向量共线定理可判断出C 正确与否. 【详解】由平面向量基本定理,可知A ,D 说法正确,B 说法不正确, 对于C ,当时,这样的有无数个,故C解析:BC 【分析】由平面向量基本定理可判断出A 、B 、D 正确与否,由向量共线定理可判断出C 正确与否. 【详解】由平面向量基本定理,可知A ,D 说法正确,B 说法不正确,对于C ,当12120λλμμ====时,这样的λ有无数个,故C 说法不正确. 故选:BC 【点睛】若1e ,2e 是平面α内两个不共线的向量,则对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ存在且唯一.14.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案:AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD 【解析】 【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.15.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C处,,那么x 的值为( )A B .C .D .3答案:AB【分析】由余弦定理得,化简即得解. 【详解】由题意得,由余弦定理得, 解得或. 故选:AB. 【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.解析:AB 【分析】由余弦定理得293cos306x x︒+-=,化简即得解.【详解】由题意得30ABC ︒∠=,由余弦定理得293cos306x x︒+-=,解得x =x 故选:AB. 【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.二、平面向量及其应用选择题16.题目文件丢失!17.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形 D .等边三角形解析:B 【分析】利用两角和与差公式化简原式,可得答案. 【详解】因为sin 2sin cos B A C =, 所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C += 所以sin cos cos sin 0A C A C -= 所以sin()0A C -=, 所以0A C -=, 所以A C =.所以三角形是等腰三角形. 故选:B. 【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.18.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( )A B .1C D .2解析:B 【分析】由题意可得2b a c =+,平方后整理得22242a c b ac +=-,利用三角形面积可求得ac 的值,代入余弦定理可求得b 的值. 【详解】解:∵a ,b ,c 成等差数列, ∴2b a c =+,平方得22242a c b ac +=-,① 又ABC 的面积为32,且30B ∠=︒, 由11sin sin 3022ABC S ac B ac ==⋅︒△1342ac ==,解得6ac =, 代入①式可得222412a c b +=-,由余弦定理得222cos 2a c b B ac +-=,2224123122612b b b ---===⨯,解得24b =+,∴1b =+ 故选:B . 【点睛】本题考查等差数列的性质和三角形的面积公式,涉及余弦定理的应用,属于中档题. 19.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】 设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.20.已知ABC 中,1,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°解析:D 【分析】由正弦定理可得,sin 2B =,根据b a >,可得B 角的大小. 【详解】由正弦定理可得,sin sin b A B a ==, 又0,,π<<>∴>B b a B A ,60︒∴=B 或120B =. 故选:D 【点睛】本题考查了正弦定理的应用,考查了运算求解能力和逻辑推理能力,属于基础题目.21.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A B .3C D .解析:A 【分析】根据面积公式得到4c =,再利用余弦定理得到13a =,再利用正弦定理得到答案. 【详解】13sin 3424ABC S bc A c c ∆===∴= 利用余弦定理得到:2222cos 11641313a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b cA B C== 故213239sin 2sin sin sin 332a b c a A B C A ++===++ 故选A 【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 22.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2 B .52C .3D .72解析:B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-22223||||||222PC CA PC ⎛⎫=-=-≥- ⎪⎝⎭52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.23.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A 3B .1C .12D .32解析:B 【分析】先根据正弦定理化边得C 为直角,再根据余弦定理得角B ,最后根据直角三角形解得a. 【详解】因为222sin sin sin 0A B C +-=,所以222b c 0a +-=, C 为直角,因为2220a c b ac +--=,所以2221cosB ,223a cb B ac π+-===,因此13a ccos π==选B.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.24.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( ) A .35 B .107C .57D.14解析:C 【分析】利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出. 【详解】 解:3cos 5A =,(0,180)A ∈︒︒.∴4sin 5A =,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=--=.sin C ∴= 由正弦定理可得:sin sin b cB C=,∴1sin 5sin 7c B b C ===. 故选:C . 【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题.25.在ABC ∆中,601ABC A b S ∆∠=︒=,,则2sin 2sin sin a b cA B C-+-+的值等于( ) ABCD.解析:A 【解析】分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.详解:由题意,在ABC ∆中,利用三角形的面积公式可得011sin 1sin 6022ABC S bc A c ∆==⨯⨯⨯=, 解得4c =,又由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=,解得a =,由正弦定理得2sin 2sin sin sin a b c a A B C A -+===-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.26.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4 B .3C .-4D .5解析:C 【分析】先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影. 【详解】对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥,()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CACAθ⋅⋅-⋅=⋅===-⋅, 故选C . 【点睛】本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题. 27.在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形解析:D 【分析】首先利用正弦定理求得sin 2sin 2A B =,进一步利用三角函数的诱导公式求出结果. 【详解】解:已知:cos cos a A b B =,利用正弦定理:2sin sin sin a b cR A B C===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =,所以:22A B =或21802A B =︒-,解得:A B =或90A B +=︒ 所以:ABC 的形状一定是等腰或直角三角形 故选:D . 【点评】本题考查的知识要点:正弦定理的应用,三角函数的诱导公式的应用,属于中档题. 28.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A .123 B .63C .12D .183解析:A 【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值 【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤∴11sin 4822ABC S ab C ∆=≤⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值29.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( )A .重心B .垂心C .外心D .内心 解析:B【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心.【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-=即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即有,,PA CB PB CA PC AB ⊥⊥⊥,则点P 为三角形ABC 的垂心.故选:B.【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平.30.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .14解析:C【解析】【分析】取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心,则0DW BC ⋅=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得.【详解】解:如图,取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心0DW BC ∴⋅=()()22113323AG AD AB AC AB AC ∴==⨯+=+ ()12AW AD DW AB AC DW =+=++ ()()()115326AW AG AB AC AB AC DW AB AC DW +=++++=++ ()()()5566AB AC DW AB AG AW BC BC B W C BC AC D ⎡⎤∴+⋅=⋅=⋅⋅⎢++++⎥⎣⎦ ()56AB A BC C =⋅+ ()()56C AC AB AB A =⋅+- ()()222242105566AC AB =-=-= 故选:C【点睛】本题考查平面向量的数量积的定义和性质,考查三角形的重心和外心的性质及向量中点的向量表示,考查运算能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007届高三三角平面向量单元测试题(理科)
郑中钧中学
一、选择题:每题4分,共32分
1.与向量)5,12(=a 平行的单位向量为( ) (A ))135
,1312(
(B ))13
5,1312(--
(C ))13
5,1312(
或)13
5,1312(--
(D ))135,1312(±±
2.已知点A (1,0),B (0,2),C (—1,—2),则□ABCD 的顶点D 的坐标( ) (A )(0,4) (B )(4,0) (C )(—4,0) (D )(0,—4) 3.如图,平行四边形ABCD 的对角线AC 和BD 交于点M ,设b AD a AB ==,,则=MB
( ) (A )
b a 2
121+ (B )b a 2121--
(C )b a 2
12
1+- (D )
b a 2121-
4.设21,e e 是平面内的一组基底,如果21212198,4,23e e CD e e BC e e AB -=+=-=,则( )
(A )A 、B 、C 三点共线 (B )B 、C 、D 三点共线
(C )A 、B 、D 三点共线 (D )A 、C 、D 三点共线
5.如图所示,无弹性的细绳OA ,OB 的一端分别固定在A ,B 处,同质量的细绳OC 下端系着一个称盘,且使得OB ⊥OC ,则三根绳中,受力最大的绳是( )
(A )OA (B )OB (C )OC (D )无法确定 6.河水的流速为2 m/s ,一艘小船想沿垂直于河岸方向以10 m/s 的速度驶向对岸,则小船的静水速度大小为( )
(A )10 m/s (B )262m/s (C )264m/s (D )12 m/s
7.A 、B 、C 是平面内三个点,O 为平面内任意一点,设OC n OB m OA +=,若A|、B 、C 三点共线,则( )
(A )1=+n m (B )1-=+n m (C )2=+n m (D )2-=+n m 8.设c b a ,,是任意的非零向量,且相互不共线,有下列命题:
(1)0)()(=⋅-⋅b a c c b a (2-<-
(3)0)()(=⋅-⋅b a c a c b 不与c 垂直 (4))43)(43(b a b a -=-+
其中,是真命题的有( ) (A )(1)(2) (B )(2)(3) (C )(3)(4) (D )(2)(4) 二、填空题:每题4分,共24分
9.在等腰直角三角形ABC 中,斜边AC=22,则CA AB ⋅=_________ 10.已知向量b a p b a n b a m +=-=-=3,24,32,则___________
=p (用n m ,表示)
11.已知向量)2,6(=→
a ,),3(k
b -=→
,若→
→
b a //,则k = ;若→
a 与→
b 的夹角是钝角,则k 的取值范围是
12.已知向量b a ,的夹角为 6012==_________=+;向量a 与向
量b a 2+的夹角的大小为_________. 13.已知平面上直线l 的方向向量),5
3
,54(-
=e 点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,若λ=''A O e ,则λ=_________
14.已知b a ,是非零向量且满足b a b a b a ⊥-⊥-)2(,)2(,则a 与b 的夹角是________ 三、解答题
15(10分)已知直线01243:1=-+y x l 和0287:2=-+y x l ,求直线1l 和2l 的夹角。
16(10分)在△ABC 中,设),1(),3,2(k AC AB ==,且△ABC 是直角三角形,求k 的值。
17(12分)平面直角坐标系内有点]4,4[),1,(cos ),cos ,1(π
π-
∈x x Q x P
(1)求向量OP 和OQ 的夹角θ的余弦值; (2)令θcos )(=x f ,求)(x f 的最小值。
18(12分)已知向量)2
3,
2
1
(),1,3(=-=b a
(1)求证:b a ⊥
(2)若存在实数k 和t ,使b t a k y b t a x +-=-+=,)3(2,且y x ⊥,试求函数的关系式
)(t f k =;
(3)若(2)中存在实数k 和t ,则求函数)(t f k =的单调区间。
参考答案
一、选择题 CDDCABAD 二、填空题 9、4- 10、n m 8
1145+
-
11、1- 9<k 且1-≠k 12、6
3
2π
13、2- 14、3
π
三、解答题
15.任取直线1l 和2l 的方向向量 )3,4(-=m 和)7,1(-=n
设向量m 与n 夹角为θ,
2
2)
7(13)4()7(31)4(cos 2
2
2
2
-
=-+⋅+--⨯+⨯-=
θ
所以 135=θ,即直线1l 和2l 的夹角为 45 16.解:若 90=∠A ,则AC AB ⊥,于是 0312=⨯+⨯k 解得3
2-
=k
若 90=∠B ,则BC AB ⊥,又)3,1(--=-=k AB AC BC 故得0)3(3)1(2=-⨯+-⨯k 解得3
11=k
若 90=∠C ,则BC AC ⊥,于是 0)3()1(1=-⨯+-⨯k k 解得2133±
=
k
由上可知k 的值为3
2-,或
3
11,或
2
133±
17.解:(1
)x x OQ OP 2
cos 1cos 2+==⋅
x
x 2
cos
1cos 2cos +=
=
∴θ
(2)x
x x
x x f cos 1cos 2cos
1cos 2)(2
+
=
+=
2
23cos 1cos 2],1,2
2[
cos ],4
,4[≤
+
≤∴∈∴-
∈x
x x x π
π
3
22)(min =
∴x f
18.解:(1)b a b a ⊥∴=-
=
⋅,02
32
3
(2)由已知得:14==,由于y x ⊥,所以0=⋅y x
即0)3(4)3()(])3([22
222=-+-=-+-=+-⋅-+t t k b t t a k b t a k b t a 所以t t t f k 4
341)(3
-
=
=
(3)由(2)知: t t t f k 4
341)(3
-
=
=,所以)1)(1(4
3)(/
-+=
t t t f
令0)(/<t f ,得11<<-t ;令0)(/>t f ,得1-<t 或1>t
故)(t f k =的单调递减区间是)1,1(-,单调递增区间是)1,(--∞和),1(+∞。