2019-2020年八年级数学下册综合复习题
2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。
2019-2020学年北师大版数学八年级下册 第一章三角形的证明 综合测试卷附答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2019年北师大版数学八年级下册第一章综合测试卷一、选择题。
01如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35º,则∠C的度数为 ( )A.35ºB.45ºC.55ºD.60º02若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为 ( ) A.2 cmB.4 cmC.6 cmD.8 cm03(黔南中考)如图,在△ABC中,∠ACB=90º,BE平分∠ABC,ED⊥AB于D.如果∠A=30º,AE=6 cm,那么CE等于 ( )A.3 cmB.2 cmC.3 cmD.4 cm04如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50º,则∠ACB的度数为 ( )A.90ºB.95ºC 100ºD.105º05如图,AD是△ABC中∠BAC的平分线,DE⊥AB,垂足为点E,DE=4,AC=6,则△ACD的面积为 ( )A.8B 10C.12D.2406如图,∠A=50º,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为 ( )A.100ºB.140ºC.130ºD.115º07(张家界中考)如图,在Rt△ABC中,∠ACB=60º,DE是斜边AC的垂直平分线,分别交AB,AC于D,E两点,若BD=2,则AC的长是 ( )A.4B.43C.8D.8308 将一个有45º角的直角三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30º角,如图,则三角尺的最长边的长为 ( )A.6 cmB.2C.2D.209如图,∠ACB=90º,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,交CE的延长线于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cmB.5 cmC.3 cmD.2 cm10如图,AD⊥BC于D,且DB=DC,有下列结论:①△ABD≌△ACD;②∠B=∠C;③AD是∠BAC 的平分线;④△ABC为等边三角形.其中正确的有 ( )A.1个B.2个C.3个D.4个11如图,∠A=15º,AB=BC=CD=DE=EF,则∠DEF等于( )A.90ºB.75ºC.70ºD.60º12如图,在△ABC中,BC=10,DH,EF分别为AB、AC的垂直平分线,则△ADE的周长是 ( )A.6B.8C.10D.12二、填空题。
华东师大版2019-2020学年八年级数学下学期第18章 平行四边形单元测试卷(含答案)

华东师大版八年级数学下册第18章平行四边形单元检测卷一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°(第1题)(第4题)(第5题)2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cm ;B.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm(第6题)(第7题) (第8题)7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD 于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.9.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.(第9题) (第10题)10.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是cm.11.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.(第11题)(第12题)12.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号).三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为.参考答案一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°【解析】选B.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=80°,∴∠BAD=100°,又∵AE平分∠BAD交BC于点E,∴∠EAD=∠BAD=50°,∵CF∥AE,∴四边形AECF是平行四边形,∴∠1=∠EAD=50°.2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定【解析】选B.▱ABCD的∠DAB的平分线和∠ABC的平分线交于点O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°-90°=90°.3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm【解析】选A.因为平行四边形的对边相等,所以AD=BC=3cm,AB=CD=2cm,所以周长为10 cm.4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE【解析】选C.由平行四边形的性质可得AB=CD,AD=BC,∠B=∠D等.A中,DF=BE,∠B=∠D,AB=CD,符合“边角边”定理,△CDF≌△ABE,选项A成立;B中,AF=CE,可得DF=BE,同选项A,选项B成立;C中,CF=AE,∠B=∠D,AB=CD,条件为两边及一边的对角,C 不一定成立;D中,CF∥AE,可得四边形AECF是平行四边形,得AF=CE,所以BE=DF,同选项A,该选项成立.综上所述,选C.5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°【解析】选D.由平行四边形的性质及图形可知:∠1和∠2是邻补角,故∠1+∠2=180°,A 正确;因为AD∥BC,所以∠2+∠3=180°,B正确;因为AB∥CD,所以∠3+∠4=180°,C 正确;D.根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确,故选D.6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm【解析】选C.在△ABC中,BC-AB<AC<AB+BC,即2cm<AC<8cm,所以1cm<OA<4cm.7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1【解析】选B.∵AE⊥BD于点E,CF⊥BD于点F,∴∠DFC=∠BEA=90°.∵DE=BF,∴DF=BE.又∵AB=CD,∴△DFC≌△BEA,∴CF=AE,①正确,∠CDF=∠ABE,∴AB∥C D.又∵AB=CD,∴四边形ABCD是平行四边形,③正确,∴OD=O B.又∵DF=BE,∴OE=OF,②正确,易知图中的全等三角形有:△DFC≌△BEA,△OFC≌△OEA,△AOF≌△COE,△AEF≌△CFE,△ACF≌△CAE,△AOB≌△COD,△AOD≌△COB,△ABD≌△CDB,△ACD≌△CAB,…,故④不正确.综上可知,正确的结论为①②③,共3个.二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.【解析】因为平行四边形的对角线互相平分,所以OA=AC=7,OB=BD=4,又因为AB=10,所以△OAB的周长=7+4+10=21.答案:219.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.【解析】点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,由勾股定理得AE===3.答案:310.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD 与△AOB的周长差是5cm,则边AB的长是cm.【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.答案:211.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.【解析】∵四边形ABCD是平行四边形,∴∠DCE=∠BE C.∵CE是∠DCB的平分线,∴∠DCE=∠BCE,∴∠CEB=∠BCE,∴BE=BC=4.∵F是AB的中点,AB=6,∴FB=3.∴EF=BE-FB=1,∴AE=AB-BE=2,∴AE∶EF∶FB=2∶1∶3.答案:2∶1∶312.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号). 【解析】本题主要考查点到直线的距离和平行线间的距离,①②③④⑤都正确.答案:①②③④⑤三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【证明】∵AB∥CD,∴∠BAE=∠DCF,∵BE∥DF,∴∠BEF=∠DFE,∴∠AEB=∠CF D.在△AEB和△CFD中,∴△AEB≌△CFD,∴AB=C D.又∵AB∥CD,∴四边形ABCD是平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.【证明】(1)∵点D,E分别是AB,BC的中点,∴DE∥AC;同理:EF∥AB,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DAF=∠DEF.∵在Rt△AHB中,D是AB中点,∴DH=AB=AD,∴∠DAH=∠DHA,同理:∠F AH=∠FHA,∴∠DAF=∠DHF,∴∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F 在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.【证明】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=B C.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为. 【解析】(1)CD平行(2)证明:连结B D.在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB,∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形.(3)平行四边形的对边相等.。
人教版2019-2020学年初二数学下册第17章勾股定理单元测试卷(含答案)

人教版八下数学勾股定理测试题、选择题(共10小题;共30分)1 .三角形的三边长 a, b, c 满足(a + b )2- c2 = 2ab,则此三角形是 ()A.直角三角形 B.锐角三角形 C.钝角三角形D.等腰三角形2 .若直角三角形的三边长分别为 2 , 4 , x ,则x 的可能值有()4 .五根小木棒,其长度分别为 7,15,20,24,25 ,现将他们摆成两个直角三角形,其中正确的是()5 .三角形的三边长分别为 2n 2 + 2n,2n + 1,2n 2+ 2n + 1 (n 是自然数),这样的三角形是 ()A.锐角三角形B.直角三角形D.锐角三角形或直角三角形6 .如图,在矩形 ABCD 中,AB = 2 , BC = 4 ,对角线 AC 的垂直平分线分别交 AD, AC 于点E, O, 连接CE,则CE 的长为A. 1个B. 2个C. 3个D. 4个3.如图,若/A=60,AC = 20m ,则BC 大约是(结果精确到0.1m )A. 34.64 mB. 34.6 mC. 28.3 mD. 17.3 mC.钝角三角形B. 3.5C. 2.5D. 2.87.如图所示,有一块直角三角形纸片, /c = 90 °, AC = 4cm , BC = 3cm ,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点 E 处,折痕为AD,则CE 的长为A. 1 cmB. 1.5 cmC. 2 cm8.如图,将 △ AB 或在正方形网格图中B, C 恰好在网格图中的格点上,那么 4ABC 中BC 边上的高是儿当当 C* D. V5*T"wA. 3 (图中每个小正方形的边长均为15 .如图,以Rt △ ABC 的三边为边向外作正方形,其面积分别为S1 , 0, S3,且% = 4, S2 = 8,则AB 的长为.16 .已知 & - 5 + I - 12 I + (z - 13 )2= 0 ,则由x, y, z 为三边组成的三角形是 三、解答题(共6小题;共52分)17 .正方形网格中的每个小正方形边长都1 ,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为 3,2 W 后. (2)使三角形为钝角三角形且面积为4△ CBO2 4ABO?则四边形 AO?BO 的面积为A. 10B. 16C. 40D. 80二、填空题(共6小题;共18分)11 .勾股定理的逆定理是 12 .在△ ABC43,13 .已知 la - 6 I +/C = 90 , c = 10 , a :b = 3:4,则 a =b - 8 I + (c - 10 )2= 0 ,则以a, b, c 为边长的三角形是 2 cm,高为3 cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为cm .(结果保留兀) 9.如图,将一个等腰直角三角形按图示方式依次翻折, 若DE = a,则下列说 法正确的个 数有 ________①DC?平分 /BDE ②BC 长为(女+ 2户③ △ BC?D1等腰三角形;④ △ CEM 周长等于BC 的长.为△ ABC 外一点,且 茎U10.如图,等腰 Rt △ AB 中,/ABO 90 °, O 是△ ABC 内一点,OA = 6 ,18 .已知△ ABC 勺三边a 、b 、c 满足ga -4 । + 2b -12)2+ 10 - c = 0 ,求最长边上的高19 .如图,在正方形网格中,每个小正方形的边长都是 是否为直角三角形?为什么?20 .在数轴上画出表示 -•河 及V13的点.21 .在△ ABC 中,/ACB = 90 , AC = 4, BC = 3,在△ ABD 中,BD = 12 , AD = 13 , 求△ ABD 的面积.1 , AABC 的顶点均在格点上,试判断△ ABC22.阅读:如图1,在△ ABC中,3ZA + ZB = 180, BC = 4 , AC = 5 ,求AB 的长.小明的思路:如图2,作BE ± A什点巳在AC的延长线上取点D,使得DE = AE ,连接BD,易得/A = Z D △ ABD 为等腰三角形. 由3/A + /ABC = 18 市口/A + /ABC + / BAC = 180,易得/ BCA = 2 ZAA BC的等腰三角形.依据已知条件可得AE和AB的长.解决下列问题:(1)图2 中,AE =, AB =;(2)在△ ABO^, /A / B、/ C勺对边分别为a、b、c.①如图3,当3/A + 2 ZB = 180°时,用含a、c的式子表示b;(要求写解答过程)②当3/A + 4/B = 180 °, b = 2 , c = 3 时,可得a =.第一部分1. A2. B3. B4. C5. B6. C7. A8. A9. C10. C第二部分11 .如果三角形的三边长 a, b, c,满足a 2+ b 2 = c 2,那么这个三角形是直角三角形 12 . 6; 8 13 .直角三角形 14 .弋9 兀2+ 9 15 . 2 3 16 .直角三角形第三部分18.由题意,得:|1a - 4 = 0 , 2b - 12 2)= 0,10 - c = 0 a = 3 b = 6 , c = 10 .2a+ b 2 = c 2.・ .△ ABC Rt △ ABC 且 Z C = 90 . 1 1 .•_ab = _ch .22・.・ h = 4.8.19.由勾股定理可得 AC = v'22+1 2 =、怎;BC =、/42+ 2 2= %;20; AB = %3 2 + 4 2 =画,答案17.(1) (2)图2AC+ BC2 = AB2,ABC直角三角形.20.21.••• Z ACB = 90 AC = 4 , BC = 3, AB = AC2 + CB2, AB = 5••• BD = 12 AD = 13 , AD = BD2 + AB 2,/ ABD = 90 1、••S ABD= 2 X AB X BD = 30 答:△ ABD的面积为30.22.(1) AE = 9., AB = 6 ; 2(2)①作BE ± AC^ AC延长线于点巳在AE延长线上取点D,使得DE = AE ,连接BD. B的AD的中垂线.AB = BD = c./A = . ZD/A + / D + / ABD = 180/ DBC + 2 / A + / 1 = 1803 / A + 2 / 1 =180/ DBC = / A + Z1/ 3 = /A + Z1/ 3 = Z DBCCD = BD = c・•. AE =bL CE =巴 2 2在△ BEC中,/BEC = 90 ,BE2 = BC2 - CE2.在△ BEA中,/BEA = 90 , BE2 = AB2 - AE2.AB- AE2 = BC2 - CE2.b =—— c3。
人教版2019-2020学年初二数学下学期 第十八章 平行四边形 单元考试试题(含答案)

人教版八年级数学下册 第十八章 平行四边形 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)1.如图,在平行四边形ABCD 中,AD =7,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A . 4B . 3C .25 D . 2 2.如图,▱ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m ,那么m 的取值范围是( )A . 1<m <11B . 2<m <22C . 10<m <12D . 5<m <6 3.如图,在▱ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( )A . 2B . 3C . 4D . 54.Rt △ABC 中,两直角边的长分别为6和8,则其斜边上的中线长为( )A . 10B . 3C . 4D . 55.如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A . 2B . 2.2C . 2.4D . 2.56.如图,在菱形ABCD 中,AB =5,∠B ∶∠BCD =1∶2,则对角线AC 等于( )A. 5 B. 10 C. 15 D. 207.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A. 16 B. 15 C. 14 D. 138.正方形具有而矩形不具有的性质是()A.对角线互相平分 B.对角线相等 C.对角线互相平分且相等 D.对角线互相垂直9.小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④10.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A. 40 B. 25 C. 26 D. 36二、填空题(共8小题,每小题3分,共24分)11.如图,在▱ABCD中,AB=2 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________ cm.12.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为________.13.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于________.14.如图平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,∠OAD=65°.则∠ODC=__________.15.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为____________.16.如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是__________(只需填写正确结论的序号).17.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=____________.18.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8 cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是____________(填写图形的形状)(如图),它的一边长是____________ cm.三、解答题(共8小题,共66分)19.(6分)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD 分别相交于点E、F,求证:AE=CF.20. (6分)如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.21. (6分)如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.22. (8分)如图,在矩形ABCD中,AB=24 cm,BC=8 cm,点P从A开始沿折线A-B-C-D 以4 cm/s的速度移动,点Q从C开始沿CD边以2 cm/s的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?23. (8分)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.24. (10分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.25. (10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.26. (12分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.答案解析1.【答案】B【解析】∵在ABCD 中,CE 平分∠BCD 交AD 于点E ,∴∠DEC =∠ECB ,∠DCE =∠BCE ,AB =DC ,∴∠DEC =∠DCE ,∴DE =DC =AB ,∵AD =7,AE =4,∴DE =DC =AB =3.故选B.2.【答案】A【解析】在平行四边形ABCD 中,则可得OA =21AC ,OB =21BD , 在△AOB 中,由三角形三边关系可得OA -OB <AB <OA +OB ,即6-5<m <6+5,1<m <11.故选A.3.【答案】C【解析】∵四边形ABCD 是平行四边形,∴BC =AD =8,∵点E 、F 分别是BD 、CD 的中点,∴EF =21BC =21×8=4. 故选C.4.【答案】D【解析】已知直角三角形的两直角边为6、8, 则斜边长为=10,故斜边的中线长为21×10=5, 故选D.5.【答案】C 【解析】连接AP ,∵∠A =90°,PE ⊥AB ,PF ⊥AC ,∴∠A =∠AEP =∠AFP =90°,∴四边形AFPE 是矩形,∴EF =AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠A =90°,AC =4,AB =3,由勾股定理,得BC =5, 由三角形面积公式,得21×4×3=21×5×AP , ∴AP =2.4,即EF =2.4,故选C.6.【答案】A【解析】∵四边形ABCD 是菱形,∴∠B +∠BCD =180°,AB =BC ,∵∠B ∶∠BCD =1∶2,∴∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =5.故选A.7.【答案】A【解析】连接EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理,得OA===8,∴AE=2OA=16.故选A.8.【答案】D【解析】因为正方形的对角线相等、垂直、且互相平分,矩形的对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线好像垂直.故选D.9.【答案】B【解析】A.∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当②∠ABC =90°时,菱形ABCD 是正方形,故此选项正确,不合题意;B .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当③AC =BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C .∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当③AC =BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;D .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选B.10.【答案】B【解析】设小正方形的边长为a ,大正方形的边长为b ,由这三张纸片盖住的总面积是24平方厘米,可得ab +a (b -a )=24,①由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b -a )2=41a 2-3,② 将①②联立解方程组可得:a =4,b =5,∴大正方形的边长为5,∴面积是25.故选B.11.【答案】4【解析】在▱ABCD 中,∵AB =CD =2cm ,AD =BC =4 cm ,AO =CO ,BO =DO , ∵AC ⊥BC ,∴AC==6 cm,∴OC=3 cm,∴BO==5 cm,∴BD=10 cm,∴△DBC的周长-△ABC的周长=BC+CD+BD-(AB+BC+AC)=BD-AC=10-6=4 cm,12.【答案】12【解析】∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.13.【答案】30°【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°-∠A=30°.14.【答案】25°【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AB=CD,∴四边形ABCD是矩形,∴∠ADC=90°,∵∠ODA=∠OAD=65°,∴∠ODC=∠ADC-∠ODA=25°.15.【答案】30°或60°【解析】∵四边形ABCD 是菱形,∴∠ABD =21∠ABC ,∠BAC =21∠BAD ,AD ∥BC , ∵∠BAC =60°,∴∠BAD =180°-∠ABC =180°-60°=120°,∴∠ABD =30°,∠BAC =60°. ∴剪口与折痕所成的角α的度数应为30°或60°.16.【答案】①③④【解析】①∵△AEF 是等边三角形,∴∠EAF =60°,AE =AF ,又∵AE ⊥BC ,AF ⊥CD ,∴∠C =120°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠C =∠BAD =120°,∴∠B =180°-∠C =60°,故①正确;②∵∠D =∠B =60°,∴∠BAE =∠DAF =90°-60°=30°,∴∠EAF =120°-30°-30°=60°,但是AE 不一定等于AF ,故②错误;③若AE =AF ,则21BC ·AE =21CD ·AF , ∴BC =CD ,∴平行四边形ABCD 是菱形,故③正确;④若平行四边形ABCD 是菱形,则BC =CD , ∴21BC ·AE =21CD ·AF , ∴AE =AF ,故④正确;故答案为①③④.17.【答案】2n +1【解析】∵∠MON =45°,∴△OA 1B 1是等腰直角三角形,∵OA 1=1,∴正方形A 1B 1C 1A 2的边长为1,∵B 1C 1∥OA 2,∴∠B 2B 1C 1=∠MON =45°,∴△B 1C 1B 2是等腰直角三角形,∴正方形A 2B 2C 2A 3的边长为1+1=2,同理,第3个正方形A 3B 3C 3A 4的边长为2+2=22,其周长为4×22=24, 第4个正方形A 4B 4C 4A 5的边长为4+4=23,其周长为4×23=25, 第5个正方形A 5B 5C 5A 6的边长为8+8=24,其周长为4×24=26, 则第n 个正方形的周长Cn =2n +1.18.【答案】正方形 8【解析】如图,作AB 平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B 点,∴△ABC 为直角边长为8 cm 的等腰直角三角形,∴AB =AC =8,∴阴影正方形的边长=AB =8cm.19.【答案】证明 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ,∴∠OAE =∠OCF ,在△OAE 和△OCF 中,∴△AOE ≌△COF (ASA),∴AE =CF .【解析】由四边形ABCD 是平行四边形,可得AB ∥CD ,OA =OC ,继而证得△AOE ≌△COF ,则可证得结论.20.【答案】证明 如图,取AB 的中点G ,连接MG 、NG ,∵M 、N 分别为AF 、BE 的中点,∴NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF , ∵CE =CF ,∠C =90°,∴AE =BF ,∠MGN =∠C =90°,∴MG =NG ,∴△MNG 是等腰直角三角形,∴NG =MN ,∴AE =2NG =×2MN =MN , 即AE =MN .【解析】取AB 的中点G ,连接MG 、NG ,根据三角形的中位线平行于第三边并且等于第三边的一半可得NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF ,再求出AE =BF ,∠MGN =90°,判断出△MNG 是等腰直角三角形,根据等腰直角三角形的性质可得NG =MN ,再表示出AE 即可得证.21.【答案】证明 ∵AB =AC ,∴∠B =∠C ,∵DE ⊥AB ,FD ⊥BC ,∴∠BED =∠FDC =90°,∴∠1+∠B =90°,∠3+∠C =90°,∴∠1=∠3,∵G 是直角三角形FDC 的斜边中点,∴GD =GF ,∴∠2=∠3,∴∠1=∠2,∵∠FDC =∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE =90°,∴GD ⊥DE .【解析】由∠1+∠EDF =90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.22.【答案】解 根据题意得:CQ =2t ,AP =4t ,则BP =24-4t ,∵四边形ABCD 是矩形,∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时,四边形QPBC 是矩形,即2t =24-4t ,解得t =4,答:当t =4 s 时,四边形QPBC 是矩形.【解析】求出CQ =2t ,AP =4t ,BP =24-4t ,由已知推出∠B =∠C =90°,CD ∥AB ,推出CQ =BP 时,四边形QPBC 是矩形,得出方程2t =24-4t ,求出即可.23.【答案】证明 ∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,∴△ADE ≌△CDF (SAS).【解析】由菱形的性质得出AD =CD ,由中点的定义证出DE =DF ,由SAS 证明△ADE ≌△CDF 即可.24.【答案】(1)证明 ∵四边形ABCD 是平行四边形,∴AD =BC ,在Rt △ABC 中,∠BAC =90°,点E 是BC 边的中点,∴AE =21BC =CE ,同理,AF =21AD =CF , ∴AE =CE =AF =CF ,∴四边形AECF 是菱形;(2)解 连接EF 交AC 于点O ,如图所示:在Rt △ABC 中,∠BAC =90°,∠B =30°,BC =10,∴AC =21BC =5,AB =AC =5,∵四边形AECF 是菱形,∴AC ⊥EF ,OA =OC ,∴OE 是△ABC 的中位线,∴OE =21AB =,∴EF =5, ∴菱形AECF 的面积=21AC ·EF =21×5×5=.【解析】(1)由平行四边形的性质得出AD =BC ,由直角三角形斜边上的中线性质得出AE =21BC =CE ,AF =21AD =CF ,得出AE =CE =AF =CF ,即可得出结论; (2)连接EF 交AC 于点O ,解直角三角形求出AC 、AB ,由三角形中位线定理求出OE ,得出EF ,菱形AECF 的面积=21AC ·EF ,即可得出结果. 25.【答案】(1)证明 ∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°,而F 是CB 的延长线上的点,∴∠ABF =90°,在△ADE 和△ABF 中,∴△ADE ≌△ABF (SAS);(2)解 ∵BC =8,∴AD =8,在Rt △ADE 中,DE =6,AD =8,∴AE ==10, ∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到,∴AE =AF ,∠EAF =90°,∴△AEF 的面积=21AE 2=21×100=50. 【解析】(1)根据正方形的性质得AD =AB ,∠D =∠ABC =90°,然后利用“SAS”易证得△ADE ≌△ABF ;(2)先利用勾股定理可计算出AE =10,再根据△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到AE =AF ,∠EAF =90°,然后根据直角三角形的面积公式计算即可.26.【答案】(1)证明 ∵AB =AC ,AD ⊥BC ,垂足为点D ,∴∠CAD =21∠BAC . ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =21∠CAM . ∵∠BAC 与∠CAM 是邻补角,∴∠BAC +∠CAM =180°,∴∠CAD +∠CAE =21(∠BAC +∠CAM )=90°. ∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,∴四边形ADCE 为矩形;(2)解 ∠BAC =90°且AB =AC 时,四边形ADCE 是一个正方形,证明:∵∠BAC =90°且AB =AC ,AD ⊥BC ,∴∠CAD =21∠BAC =45°,∠ADC =90°, ∴∠ACD =∠CAD =45°,∴AD =CD .∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;(3)解 由勾股定理,得=AB ,AD =CD , 即AD =2,AD =2,正方形ADCE 周长4AD =4×2=8. 【解析】(1)根据等腰三角形的性质,可得∠CAD =21∠BAC ,根据等式的性质,可得∠CAD +∠CAE =21(∠BAC +∠CAM )=90°,根据垂线的定义,可得∠ADC =∠CEA ,根据矩形的判定,可得答案;(2)根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;(3)根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.。
2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (133)

浙教版初中数学试卷八年级数学下册《平行四边形》测试卷学校:__________一、选择题1.(2分)下列交通标志中既是中心对称图形,又是轴对称图形的是()2.(2分)如图,在□ABCD中,对角线AC、BD交于点O,则图中全等三角形的对数有()A.2 B.4 C.6 D.83.(2分)如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.2倍B.3倍C.4倍D.无法确定4.(2分)三角形三边长分别为21n+(n为自然数),这样的三角形是()n-,2n,21A.锐角三角形 B.直角三角形 C.钝角三角形 D.直角三角形或锐角三角形5.(2分)已知平行四边形的一条边长为l4,下列各组数中能作为它的两条对角线长的是()A.10与16 B.10与17 C.20与22 D.10与186.(2分)下列多边形中不能够镶嵌平面的是()A.矩形B.正三角形C.正五边形D.正方形二、填空题7.(3分)如图,在□ABCD中,CM⊥AD于M,CN⊥AB于N,若∠B=50°,则∠MCN=_____.△的周长为.8.(3分)如图,□ABCD的周长为20,对角线AC的长为5,则ABC9.(3分)四边形的内角和等于_______,外角和等于_______.10.(3分)已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则这个平行四边形的周长为.11.(3分)在□ABCD中,AB=2,BC=3,∠B、∠C的平分线分别交AD于点E、F,则EF的长是_______.12.(3分)如果平行四边形的周长为180cm,相邻两边的长度比为5∶4,那么它的较长边为 cm.13.(3分)定理“到一条线段两端点距离相等的点,在这条线段的垂直平分线上”的逆定理是.14.(3分)如图,Rt△ABC中,∠BAC=90°,E,D,F分别是三边中点,则AD EF(填“=”或“>”或“<”).15.(3分)如图所示,在四边形ABCD中.对角线AC,BD互相平分且交于点0,MN经过点O,若AB=8 cm,AD=6 cm,ON=4 cm,则四边形BCMN的周长是 cm.16.(3分)平行四边形的一边长为6 cm,其长度恰是周长的2,则此平行四边形的另一边长9为.17.(3分)如图所示,图形①与图形成轴对称,图形①与图形成中心对称(填写所对应的序号).18.(3分)正五边形每个内角是,正六边形每个内角是,正n边形每个内角是.评卷人得分三、解答题19.(6分)观察下图中的图形,并阅读图形下面的相关文字:AB C D E F123通过分析上面的材料,十边形钓对角线有多少条?n 边形的对角线有多少条?20.(6分)如图,已知:在□ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,求DF 的长.21.(6分)如图所示,在平面直角坐标系中,A(-3,4),D(0,5),点B 与点A 关于x 轴对称,点C 与点A 关于原点对称.求四边形ABCD 的面积.22.(6分)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别是B0,0D 的中点,且四边形AECF 是平行四边形,试判断四边形ABCD 是不是平行四边形。
2019-2020学年天津市红桥区八年级数学下期中复习试卷(2)有详细答案

2019-2020学年八年级数学期中复习试卷一、选择题:1.若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>-3 D.x≥-32.如果,那么()A.B.C.D.3.下列长度的3条线段能构成直角三角形的是()①8,15,17;②4,5,6;③7.5,4,8.5;④24,25,7;⑤5,8,17.A.①②④B.②④⑤C.①③⑤D.①③④4.如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD 于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH5.下列各式计算正确的是()A.B.(﹣3)﹣2=﹣C.a0=1 D.6.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是()尺A.3.5 B.4 C.4.5 D.58.如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为()A.5 B.3C.2D.39.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.一组对边平行且一组对角相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是矩形D.对角线相等的菱形是正方形10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①2∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A.①②B.②③④C.①②④D.①②③④二、填空题:11.若2)3x=3﹣x,则x的取值范围是.(12.计算:(﹣1)0+|﹣4|﹣= .13.如图所示,已知四边形ABCD是等边长为2的正方形,AP=AC,则数轴上点P所表示的数是________.14.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).15.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= °.16.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是______.三、解答题:17.计算:18.求值:当时,求代数式的值.19.已知在△ABC中,a=m2-n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n.试判断:△ABC是否为直角三角形?20.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形.21.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.22.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF 绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.参考答案1.D2.B.3.D4.D5.A6.C;7.C8.C.9.C10.B11.D12.C.13.答案为:x≤3.14.答案为:5﹣2.15.答案为:1﹣2.16.答案为:AC⊥BC或∠AOB=90°或AB=BC17.答案为:45°18.答案为:5.19.解:原式=20.解:则21.∵a=m2-n2,b=2mn,c=m2+n2,∴a2+b2=(m2-n2)2+4m2n2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.22.(1)证明:如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD,∴∠ABF=∠CDF=36°,∴∠AFB=180°﹣108°﹣36°=36°,∴AB=AF,∵AF=EF,∴△ABF和△AFE是等腰三角形,同理△EFC与△CDE是等腰三角形.(1)证明:根据翻折的方法可得EF=EC,∠FEG=∠CEG.又∵GE=GE,∴△EFG≌△ECG.∴FG=GC. ∵线段FG是由EF绕F旋转得到的,∴EF=FG.∴EF=EC=FG=GC.∴四边形FGCE是菱形.(2)连接FC交GE于O点.根据折叠可得BF=BC=10.∵AB=8∴在Rt△ABF中,根据勾股定理得AF=6.∴FD=AD-AF=10-6=4.设EC=x,则DE=8-x,EF=x,在Rt△FDE中,FD2+DE2=EF2,即42+(8-x)2=x2.解得x=5.即CE=5.S菱形CEFG=CE·FD=5×4=20.(3)当=时,BG=CG,理由:由折叠可得BF=BC,∠FBE=∠CBE,∵在Rt△ABF中,=,∴BF=2AF.∴∠ABF=30°.又∵∠ABC=90°,∴∠FBE=∠CBE=30°,EC=0.5BE.∵∠BCE=90°,∴∠BEC=60°.又∵GC=CE,∴△GCE为等边三角形.∴GE=CG=CE=0.5BE.∴G为BE的中点.∴CG=BG=0.5BE.。
2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (26)

浙教版初中数学试卷八年级数学下册《平行四边形》测试卷学校:__________一、选择题1.(2分)下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正方形C.正三角形D.线段AB2.(2分)一个多边形内角和是1080o,则这个多边形是()A.六边形B.七边形C.八边形D.九边形3.(2分)如图,在△ABC中,D,E,F分别是AB,BC,AC上的点,且DE∥AC,EF∥AB,DF∥BC,则图中平行四边形共有()A.1个B.2个C.3个D.4个4.(2分)下列说法正确的是()A.一组邻角互补的四边形是平行四边形B.两组邻边相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形5.(2分)下列条件中,能判定四边形为平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补6.(2分)下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正三角形C.正方形D.线段AB二、填空题7.(3分)如果点M(m,-2)和点N(1,n)关于原点对称,那么m=_______,n=______.8.(3分)如图,四边形的四条边AB、BC、CD和DA,它们的长分别是2、 5 .5、4,其中∠B=90°,那么四边形ABCD的面积为 .9.(3分)如图,已知点E在面积为4的平行四边形ABCD的边上运动,若ABE△的面积为1,则点E的准确位置是.10.(3分)设将一张正方形纸片沿图中虚线剪开后,能拼成右边四个图形,则其中是中心对称图形的是 (填序号).11.(3分)当行边形的边数增加l边时,其内角和增加.12.(3分)点A(5,2)关于直角坐标系原点对称的点的坐标是,关于y轴对称的点的坐标是,关于x轴对称的点的坐标是.13.(3分)平行四边形绕对角线的交点旋转后能与原图形重合.14.(3分)如图所示,AD∥BC,△ABC的面积为25cm2,则△BDC的面积为.15.(3分)如图所示,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DAE= .16.(3分)在□ABCD中,∠A的外角与∠B互余,则∠D的度数为.17.(3分)如图所示,已知在□ABCD中,∠DBC=30°,∠ABD=45°,那么∠BDA= .∠BCD= .18.(3分)如图所示,在□ABCD中,DB=DC,∠C=70°,AE⊥BD于点E,则∠A B CD E F DAE= .19.(3分)在□ABCD 中.AC 与BD 相交于点0,AB=3 cm,BC=4 cm ,AC=6 cm ,BD=8 cm ,则△AOB 的周长是 ,△80C 的周长是 .20.(3分)从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.21.(3分)如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接达到A ,B 的点C ,•找到AC ,BC 的中点D ,E ,并且测出DE 的长为15m ,则A ,B 两点间的距离为_____m . 评卷人得分 三、解答题22.(6分)写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题,•这个逆命题是真命题吗?请证明你的判断.23.(6分)如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE =CF.请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等.(1)连结: ;(2)猜想: = ;(3)证明:24.(6分)如图,△ABC中,A(-2,3),B(-3,1),C(-1,2).(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△与△成轴对称,对称轴是;△与△成中心对称,对称中心的坐标是.25.(6分)求证:三角形的三个内角的平分线交于一点.26.(6分)写出下列命题的逆命题,并判断真假:(1)如果一个三角形是直角三角形,那么它的两个锐角互余;(2)在角的内部到一个角的两边距离相等的点在这个角的平分线上;(3)等腰三角形的两个底角相等;(4)正多边形的各边相等.27.(6分)如图①所示,已知AE是△ABC的高,F是AE上的任意一点,G是E点关于F 的对称点,过点G作BC的平行线与AB交于点H,与AC交于点I,连结IF并延长交BC 于点J,连结HF并延长交BC于点K.(1)请你在图②中再画出一个满足条件的四边形HJKI(点F的位置与图①不同);(2)请你判断四边形HJKl是怎样的四边形?并对你得到的结论予以证明(图②供思考用).28.(6分)在□ABCD中,AE,AF分别是BC,CD边上的高,AF与BC交于点G,AE=2 cm,AF=5 cm,∠EAF=30°,求□ABCD各内角的度数和AB,AD的长.29.(6分)如图所示.在四边形ABCD中,AC⊥BD于点O.求证:2222+=+AB CD AD BC30.(6分)仔细观察下面的六幅图案,研究它们分别是用哪两种正多边形镶嵌的,并指出同一顶点处有几个正多边形.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.C3.C4.C5.C6.A评卷人得分二、填空题7.-1,28.6+ 59.AD的中点或CB的中点10.②11.180°12.(-52,(-5,2,(5213.180°14.25 cm215.40°16.45°17.30°,l05°18.20°19.10 cm,1l cm20.()() 22a b a b a b -=+-21.30评卷人得分三、解答题22.逆命题:一边上的中线等于这边的一半的三角形是直角三角形,是真命题.证明如下:如图,已知△ABC中,CD是AB边上的中线,CD=12 AB.求证:△ABC是直角三角形.证明:∵CD是AB边上的中线,CD=12 AB,•∴CD=AD=BD,∴∠1=∠A,∠2=∠B,∵∠1+∠2+∠A+∠B=180°,∴∠1+∠2=90°,•即∠ACB=90°,∴△ABC是直角三角形23.提示:连结DF或BF,则DF=BE或BF=DE,证明△ABE≌△CDF或△ADE≌△CBF.24.解:图略(4)△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).25.略26.(1)若一个三角形的两锐角互余,则这个三角形是直角三角形.是真命题;(2)角平分线上的点到角两边的距离相等.是真命题;(3)有两个角相等的三角形是等腰三角形.是真命题;(4)各边都相等的多边形是正多边形.是假命题27.(1)作图与①类似;②四边形HJKI为平行四边形,证略28.30°,150°,30°,l50°,AB=4 cm, AD=10cm29.证明222AB AO OB=+,222CD OC OD=+,222BC BO OC=+,222AD AO OD=+,则2222AB CD BC AD+=+30.图①:l个正方形,2个正八边形图②和图③:3个正三角形,2个正方形图④:4个正三角形,l个正六边形图⑤:2个正三角形,2个正六边形图⑥:l个正三角形,2个正十二边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年八年级数学下册综合复习题
一.填空题
1.当x ______时,分式
21
34
x x +-无意义. 2.当x _______时,分式221
2
x x x -+-的值为零.
3.已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是
4.某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有 人.
5.如图,有三个同心圆,由里向外的半径依次是2cm ,4cm , 6cm 将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是
6.如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是_____________.
7.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形
ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是
8.如图,在平行四边形ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=2,则平行四边形ABCD 的周长是
第4题 第5题 第8题 二.选择题
1.下列各式中,无论x 取何值,分式都有意义的是( )
A .121x +
B .21x x +
C .231x x
+ D .2221x x +
2.如果把分式y x y
x ++2中的x 和y 都扩大10倍,那么分式的值( )
A .扩大10倍
B .缩小10倍
C .是原来的
2
3
D .不变 3.要了解一个城市的气温变化情况,下列观测方法最可靠的一种方法是 ( )
A .一年中随机选中20天进行观测;
B .一年中随机选中一个月进行连续观测;
C .一年四季各随机选中一个月进行连续观测;
D .一年四季各随机选中一个星期进行连续观测。
4.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是 ( ) A .12 B .9 C .4 D .3
5.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是2 5 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是1
4 ,则原来盒中有
白色棋子 ( ) A .8颗 B .6颗 C .4颗 D .2颗 6.在菱形ABCD 中,AB = 5,∠BCD =120°,则对角线AC 等于( ) A .20 B .15 C . 10 D .5
7.已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④
BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共
有 ( ) A .6种 B .5种 C .4种 D .3种 8.分式
31
x a
x +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零; B .分式无意义
C .若13a -≠时,分式的值为零;
D .若1
3a ≠时,分式的值为零
三、解答题 1. 先化简,再求值:
① 1616822-+-a a a ,其中a=5; ② 2
222b
ab a ab
a +++,其中a=3
b ≠0. 2.已知511=-y x ,求分式y
xy x y xy x 272-+++-的值. 3.已知4
32z y x ==,求2
22z y x zx yz xy ++++的值.
5.如图,在梯形ABCD 中,AB ∥CD ,BD ⊥AD ,BC =CD ,∠A =60°,CD =2cm (1)求∠CBD 的度数; (2)求下底AB 的长.
6.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30°,EF ⊥AB ,垂足为F ,边结DF . ⑴试说明AC =EF ;
⑵求证:四边形ADFE 是平行四边形.
7.据我省有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图
A
B
C
D
E
F A
C
B
D 60°
回答下列问题:
(1)该校对多少名学生进行了抽样调查?
(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少? (3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?
8.如图,ABM ∠为直角,点C 为线段BA 的中点,点D 是射线BM 上的一个动点(不与点B 重合),连结AD ,作B E A D ⊥,垂足为E ,连结CE ,过点E 作EF CE ⊥,交BD 于F .
(1)求证:BF FD =; (2)A ∠=30°时,求
DF
EF
的值 (3)当四边形ACFE 是平行四边形时,求A ∠的度数
(4)A ∠在什么范围内变化时,四边形ACFE 是梯形,并说明理由;
图2
图1
最喜欢的体育活 动项目的人数/人最喜欢的体
育活动项目
A
B
C D F
E
M。