第五章-相交线与平行线知识点

合集下载

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结1.直线的定义:直线是平面上的一组点,这些点的任意两个点都可以用直线上的一段有向线段连接起来。

直线也可以看作没有端点的线段。

2.相交线的性质:(1)相交线:两条直线在平面上的交点。

两条相交的直线不可能平行。

(2)轴:两条相交线的交点称为轴。

(3)垂直交线:两条相交线互相垂直,即交角为90度。

(4)垂线:一条直线与另一条直线垂直,称为垂线。

(5)垂直平分线:两条相交直线的交点到两条直线距离相等的直线,称为垂直平分线。

3.平行线的性质:(1)平行线:在同一个平面内,两条直线不相交,称为平行线。

(2)平行符号:在直线上标记一对箭头表示平行关系。

(3)平行线定理:-同位角定理:两条平行线与同一条横截线相交,所得相对应的内角相等,相对应的外角相等。

-平行线之间的任意一对同位角互相相等。

(4)平行线判定定理:-直线与直线平行判定定理:直线与一条直线平行,则与这条直线平行的所有直线都平行。

-同位角平行判定定理:两条直线被一条横截线所截,使同位角相等,则这两条直线平行。

-垂直线判定定理:两条直线互相垂直,则这两条直线平行于同一直线。

(5)平行线的性质:-平行线之间的距离相等:两条平行线上任意两点之间的距离相等。

-平行线的夹角:两条平行线被一条直线截断所得的内角和为180度。

-平行线的斜率:两条平行线的斜率相等或者其中一条线的斜率不存在。

4.平行四边形:(1)平行四边形定义:有两对对边分别平行的四边形。

(2)平行四边形的性质:-对边相等:平行四边形的对边相等。

-对角线:平行四边形的对角线互相平分。

-同位角:平行四边形的同位角互相相等。

5.直线的倾斜角:(1)倾斜角定义:一条直线倾斜角的正切值等于该直线的斜率。

(2)平行线的倾斜角:平行线具有相同的倾斜角。

(3)垂直线的倾斜角:垂直线的倾斜角之和等于90度。

6.平行线与欧几里得公设:(1)欧几里得公设五:经过点外的一条直线上至少有两条平行线。

相交线与平行线知识点归纳总结

相交线与平行线知识点归纳总结

名师总结优秀知识点《相交线与平行线》知识点总结段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.一:相交线三、平行线( 1 )相交线的定义1、在同一平面内,两条直线的位置关系有两种:平行和相交.两条直线交于一点,我们称这两条直线相交.相对的,我们称这两( 1)平行线的定义 :在同一平面内 ,不相交的两条直线叫平行线.条直线为相交线.记作: a∥ b;读作:直线 a 平行于直线 b .( 2 )两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.( 2)同一平面内,两条直线的位置关系:平行或相交,对于这一( 3 )在同一平面内,两条直线的位置关系有两种:平行和相交知识的理解过程中要注意:( 4 )对顶角:有一个公共顶点,并且一个角的两边分别是另一个①前提是在同一平面内;角的两边的反向延长线,具有这种位置关系的两个角,互为对顶②对于线段或射线来说,指的是它们所在的直线.角.∠ 1 和∠ 3,∠ 2 和∠ 4 是对顶角 .( 3)平行公理:经过直线外一点,有且只有一( 5 )邻补角:只有一条公共边,它们的另一边互为反向延长线,条直线与这条直线平行.具有这种关系的两个角,互为邻补角.2如图,过点 P 只有直线 a 与直线 b平行如图:∠ 1 和∠ 2,∠ 2 和∠ 3 是邻补角 .( 4)平行公理中要准确理解“有且只有”的含义.从作图的角度说,( 6 )对顶角的性质:对顶角相等.(如图∠ 1 =∠ 3,13它是“能但只能画出一条”的意思.∠2=∠ 4)4( 5)平行公理的推论:如果两条直线都与第三条直线平行,那么( 7 )邻补角的性质:邻补角互补,即和为180°.这两条直线也互相平行.(如图∠ 1+∠ 2 = 180 °)如图,如果 a ∥ c, b∥ c,那么 a ∥c( 8 )邻补角、对顶角成对出现,在相交直线中,一个角的邻补角2、同位角、内错角、同旁内角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的( 1)同位角:两条直线被第三条直线所截形成的角中,若两个角一种位置关系.它们都是在两直线相交的前提下形成的。

相交线与平行线的知识点

相交线与平行线的知识点

相交线与平行线的知识点一、相交线。

1. 邻补角。

- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

- 性质:邻补角互补,即它们的和为180°。

例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。

2. 对顶角。

- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。

- 性质:对顶角相等。

如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。

3. 垂直。

- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

- 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

二、平行线。

1. 平行线的定义。

- 在同一平面内,不相交的两条直线叫做平行线。

用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。

2. 平行公理及推论。

- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果a∥b,b∥c,那么a∥c。

3. 平行线的判定。

- 同位角相等,两直线平行。

例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。

- 内错角相等,两直线平行。

如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。

- 同旁内角互补,两直线平行。

当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。

4. 平行线的性质。

- 两直线平行,同位角相等。

若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。

第五章相交线与平行线知识点整理

第五章相交线与平行线知识点整理

相交线与平行线知识点整理5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:⑵如果αβ∠∠与是对顶角,那么一定有αβ∠=∠;反之如果αβ∠=∠,那么αβ∠∠与不一定是对顶角; ⑶如果αβ∠∠与互为邻补角,则一定有180αβ∠+∠=︒;反之如果180αβ∠+∠=︒,则αβ∠∠与不一定是邻补角。

⑷两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作: 如图所示:AB ⊥CD ,垂足为O ⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3、垂线的画法:直线,垂足,直角记号⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画直线,不要画成给人的印象是线段的线。

4、点到直线的距离∙PABOABC DO直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

记得时候应该结合图形进行记忆。

如图,PO⊥AB,同P到直线AB的距离是PO的长。

PO是垂线段。

PO是点P到直线AB所有线段中最短的一条。

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。

5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。

联系:具有垂直于已知直线的共同特征。

(垂直的性质)⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。

联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。

第五章 相交线与平行线—— 命题、定理、证明

第五章 相交线与平行线—— 命题、定理、证明
人教版 数学七年级下册
第五章 相交线与平行线
5.3.2 命题 定理 证明
学习目标
1.理解命题,定理及证明的概念,会区分命题的 题设和结论;(重点) 2. 会判断真假命题,知道证明的意义及必要性, 了解反例的作用. (重点、难点)
观察与思考
导入新课
下列语句在表述形式上,有什么共同特点?
(1)如果两条直线都与第三条直线平行,那么这
①过一点有且只有一条直线与已知 直线垂直; ②垂线段最短.
五、证明的概念
讲授新课
在很多情况下,一个命题的正确性需要经过推理 才能作出判断,这个推理过程叫作证明.
注意:
证明的每一步推理都要有根据,不能“想当然”.
典例精析
讲授新课
例2 已知:b∥c, a⊥b .
求证:a⊥c.
证明: ∵ a ⊥b(已知)
A
但它们不是对顶角.
O
)1 )2
C
确定一个命题是假命题的方法:
B
只要举出一个例子(反例):它符合命题的题设,
但不满足结论即可.
1.下列语句中,不是命题的是( D ) A.两点之间线段最短 B.对顶角相等 C.不是对顶角不相等 D.过直线AB外一点P作直线AB的垂线
2.下列命题中,是真命题的是( D ) A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0 C. 若a·b=0,则a=0且b=0 D.若a·b=0,则a=0或b=0
bc 12
a
∴ ∠1=90°(垂直的定义)
又 ∵ b ∥ c(已知)
∴ ∠2=∠1=90°(两直线平行,同位角相等) ∴ a ⊥ c(垂直的定义).
六、举反例
讲授新课
思考:如何判定一个命题是假命题呢?

初中数学知识归纳平行线与相交线

初中数学知识归纳平行线与相交线

初中数学知识归纳平行线与相交线平行线与相交线是初中数学中的基础概念,它们在几何学和代数学中都有重要应用。

了解这些概念,对于学习几何学和解决与直线相关的问题非常有帮助。

本文将对平行线和相交线的概念、性质和应用进行归纳总结。

一、平行线的定义和性质平行线指在同一个平面内,永远不相交的两条直线。

平行线的定义可以从两个方面进行解释:点线距离相等和夹角相等。

1.1 点线距离相等如果两条直线上的任意一点到另一条直线的距离都相等,那么这两条直线是平行线。

1.2 夹角相等如果两条直线之间的夹角相等,那么这两条直线是平行线。

平行线的性质包括以下几点:1.3 平行线不会相交由于平行线的定义,它们在同一个平面内永远不会相交,即使无限延长也不会相交。

1.4 平行线与平面的关系在一个平面上,与给定直线平行的直线存在无数条。

1.5 平行线的判定常用的判定方法包括:点线距离相等、夹角相等、平行线的等价定义等。

二、相交线的定义和性质相交线指在同一个平面内相交的两条直线。

相交线的性质如下:2.1 直线交于一点根据直线的定义,一条直线与另一条直线一定相交于一个点。

2.2 夹角的特性两条相交直线之间会形成两对相对的夹角:相邻角和对顶角。

相邻角指的是两条直线之间有一个公共点,并且在该公共点上有一条共同的边的角,它们是相互独立的。

对顶角指的是两条直线之间有一个公共点,并且在该公共点上没有共同的边的角,它们是相等的。

2.3 相交线的性质相交线的性质还包括垂直线和角平分线。

垂直线是指两条直线的夹角为90度,垂直于另一条直线。

角平分线是指将一个角分成两个相等角的直线。

三、平行线与相交线的应用平行线与相交线的概念在数学中有广泛的应用,特别是在几何学和代数学中。

3.1 平行线的应用在几何学中,平行线的性质用于证明和构造各种定理。

例如,平行线截割同一直线上的两个平行线段,可以得到相似三角形。

基于这一原理,我们可以用相似三角形的性质来解决各种问题。

此外,平行线还与平行四边形和直角梯形等特殊四边形的性质相关。

平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳一、平行线的定义平行线是在同一个平面上,永远也不会相交的两条直线。

平行线的特点是它们的斜率相等,且不相交。

若两条直线平行,则可表示为l,m。

平行线的性质:1.平行线具有等于90°的斜角。

2.平行线与同一条直线垂直的直线也是平行线。

这一性质被称为垂直平行线定理。

3.如果一条直线与两条平行线相交,则它与另一条平行线的交角与第一条直线与第二条直线的交角相等。

4.平行线的反身性质:如果l,m,则m,l。

二、平行线的判定方法1.高度差法:通过计算两线间的垂直距离和斜率判断是否平行。

2.点斜式法:通过两点确定的直线斜率相等来判定。

3.斜率法:两直线斜率相等,则平行。

4.三角形内角和法:若两直线被一条直线所截,则截线两侧内角和相等,则平行。

三、相交线的定义相交线是指在同一个平面上,会相交的两条或更多条直线。

相交线两两相交于一点,称之为交点。

相交线的性质:1.相交线之间的交角之和等于180°,即交角互补。

2.两条相交线总有一对互为垂直的直线。

3.相交线的交点称为顶点,可以通过顶点来判断直线相交的情况,包括内角和外角。

四、平行线与相交线的关系1.平行线切割相交线定理:当一条直线与两条平行线相交时,它切割的两条平行线与该直线所夹的两对内角互补。

2.内错角定理:当两条平行线被一条截线相交时,直线截线所夹的内错角相等。

3.同位角定理:同位角为同侧的内角,当两直线被另一直线切割时,同位角相等。

4.外错角定理:当两条平行线被一条截线相交时,直线截线所夹的外错角互补。

五、应用举例1.在平行四边形中,对角线互相平分。

2.平行线截割三角形:当一条线段与两条平行线相交时,它将三角形切割成两个面积相等的三角形。

3.测量高度:通过测量两个平行线之间的垂直距离来确定垂直高度。

4.道路设计:在公路设计中,平行线可以将车道分隔开,并引导交通流向。

在几何学中,平行线与相交线是解决问题和证明定理中经常用到的概念。

七年级下册数学第五章相交线与平行线

七年级下册数学第五章相交线与平行线
以下是七年级下册数学第五章相交线与平行线的知识点:
1. 相交线:相交线是指两条直线在同一个平面内交于一点。

在相交线中,我们主要研究的是对顶角和邻补角。

对顶角相等,邻补角互补。

同时,我们还学习到了垂线,即直线与给定直线垂直,且交于一点。

2. 平行线:平行线是指两条直线在同一平面内,且不相交。

平行线具有传递性,即如果a平行于b且b平行于c,那么a平行于c。

此外,我们还学习了平行线的性质和判定方法。

3. 平行线的性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等。

这些性质是平行线的基本性质,也是解决相关问题的关键。

4. 平行线的判定方法:平行线的判定方法包括同位角相等、内错角相等、同旁内角互补等。

通过这些判定方法,我们可以确定两条直线是否平行。

5. 平行线的应用:平行线在几何学中有着广泛的应用,如证明两个三角形相似或全等、解决角度和距离的问题等。

同时,在现实生活中,平行线也有很多应用,如建筑、道路规划等。

以上是关于七年级下册数学第五章相交线与平行线的主要知识点,掌握这些知识点有助于更好地理解几何学中的基本概念和性质,提高解决问题的能力。

第五章相交线与平行线全章知识点归纳

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某 一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

相交线和平行线知识点

平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

相等的两个角互为对顶角。

2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章-相交线与平行线知识点整理————————————————————————————————作者:————————————————————————————————日期:关键词:相交线 平行线 知识点 整理相交线与平行线知识点整理摘要:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果αβ∠∠与是对顶角,那么一定有αβ∠=∠;反之如果αβ∠=∠,那么αβ∠∠与不一定是对顶角,⑶如果αβ∠∠与互为邻补角,则一定有180αβ∠+∠=︒;反之如果180αβ∠+∠=︒,则αβ∠∠与不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表: 图形 顶点 边的关系 大小关系 对顶角∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等 即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最124 3A BCDO短。

3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离 记得时候应该结合图形进行记忆。

如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长。

PO 是垂线段。

PO 是点P 到直线AB 所有线段中最短的一条。

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。

5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。

联系:具有垂直于已知直线的共同特征。

(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。

联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。

⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。

2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这•PA BO里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线) 3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行 4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥a ∴b ∥c 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。

5、三线八角两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。

如图,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方, 叫做同位角(位置相同)②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做内错角(位置在内且交错)③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做同旁内角。

④三线八角也可以成模型中看出。

同位角是“A ”型;内错角是“Z ”型;同旁内角是“U ”型。

6、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。

例如:如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8。

我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图。

如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁a b cabl1 2 3 45 6 7 8 1 6 BA D 23 45 7 89F EC内角;∠2与∠6是内错角;∠5与∠8对顶角。

注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成。

7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行几何符号语言: ∵ ∠3=∠2∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180°∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。

平行线的判定是写角相等,然后写平行。

注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”。

上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”。

⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行。

②如果两条直线都平行于第三条直线,那么这两条直线平行。

典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线。

A B F 21 AB C 1 7 A BCD26A DBF 1 BAF E 5 8 CAB C DEF1 2 3 4⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。

⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”。

“在同一平面内”是一项重要条件,不能遗漏。

⑵正确⑶不正确,正确的说法是“过直线外一点”而不是“过一点”。

因为如果这一点不在已知直线上,是作不出这条直线的平行线的。

典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行; ⑵由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;⑶由∠3+∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行。

5.3平行线的性质1、平行线的性质:性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补。

几何符号语言: ∵AB ∥CD∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD∴∠3=∠2(两直线平行,同位角相等) ∵AB ∥CD∴∠4+∠2=180°(两直线平行,同旁内角互补) 2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。

注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段ABE DFC1 2 3 AB C DEF1 2 3 4A E GBC F H DGH 的长度也就是直线AB 与CD 间的距离。

3、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,那么……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。

对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。

注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。

4、平行线的性质与判定①平行线的性质与判定是互逆的关系 两直线平行 同位角相等; 两直线平行 内错角相等; 两直线平行 同旁内角互补。

其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。

典型例题:已知∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B (已知)∴DE ∥BC (同位角相等, 两直线平行) ∴∠2=∠C (两直线平行 同位角相等)注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了。

典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数解答:∵DE ∥BC (已知)∴∠2=∠1=65°(两直线平行,内错角相等) ∵AB ∥DF (已知) ∴AB ∥DF (已知)ADEB C1 2 AD FBE C1 2 3∴∠3+∠2=180°(两直线平行,同旁内角互补)∴∠3=180°-∠2=180°-65°=115°5.4平移1、平移变换①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

相关文档
最新文档