第三章离散傅立叶变换.

合集下载

数字信号第三章 离散傅里叶变换

数字信号第三章  离散傅里叶变换

第三章离散傅里叶变换DFT: Discrete Fourier Transform第三章学习目标z理解傅里叶变换的几种形式z掌握离散傅里叶变换(DFT)及性质,圆周移位、共轭对称性,掌握圆周卷积、线性卷积及两者之间的关系z掌握频域抽样理论z掌握DFT的应用引言DFT要解决两个问题:一是频谱的离散化;二是算法的快速计算(FFT)。

这两个问题都是为了使计算机能够实时处理信号。

Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换可以得出一般的规律:一个域的离散对应另一个域的周期延拓;一个域的连续必定对应另一个域的非周期。

−jwndw e jwn 时域离散、非周期频域连续、周期z 时域周期化→频域离散化z 时域离散化→频域周期化离散连续周期性非周期性引言Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换离散时间、离散频率—周期序列的傅里叶级数由DTFT到DFS离散时间、离散频率的傅立叶级数(DFS)由上述分析可知,对DTFT,要想在频域上离散化,那么在时域上必须作周期延拓。

对长度为M的有限长序列x(n),以N为周期延拓(N≥M)。

注意:周期序列的离散傅里叶级数(DFS)只对有限长序列作周期延拓或周期序列成立。

……四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期(T0)非周期和离散(Ω=2π/T)离散(T)和非周期周期(Ωs=2π/T)和连续离散(T)和周期(T0)周期(Ωs=2π/T)和离散(Ω=2π/T)在进行DFS 分析时,时域、频域序列都是无限长的周期序列周期序列实际上只有有限个序列值有意义长度为N 的有限长序列可以看成周期为N 的周期序列的一个周期(主值序列)借助DFS 变换对,取时域、频域的主值序列可以得到一个新的变换—DFT ,即有限长序列的离散傅里叶变换3.1 离散傅里叶变换(DFT )的定义及物理意义——有限长序列的离散频域表示x(n)的N 点DFT 是¾x(n)的z 变换在单位圆上的N 点等间隔抽样;¾x(n)的DTFT 在区间[0,2π)上的N 点等间隔抽样。

第三章 离散傅立叶变换

第三章 离散傅立叶变换

第三章 离散傅立叶变换一、离散傅立叶级数计算题:1.如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为2N 的周期序列。

把)(~n x 看作周期为N 的周期序列有)(~)(~1k X n x ↔(周期为N );把)(~n x 看作周期为2N 的周期序列有)(~)(~2k X n x ↔(周期为2N );试用)(k X 1~表示)(k X 2~。

二、离散傅立叶变换定义填空题2.某DFT 的表达式是∑-==10)()(N k kl M Wk x l X ,则变换后数字频域上相邻两个频率样点之间的间隔是( )。

3.某序列DFT 的表达式是∑-==10)()(N k kl M W k x l X ,由此可看出,该序列的时域长度是( ),变换后数字频域上相邻两个频率样点之间隔是( )。

4.如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件( )。

5.采样频率为Hz F s 的数字系统中,系统函数表达式中1-z 代表的物理意义是 ),其中时域数字序列)(n x 的序号n 代表的样值实际位置是( );)(n x 的N 点DFT )k X (中,序号k 代表的样值实际位置又是( )。

6.用8kHz 的抽样率对模拟语音信号抽样,为进行频谱分析,计算了512点的DFT 。

则频域抽样点之间的频率间隔f ∆为_______,数字角频率间隔w ∆为 _______和模拟角频率间隔∆Ω ______。

判断说明题:7.一个信号序列,如果能做序列傅氏变换对它进行分析,也就能做DFT 对它进行分析。

( )计算题8.令)(k X 表示N 点的序列)(n x 的N 点离散傅里叶变换,)(k X 本身也是一个N 点的序列。

如果计算)(k X 的离散傅里叶变换得到一序列)(1n x ,试用)(n x 求)(1n x 。

9.序列}{0,0,1,1)(=n x ,其4点DFT )(k x 如下图所示。

现将)(n x 按下列(1),(2),(3)的方法扩展成8点,求它们8点的DFT ?(尽量利用DFT 的特性)(1)⎩⎨⎧-=)4()()(1n x n x n y 7~43~0==n n(2)⎩⎨⎧=0)()(2n x n y 7~43~0==n n(3)⎪⎩⎪⎨⎧=0)2()(3n x n y 奇数偶数==n n 10.设)(n x 是一个2N 点的序列,具有如下性质:)()(n x N n x =+另设)()()(1n R n x n x N =,它的N 点DFT 为)(1k X ,求)(n x 的2N 点DFT )(k X 和)(1k X 的关系。

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

第3章 离散傅里叶变换(DFT)
3.2 离散傅里叶变换的基本性质
一. 基本概念
1. 序列的圆周移位 序列x(n),长度为N,则x(n)的圆周移位定义为:
y(n) x((n m))N RN (n) circshift(a,[0,-1])
循环移位过程:
x(n) 周期延拓 x(n) x((n))N 左移m位
x(n), n 0,1, , N 1
N 1
X (z) ZT [x(n)] x(n)zn
n0 N 1
, X (k) DFT[x(n)] x(n)WNkn
n0
比较上面二式可得关系式:
0 k N-1
X (k ) X ( z) , j2 k ze N
0 k N-1
(3.1.3)
序列x(n)的N点DFT是 x(n)的Z变换在单位圆上的N点等间隔采样
(4) 周期为N 的离散周期信号
DFS
N 1
j 2 nk
X (k) x(n)e N
n0
x(n)
1
N 1
j 2 nk
X (k)e N
N k0
k ~ n ~
时域离散周期频域周期离散。频谱特点:周期为N的离散谱
第3章 离散傅里叶变换(DFT)
四种傅立叶变换:
1. 连续非周期 2. 连续周期 3. 离散非周期 4. 离散周期
m0
yc (n) y(n qN )RN (n)
q
序列的N点圆周卷积是序列线性卷积(以N为周期)周
期延拓序列的主值序列。故,当N≥[N1+N2-1]时,线性 卷积与圆周卷积相同。
圆周卷积 是针对DFT引出的一种表示方法
两序列长度必须等,不等时按要求补零

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n

x( n)e jnw
X (z)
n


x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n


x ( n) z n
n


x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T

时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t

时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )



T T
X (e jT )e jnT d
取样定理
n

x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8

《离散傅里叶变换-第三章》

《离散傅里叶变换-第三章》
( ∑ X ()W ( k ∑ XX kk ) = ∑ xxnnW ) ==∑ eex ( n= W )e
n0 0 = kn 8 7
3
3
2π − j kn 8
3 − j kπ 8
(2) 设变换区间N=16, 则
X(k) = ∑ x(n)W
n= 0
3π k −j 16
π
N= 0 = n0 0
2 = ∑ e, k = 0,1, ⋅ ⋅ ⋅, 7 π N =0 sin( k ) 8
2. 时域循环移位定理 设x(n)是长度为N的有限长序列,y(n)为x(n)的循环移位,即: y(n)=x((n+m))NRN(n) 则: Y(k)=DFT[y(n)]=W-kmNX(k) 其中:X(k)=DFT[x(n)], 0≤k≤N-1
kn 证明: Y ( k ) = DFT [ y (n )] = x (( n + m )) N RN (n )WN ∑ N− 令n+m=n′,则有1 n =0 N −1
~
~ ∞
x (n ) =
m =−∞

x ( n + mN )
(3.1.5)
(3.1.6) ••
~
x (n ) ••
0
••
N-1

n
x (n ) = x ( n ) ⋅ RN (n )
~
~
••
••
~(n ) x
•• •
0
••

••
•• •
~
••
N-1

n
一般定义周期序列 x(n) 中从n=0到N-1的第一个周期为 x(n)的主 n) x(n) (3.1.7) x( 值区间,而主值区间上的序列称为x(n) 的主值序列。(3.1.7) x(n)

第3章-DFT变换

第3章-DFT变换
第3章 离散傅里叶变换(DFT)
3.1 离散傅里叶变换的定义
3.2 离散傅里叶变换的基本性质
3.3 频率域采样
3.4 DFT的应用举例
3.1 离散傅里叶变换的定义
3.1.1 DFT的定义 设x(n)是一个长度为M的有限长序列, 则定义x(n)的N 点离散傅里叶变换为
kn X (k ) DFT[ x(n)] x(n)WN , k 0,1,, N 1 1.1) (3. k 0 N 1
所以, 在变换区间上满足下式:
IDFT[X(k)]=x(n), 0≤n≤N-1
由此可见, (3.1.2)式定义的离散傅里叶变换是唯一的。 例 3.1.1 x(n)=R4(n) ,求x(n)的8点和16点DFT 设变换区间N=8, 则
X (k ) x (n )W8kn e
n 0 N 0
Y (k ) DFT [ y ( n )]
kn x (( n m)) N RN ( n )WN n 0 kn x (( n m)) N WN n 0 N 1 N 1
令n+m=n’, 则有
Y (k )
N 1 m n m

k x((n)) NWN ( nm ) N 1 m n m
N 1
0 k N-1
比较上面二式可得关系式
X (k ) X ( z )
z e
j
2 k N
, ,
Hale Waihona Puke 0 k N-1 0 k N-1
(3.1.3) (3.1.4)
X ( k ) X ( z j )
2 k N
图 3.1.1 X(k)与X(e jω)的关系
3.1.3 DFT的隐含周期性

第三章 离散傅立叶变换.

第三章 离散傅立叶变换.

第三章 离散傅立叶变换一、离散傅立叶级数计算题:1.如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为2N 的周期序列。

把)(~n x 看作周期为N 的周期序列有)(~)(~1k X n x ↔(周期为N );把)(~n x 看作周期为2N 的周期序列有)(~)(~2k X n x ↔(周期为2N );试用)(k X 1~表示)(k X 2~。

二、离散傅立叶变换定义填空题2.某DFT 的表达式是∑-==10)()(N k kl M Wk x l X ,则变换后数字频域上相邻两个频率样点之间的间隔是( )。

3.某序列DFT 的表达式是∑-==10)()(N k kl M W k x l X ,由此可看出,该序列的时域长度是( ),变换后数字频域上相邻两个频率样点之间隔是( )。

4.如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件( )。

5.采样频率为Hz F s 的数字系统中,系统函数表达式中1-z 代表的物理意义是 ),其中时域数字序列)(n x 的序号n 代表的样值实际位置是( );)(n x 的N 点DFT )k X (中,序号k 代表的样值实际位置又是( )。

6.用8kHz 的抽样率对模拟语音信号抽样,为进行频谱分析,计算了512点的DFT 。

则频域抽样点之间的频率间隔f ∆为_______,数字角频率间隔w ∆为 _______和模拟角频率间隔∆Ω ______。

判断说明题:7.一个信号序列,如果能做序列傅氏变换对它进行分析,也就能做DFT 对它进行分析。

( )计算题8.令)(k X 表示N 点的序列)(n x 的N 点离散傅里叶变换,)(k X 本身也是一个N 点的序列。

如果计算)(k X 的离散傅里叶变换得到一序列)(1n x ,试用)(n x 求)(1n x 。

9.序列}{0,0,1,1)(=n x ,其4点DFT )(k x 如下图所示。

现将)(n x 按下列(1),(2),(3)的方法扩展成8点,求它们8点的DFT ?(尽量利用DFT 的特性)(1)⎩⎨⎧-=)4()()(1n x n x n y 7~43~0==n n(2)⎩⎨⎧=0)()(2n x n y 7~43~0==n n(3)⎪⎩⎪⎨⎧=0)2()(3n x n y 奇数偶数==n n 10.设)(n x 是一个2N 点的序列,具有如下性质:)()(n x N n x =+另设)()()(1n R n x n x N =,它的N 点DFT 为)(1k X ,求)(n x 的2N 点DFT )(k X 和)(1k X 的关系。

第3章离散傅里叶变换(DFT)09-10-1

第3章离散傅里叶变换(DFT)09-10-1
序列的DFS级数系数的主值序列!
§3.2 离散傅里叶变换的基本性质
一. 线性性质
x1(n)和x2(n)是两个有限长序列,长度分别为N1和N2
y(n)=ax1(n)+bx2(n)
式中a、 b为常数, 即N≥max[N1, N2], 则y(n)的N
点DFT为:
(补零问题!)
Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1
➢再 反 转 形 成 x2((-m))N , 取 主 值 序 列 则 得 到 x2((m))NRN(m),通常称之为x2(m)的圆周反转; ➢对x2(m)的圆周反转序列圆周右移n,形成
x2((n-m))NRN(m); ➢当n=0,1,2,…,N-1时,分别将x1(m)与x2((n-m))NRN(m)相 乘,并在m=0到N-1区间内求和,便得到其循环卷积y(n)。
y(n) x((n m))N RN (n)
则循环移位后的DFT为
Y (k) DFT [ y(n)] DFT [x((n m))N RN (n)] WNmk X (k)
证:利用周期序列的移位性质加以证明
DFS [x((n m)) N ] DFS [~x (n m)] WNmk X~(k)
x1(n)
0
N-1
~x2 (n)
0
N-1
n n
~x2 (m)
x2 0 mN RN (m)
0
m
x2 1 mN RN (m)
0
x2
2
mN
RN
(m)
m
0
m
x2 3 mN RN (m)
0
m
y(n) x1(n) N x2 (n) ➢两个长度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档