《勾股定理,实数综合测试卷》
中考数学总复习《勾股定理》专项测试卷-附带参考答案

中考数学总复习《勾股定理》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.以下列各组线段为边作三角形,不能构成直角三角形的是( )A.1,2,√5B.3,4,5C.3,6,9D.2√3,7,√612.如图,Rt△ABC中AB=9,BC=6,∠B=90∘将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为( )A.4B.3C.2D.53.如图,将一根长为8cm(AB=8cm)的橡皮筋水平放置在桌面上,固定两端A和B然后把中点C竖直地向上拉升3cm至D点,则拉长后橡皮筋的长度为( )A.8cm B.10cm C.12cm D.15cm4.将一个有45∘角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30∘角,如图,则三角板的最大边的长为( )A.3cm B.6cm C.3√2cm D.6√2cm 5.已知直角三角形两边的长为3和4,则此三角形的周长为( )A.12或7+√7B.7+√7C.12D.以上都不对6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.直角三角形的两边长m,n满足m2+√2n−8−6m=−9,则第三边长是( )A.5B.5或√7C.4或√7D.48.根据下列所给条件,能判定一个三角形是直角三角形的有( )①三条边的边长之比是1:2:3②三个内角的度数之比是1:1:2③三条边的边长分别是13,14,15④三条边的边长分别是√2,√3,√5A.1个B.2个C.3个D.4个二、填空题(共5题,共15分)9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=cm.10.如图AB=5,AC=3边BC上的中线AD=2,则△ABC的面积为.11.如图,在△ABC中,已知AB=2,AD⊥BC垂足为D,BD=2CD若E是AD的中点,则EC=.12.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若直角三角形的一个锐角为30∘,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”,设AB=a,则图中阴影部分面积为.(用含a的代数式表示)13.平面直角坐标系中A(0,4),B(−3,0)点C在x轴正半轴上,且△ABC为等腰三角形,则点C的坐标为.三、解答题(共3题,共45分)14.如图,D为等腰Rt△ABC外一点AB=AC,DA=DB连接DC,若∠ADB=45∘.求证:CD=√3AD.15.如图,在△ABC中∠ACB=90∘,AC=BC点M,N在AB边上,连接CM,CN若∠MCN=45∘,AM=BN求证:MN=√2AM.16.如图,在△ABC中AB=20,AC=12,∠ACB=90∘,D是BC上一点,把△ABC沿直线AD折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.参考答案1. 【答案】C2. 【答案】A3. 【答案】B4. 【答案】D5. 【答案】A6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】310. 【答案】611. 【答案】112. 【答案】(2+√3)a2,0)或(2,0)或(3,0)13. 【答案】(7614. 【答案】过点A作AE⊥AD,取AE=AD,连接EB,ED.证△ACD≌△ABE∴CD=BE∵AE=AD=BD,AE⊥AD∴∠EDA=∠AED=∠ADB=45∘∴∠EDB=45∘+45∘=90∘.∴DE2+BD2=BE2=CD2∵DE2=AE2+AD2=2AD2∴CD2=2AD2+BD2=3AD2∴CD=√3AD.15. 【答案】过点C作CD⊥CM,取CD=CM连接DN,DB.证△CAM≌△CBD,△CMN≌△CDN∴MN=DN,BD=AM=BN∠CBD=∠A=∠CBN=45∘∴△BDN是等腰直角三角形∴DN2=BD2+BN2∴MN2=2AM2∴MN=√2AM.16. 【答案】设CD=x∵AB=20,AC=12和∠ACB=90∘∴BC=16.∵把△ABC折叠,使AB落在直线AC上∴BD=BʹD=16−x,BʹC=AB−AC=20−12=8,∠DCBʹ=90∘∴在Rt△DCBʹ中CD2+BʹC2=DBʹ2∴x2+82=(16−x)2解得x=6×12×6=36.∴重叠部分(阴影部分)的面积为12。
勾股定理习题(附答案)

C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
勾股定理及实数测试题

— 1 —001.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是 ( )A 、2h ab = B .2222h b a =+C .h b a 111=+D .222111hb a =+ 002.如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .cm 2B .cm 3C .cm 4D .cm 5003的平方根________________.004.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.005.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.006.在数轴上画出8- ,7的点.007.下图的正方形网格,每个正方形顶点叫格点,(1)请在图中画一个面积为10的正方形. (2)画一个边长为无理数的直角三角形008.如图所示,在边长为c 的正方形中,有四个斜边为c 、直角边为b a ,的全等直角三角形,你能利用这个图说明勾股定理吗?写出理由.009.如图所示,15只空油桶(每只油桶底面直径均为60cm )堆在一起,要给它盖一个遮雨棚,遮雨棚起码要多高?第25题图第27题图第28题图AEBDC第10题图— 2 —AFB010.如图所示,在Rt ABC ∆中,090ACB ∠=,CD 是AB 边上高, 若AD=8,BD=2,求CD .011.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
012.△ABC 中,∠ACB=90º,M 为AB 中点,∠PMQ=90º,说明:PQ 2=AP 2+BQ 2。
013.正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC=41BC ,说明∠EFA=90º。
勾股定理测试题及答案

勾股定理测试题及答案一、选择题(每题 5 分,共 30 分)1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理 a²+ b²= c²(其中 a、b 为直角边,c 为斜边),可得斜边 c =√(5²+ 12²) =√(25 + 144) =√169 = 13 厘米。
2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,25 ≠ 36,所以不能组成直角三角形;选项 B,5²+ 12²= 25 + 144 = 169,13²=169,所以能组成直角三角形;选项 C,5²+ 11²= 25 + 121 = 146,12²= 144,146 ≠ 144,所以不能组成直角三角形;选项 D,2²+ 3²=4 + 9 = 13,4²= 16,13 ≠ 16,所以不能组成直角三角形。
3、一个直角三角形,两直角边长分别为 3 和 4,下列说法正确的是()A 斜边长为 25B 三角形的周长为 12C 斜边长为 5D 三角形的面积为 6答案:C解析:根据勾股定理,斜边长为√(3²+ 4²) =√25 = 5,选项 A 错误,选项 C 正确;三角形的周长为 3 + 4 + 5 = 12,选项 B 错误;三角形的面积为 1/2 × 3 × 4 = 6,选项 D 正确。
4、若直角三角形的三边长分别为 2,4,x,则 x 的值可能有()A 1 个B 2 个C 3 个D 无数个答案:B解析:当 x 为斜边时,x =√(2²+ 4²) =√20 =2√5;当 4 为斜边时,x =√(4² 2²) =√12 =2√3。
24-25八年级数学第一次月考卷(深圳专用,北师大版八上第1~2章:勾股定理+实数)(考试版A4)

2024-2025学年八年级数学上学期第一次月考卷(深圳专用)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版第一章勾股定理+第二章实数。
5.难度系数:0.68。
第Ⅰ卷一、选择题:本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列数中是无理数的是()A.2πB.3.1415926C.117D. 3.6-2.以下列各组数为边长,不能构成直角三角形的是()A.8,15,17B.7,24,25C.6,8,10D.1,13)A3=B=C6´=D+= 4.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A.16B.25C.144D.1695.实数a ,b 在数轴上的位置如图所示,且|a |>|b ||2a +b |的结果为( )A .2a +b .﹣2a +b C .a +b D .2a ﹣b6.使代数式y =有意义的自变量x 的取值范围是( )A .4x ¹B .3x >C .3x ³D .3x ³且4x ¹7.在四边形ABCD 中,AD BC ∥,90D Ð=°,5AD =,3BC =,分别以A ,C 为圆心,大于12AC 的长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A B C .D .48.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD ,交于点O .若1AD =,4BC =,则22AB CD +等于( )A .15B .16C .17D .20第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
勾股定理实数综合测试题

北师大版勾股定理、实数综合测试一:填空题1.9的平方根是_____________,算术平方根是______________.2. 化简2)4(3ππ-+-=_____________3. 21-的相反数是____________,绝对值是______________. 4.实数a 、b 、c 在数轴上的对应点如图所示,则a+2a b c b c +---=_______________。
b c 0 a5.大于,小于的整数有______个。
6. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC等于______________.7. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC等于______.8. 在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt △ABC =________ 二:选择题9. 下列说法中,正确的是( )A. 有理数都是有限小数.B. 无限循环小数都是无理数C. 有理数和无理数都可以用数轴上的点表示D. 无理数包括正无理数,0和负无理数 10. 估算56的值应在( )A. 6.5~7.0之间B. 7.0~7.5之间C. 7.5~8.0之间D. 8.0~8.5之间11. 在1.414,3-,132π,π5,32-中,无理数的个数是( ) A. 1 B. 2 C. 3 D. 412. 下列各式中正确的是( )A.981±=B.38944944=⨯= C. 74343432223=+=+=+D. 1)14.3(0=-π13. 绝对值小于3的所有实数的积为( )A. 6B. 12C. 0D. 6-14.对于来说( )A .有平方根B .只有算术平方根 C. 没有平方根 D. 不能确定 15.若实数a 满足a 2 +a=0,则有( )A .a>0 B.a ≥0 C.a<0 D.a ≤016. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为( ).(A )6 (B )8.5 (C )1320 (D )1360三:计算题 17. ①12-()()021232.16--- ②81)1(2=--xABED⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛32224-23-6④75-81-312-325.0+③18. 若01=+++b a a ,求20082008b a +的值19. 一个正数的平方根为x+3与2x-6,求这个数。
勾股定理单元测试卷(含答案)

勾股定理单元测试卷一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 任意三角形2. 勾股定理中的两个直角边的平方和等于斜边的平方,斜边被称为:A. 勾B. 股C. 斜边D. 高3. 在直角三角形中,若直角边的长度分别为3和4,则斜边的长度是:A. 5B. 6C. 7D. 84. 勾股定理的发现者是谁?A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 哥白尼A. a² + b² = c²B. c² = a² + b²C. a² b² = c²D. c² a² = b²二、填空题(每题2分,共10分)6. 勾股定理的公式是:__________。
7. 在直角三角形中,若直角边的长度分别为5和12,则斜边的长度是__________。
8. 勾股定理在中国被称为__________。
9. 勾股定理的发现时间大约在公元前__________年。
10. 勾股定理的发现者毕达哥拉斯是__________国人。
三、解答题(每题5分,共20分)11. 已知直角三角形的两个直角边长度分别为8和15,求斜边的长度。
12. 在直角三角形中,若斜边的长度为17,且一个直角边的长度为8,求另一个直角边的长度。
13. 勾股定理的证明方法有很多种,请简述其中一种证明方法。
14. 请举例说明勾股定理在实际生活中的应用。
答案部分一、选择题答案1. B2. C3. A4. A5. C二、填空题答案6. a² + b² = c²7. 138. 勾三股四弦五9. 50010. 希腊三、解答题答案11. 斜边长度为17。
12. 另一个直角边的长度为15。
13. 勾股定理的证明方法有很多种,其中一种是通过面积证明。
将直角三角形分为两个小直角三角形和一个矩形,分别计算它们的面积,然后通过面积关系推导出勾股定理。
勾股定理检测卷及答案(共4套)

数学:第18章勾股定理综合检测题检测试题(总分:120分,时间:90分钟)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶1B.12 C.1D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52 B.34,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米 5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( ) A.600米 B.800米 C.1000米 D.不能确定 6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A.C.L 3D.L 47,(2006年山西吕梁课改)如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A.S 1=S 2 B.S 1<S 2 C.S 1>S 2 D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A.1 D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______.13,直角三角形的三边长为连续偶数,则这三个数分别为__________. 14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米. 15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________. 16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm.17,如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 . AB C A B C 图2 图1 B C E D图3 图5图418,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里. 三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.20,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=mk ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.24,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.小河北A 图10数学:第18章勾股定理综合检测题检测试题(1)参考答案:一、1,B;2,B;3,D;4,A;5,C.点拨:画出图形,东南方向与西南方向成直角;6,B.点拨:在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,x2x=5.7736;7,A;8,D.点拨:设斜边为13x,则一直角边长为5x,12x,所以 13x+5x+12x=60,x=2,即三角形分别为10、24、26;9,D.点拨:AE===2;10,A.二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76;18,30.三、19,设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,有(3m)2+(4m)2=(5m)2,所以以3m、4m、5m为边长的三角形是直角三角形.20,15m.21,如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线.在Rt△A′DB中,由勾股定理求得A′B=17km.22,(1)设直角三角形的两条边分别为a、b(a>b),则依题意有22513a ba b+=⎧⎨+=⎩由此得ab=6,(a-b)2=(a+b)2-4ab=1,所以a-b=1,故小正方形的面积为1.(2)如图:23,(1)当S=150时,k150==5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k倍,则三边为3k,4k,5k,•而三角形为直角三角形且3k、4k为直角边.其面积S=12(3k)·(4k)=6k2,所以k2=6S,k,即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).数学:第18章勾股定理综合检测题检测试题 一﹑选择题(每小题3分, 共30分)1. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( ) A . 4 B . 8 C . 10 D . 122.小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度3.如图1,中字母A 所代表的正方形的面积为( ) A. 4 B. 8 C. 16 D. 644. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A. 钝角三角形B. 锐角三角形C. 直角三角形D. 等腰三角形 5. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( )A. 18cmB. 20 cmC. 24 cmD. 25cm 6. 适合下列条件的△ABC 中, 直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580;④;25,24,7===c b a ⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个 7. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形8. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( ) A. 15° B. 30° C. 45° D. 60° 9.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE的面积为( ) A .6cm 2 B .8cm 2 C .10cm 2 D .12cm 210.已知,如图3,,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B .30海里 C .35海里 D .40海里二﹑填空题 (每小题3分, 共24分) 11. 利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .12.如图5, 等腰△ABC 的底边BC为16, 底边上的高AD 为6, 则腰长AB 的长为____________.13.如图6,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为_________ m. 14. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________=AB 米.15. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形. 16. 木工做一个长方形桌面, 量得桌面的长为60cm, 宽为32cm, 对角线为68cm, 这个桌面 (填”合格”或”不合格”).( 图5) AB C 200m 520mDCBA(图6)F北南 A 东(图3)17. 直角三角形一直角边为cm 12,斜边长为cm 13,则它的面积为 .18. 如图7,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 . 三、 解答题 (共66分)19. (8分) 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)20. (8分)如图, 在△ABC 中, AD ⊥BC 于D, AB=3, BD=2, DC=1, 求AC 2的值.A21. (10分) “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?22. (10分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗? 23.(10分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题.24.(10分)如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域. (1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?四、创新探索题(10分)一只蚂蚁如果沿长方体的表面从A 点爬到B1点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm 、宽为1cm 、高为4cm.观测点 小汽车E A B八年级勾股定理单元检测题参考答案(2)1.C2.D3.D4.C5.D6.A7.D8.C9.A 10.D 11、勾股定理,222a b c += ;12、10; 13、480; 14、15; 15、直角; 16、合格; 17、30; 18、25. 三19、13米20、AC 2=621、20=v 米/秒=72千米/时>70千米/时,超速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一二章综合练习
一、选择题:
1、在0.458,∙
2.4,2
,
4
.0,3
001
.0-,7
,0.212212221这几个数中有理数有
( )个.
A.4
B.3
C.2
D.1
5、三角形的三边长分别为a 、b 、c ,且满足等式:()ab c b a 222=-+,则此三角形是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形 7、商店出售下列形状的地砖:(1)正方形;(2)长方形;(3)正五边形;(4)正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( ) A.1种 B.2种 C.3种 D.4种 8、时钟从下午1:00到1:20,时针和分针旋转的角度分别是( )
A.5°,60°
B.10°,60°
C.6°,30°
D.10°,120° 9、如图,小华剪了两条宽为1且它们的交角为60°,则它们重叠部分的面积为(
A.
2
B.1
C.
3
32 10、如果x <0,那么
x
x
-2
化简的结果为( )
A.0
B. -2x
C.2x
D.1 1、下列平方根中, 已经化简的是 【 】 A.
3
1 B.
20
C.
2
2 D.
121
2、下列说法中错误的是 【 】 (A )循环小数都是有理数 (B )
9
π是分数
(C )无理数是无限小数 (D )实数包括有理数和无理数 3、23-的算术平方根是 【 】 (A ) 3
1 (B )3 (C )
6
1 (D )6
4、在
122,,,,3,
,1.732,0.1010010001237
2
ππ 中,分数的个数是( )(A)1
(B)2 (C)3 (D)4 5、若21y =,则的值是( )
(A)1 (B)1- (C)1或1- (D)非上述答案
6、2(的平方根是( )
(A) 1.414- (B) 1.414± (D)7、在直角三角形中,两边的长为3和4,则第三边的长为( )
(A)5 (B)7 (C) (D) 5或 8、已知在直角三角形中,斜边长为10,斜边上的高为
245
,两直角边的比为3∶4,则
较短边的长为( )
(A)3 (B)6 (C)8 (D) 5 9、下列数组不是勾股数的是( )
(A)3, 4, 5 (B)5, 12, 13 (C)9, 40, 41 (D) 2, 2,
10,则最小的正整数a 是( )
(A)15 (B)45 (C)60 (D) 135
11、有四个三角形,分别满足下列条件:
(1)两角之和等于第三角;(2)三内角的度数比为3∶5∶4;
(3)两角的平方和等于第三角的平方;(4)两边的平方差等于第三边的平方. 其中直角三角形的个数为( )
(A)1 (B)2 (C)3 (D) 4
12、设a 是小于1的正数,且b =则a 与b 的大小关系是( ) (A)a b > (B)a b < (C)a b = (D)不能确定 二、填空题:
11、49的平方根是 ,327-= . 12、如图1,正方形A 的面积是 .
13、知0a <,则化简=
2
a。
14、3
64
的倒数是 ,2
)
9(-的平方根是 ;
15、若4是5m+1的算术平方根,那么2+10m= 。
16、已知直角三角形的两条直角边分别是4和5,这个直角三角形的斜边的长度在两个相邻的整数之间,这两个整数是_______和________。
17、已知a 、b 、c 为△ABC 的三边,且442222b a c b c a -=-则此三角形的形状为 。
18、平方根等于原数是 .
19、222524-的平方根为 ;= .
20、比较大小:
12
78
.
21、若a 为自然数,,则a = . 22、已知等边三角形的边长为1,则其高为 .
23、已知01a <<,化简1a --= .
24
4.461==,= .
25、设5-a ,整数部分为b ,则a = ;b = .
26、已知一三角形三边的长度比为1,则三角形的形状是 . 15、已知2(1)x +=4,那么x = .
16、已知实数a 、b 满足()0222=-+-a b a ,那么b -a = . 三、作图题:
21.如图, 在数轴上作与5对应的点。
四、计算或化简:(每小题4分,共16分)
22.2
101.0368
13
-
+-; 23.
4
75482
13
12
3-
+
;
24.()
(
)()
2
1211
218232005
2004
2
-++-+
--.
25.已知x 、y 为实数,2
44+-+-=x x y ,求y x 43+的值.。