北师版八年级数学上册第一二章勾股定理和实数习题和知识要点
北师版八年级数学上册第一章 勾股定理1 探索勾股定理

式中,涉及三个量,可“知二求一”.如果在直角
三角形中,已知两边的比值和另一边时,通常引入
一个辅助量,建立方程来求未知的边 .
2.运用勾股定理时,若分不清哪条边是斜边,则要分
类讨论,写出所有可能情况,以免漏解或错解 .
知1-练
例1 [母题 教材P4习题T1]在Rt△ABC中, ∠A,∠B,∠C 的对边分别为a,b,c,∠C=90° . (1)已知a=3,b=4,求c; (2)已知c=13,a=5,求b.
a2=c2-b2; b2=c2-a2
知1-讲
图示
感悟新知
知1-讲
勾股定理把“形”与 “数”有机地结合
基本思想
起来,即把直角三角形这个“形”与三 边关系这一“数”结合起来,它是数形
结合思想的典范
感悟新知
特别提醒
知1-讲
1. 在 Rt △ ABC 中,∠ C=90°,∠ A,∠ B,∠C的
对边分别为a,b,c,则有关系式a2+b2=c2. 在此关系
特别提醒
知2-讲
通过拼图验证定理的思路:
1. 图形经过割补拼接后,只要没有重叠、没有空隙,面积就不
会改变;
2. 根据同一种图形的面积的不同表示方法列出等式;
3. 利用等式性质变换验证结论成立.
即拼出图形→写出图形面积的表达式→找出等量关系→恒等变
形→推导结论.
续表 方法
伽菲尔德 总统拼图
图形
知2-讲
知1-练
感悟新知
1-1.在 Rt △ ABC 中,∠ C=90 °,∠ A,∠ B,∠ C知1-练 的对边分别为 a,b, c. 若 a ∶ b=3 ∶ 4,c=75, 求 a, b. 解:设a=3x(x>0),则b=4x. 由勾股定理得a2+b2=c2, 则(3x)2+(4x)2=752,解得x=15(负值已舍去). 所以a=3×15=45,b=4×15=60.
北师版八年级上册数学第一章勾股定理知识点以及练习题

八年级上册第一章勾股定理基础知识1、勾股定理直角三角形两直角边a,b 的平方和等于斜边 c 的平方,即 a 2b2 c 22、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a, b, c 有关系a2b2c2,那么这个三角形是直角三角形,且最长边所对的角是直角。
3、勾股数:满足a2b2 c 2的三个正整数,称为勾股数。
常见勾股数:(3、4、5)( 5、 12、 13)( 7、 24、 25)(6、 8、 10)( 15、 20、 25)( 8、 15、 17)( 9、 40、 41)(12、 35、 37)常见平方数:112=121122=144132=169142=196152=225 162=256172=289182 =324192=361102=100 152=225252=625242 =576【基础训练】1、在△ ABC中,∠ C= 90°,( l )若 a = 5, b=12,则 c =;( 2)若 c= 15, a= 9,则 b=.2、直角三角形的斜边长为17cm,一条直角边长为15cm,则直角三角形的面积为 _________cm23、如图,在 Rt ABC 中,AB=1,则 AB 2BC 2AC 2的值为()AA、2B、4C、6D、 8BC4、如图,求等腰△ABC的面积。
5、如图,在ABC 中, B =90,AC=17,BC=15,求AB的长。
7、一个零件的形状如图所示,已知AC AB , BC BD , AC 12cm, AB 16cm , CD52cm ,求这个零件 ABCD 的面积。
b ccb8、如图,阴影长方形的面积是多少?9、有一个圆柱,它的高等于 5 厘米,底面圆的半径等于 4 厘米.在圆柱下底面 A 点有一只蚂蚁,它想吃到上底面上与 A 点相对的 B 点处的食物,沿圆柱侧面爬行的最短路程是多少?( π的值取 3) .10、如图,长方体盒子(无盖)的长、宽、高分别是12cm ,8cm,30cm, 在 AB 中点 C 处有一滴蜜糖,一只小虫从 P处爬到 C处去吃,有无数种走法,则最短路程是多少?11、如图,在棱长为10 厘米的正方体的一个顶点速度是 1 厘米 / 秒,且速度保持不变,问蚂蚁能否在A 处有一只蚂蚁,现要向顶点20 秒内从 A 爬到 B?B 处爬行,已知蚂蚁爬行的【巩固提高】一、选择题1. 下列结论错误的是().A. 三个角度之比为 1∶2∶ 3 的三角形是直角三角形B. 三条边长之比为 3∶4∶ 5 的三角形是直角三角形C. 三条边长之比为 8∶16∶ 17 的三角形是直角三角形D. 三个角度之比为 1∶1∶ 2 的三角形是直角三角形2. 小丰的妈妈买了一部 29 英寸 (74cm) 的电视机 , 下列对 29 英寸的说法中正确的是().A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度3. 下列各组数中不能作为直角三角形的三边长的是( ).A.1.5,2,3B.7,24,25C.6,8,10D.9,12,154. 直角三角形两直角边长分别为3 和 4, 则它斜边上的高是 ( )A.3.5B.2.4C.1.2D.5.5. 长方形的一条对角线的长为 10cm ,一边长为 6cm ,它的面积是() .A.60cm 2B.64 cm 2C.24 cm2D.48 cm26. 斜边为 17cm,一条直角边长为 15cm).的直角三角形的面积是(A.60B.30C.90D.1207. 如果梯子的底端离建筑物 5 米 ,13 米长的梯子可以达到该建筑物的高度是( ).A.12 米B. 13 米 C .14 米 D. 15 米8. 小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了 10分钟,小芳先去家拿了钱去图书馆,小芳到家用了 6分,从家到图书馆用了 8分,小芳从公园到图书馆拐了个 ( ) 角. A. 锐角 B. 直角 C. 钝角 D. 不能确定9. 如图 , 一圆柱高 8cm,底面半径 2cm,一只蚂蚁从点 A 爬到点 B 处吃食 , 要爬行的最短路程 ( 取 3)是() . A.20cm B.10cm C.14cm D. 无法确定10. 小刚准备测量一段河水的深度, 他把一根竹竿插到离岸边1.5m 远的水底 把竹竿的顶端拉向岸边 , 竿顶和岸边的水面刚好相齐 , 则河水的深度为 ( , 竹竿高出水面).0.5m,A .2mB. 2.5mC. 2.25mD. 3m二、填空题11. 如图,带阴影的正方形面积是.5 米3 米第11题第 12题第 13题第14题12. 如图为某楼梯 , 测得楼梯的长为 5米, 高 3米 , 计划在楼梯表面铺地毯, 地毯的长度至少需要米 .13.如图,在△ ABC中,∠ C=90°, BC=3, AC=4.以斜边 AB为直径作半圆,则这个半圆的面积是________.14. 如图,由 Rt△ ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形 N 的面积之和为cm2.15.传说 , 古埃及人曾用"拉绳” 的方法画直角 , 现有一根长 24 厘米的绳子 , 请你利用它拉出一个周长为24 厘米的直角三角形, 那么你拉出的直角三角形三边的长度分别为_______厘米 ,______ 厘米 ,________厘米 .16.一座桥横跨一江,桥长 12m,一艘小船自桥北头出发,向正南方向驶去,由于水流原因,到达南岸以后,发现已偏离桥南头 5m,则小船实际行驶了 _________m.三、解答题17.如图,小李准备建一个蔬菜大棚,棚宽 4 米,高 3 米,长 20 米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积 .3米4米20米18. 如图 , 长方体的长 BE=15cm,宽 AB=10cm,高 AD=20cm,点 M在 CH上 , 且 CM=5cm,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 M,需要爬行的最短距离是多少?C HMD CFAEB19. 如图,一架 2.5 米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足 B 到墙底端 C的距离为 0.7 米,如果梯子的顶端沿墙下滑0.4 米,那么梯足将向外移多少米?AA1B1B C20.如图所示的一块地,∠ ADC= 90°, AD=12m,CD= 9m, AB= 39m, BC= 36m,求这块地的面积 .21.如图,有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边AC沿直线 AD折叠,使它落在斜边 AB上,且与 AE重合,你能求出 CD的长吗?22. 如图,A城气象台测得台风中心在 A 城正西方向320km的 B 处,以每小时 40km的速度向北偏东 60°的 BF方向移动,距离台风中心 200km的范围内是受台风影响的区域 .(1)A城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么A城遭受这次台风影响有多长时间?23、(本小题12 分)探索与研究(方法 1)如图 5:对任意的符合条件的直角三角形绕其锐角顶点旋转且四边形 ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形90°所得,所以∠ BAE=90°,ABFE面积等于 Rt ⊿BAE和Rt ⊿ BFE的面积之和。
八年级上册数学北师大版知识点总结

第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
新北师大版八年级上数学勾股定理知识点+对应练习

勾股定理1、勾股定理定义:直角三角形的两直角边长的平方和等于斜边的平方。
如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.B弦ca勾ACb股勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边2.勾股定理定义的应用:〔1〕直角三角形的两边求第三边〔在ABC中,C90,那么22cab,22 bca,22 acb〕〔2〕直角三角形的一边与另两边的关系,求直角三角形的另两边〔3〕利用勾股定理可以证明线段平方关系的问题例.在Rt△ABC中,∠C=90°〔1〕假设a=5,b=12,那么c=________;〔2〕b=8,c=17,那么S△ABC=________。
3.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等DC式,推导出勾股定理HEG 常见方法如下:Fba方法一:4SS正方形S正方形ABCD,EFGH1224ab(ba)c,化简2A cBba可证acbc方法二:cbc四个直角三角形的面积与小正方形面积的和等于大正方形的面积.aba四个直角三角形的面积与小正方形面积的和为122S4abc2abc2大正方形面积为222S(ab)a2abb所以222 abc4.勾股定理的逆定理222如果三角形的三边长a、b、c满足a=c,那么这个三角形是直角三角形。
+b5.勾股数:满足a2+b2=c2的三个正整数叫做勾股数〔注意:假设a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
〕常见勾股数:3,4,5;6,8,10;9,12,15;5,12,1372425,81517注:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时应注意:〔1〕首先确定最大边,不妨设最长边长为:c;〔2〕验证c+b假设c2=a2+b2,那么△ABC是以∠C为直角的直角三角形2>a2+b2,那么△ABC是以∠C为钝角的钝角三角形;假设c2<a2+b2,那么△ABC为锐角三角形。
北师大版八年级上第一章勾股定理(附习题和答案)

第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3 B .4 C .5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBACA B E D练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例 2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ).A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c -+-+-=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cmCABD练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62 ,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
北师大版八年级上册第一章知识点

北师大版八年级上册第一章知识点一、勾股定理。
1. 定理内容。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别为a和b,斜边长度为c,那么a^2+b^2=c^2。
- 例如,一个直角三角形的两条直角边分别为3和4,那么斜边的平方c^2=3^2+4^2=9 + 16=25,所以斜边c = 5。
2. 勾股定理的证明。
- 常见的证明方法有赵爽弦图证明法等。
- 赵爽弦图:以直角三角形的斜边c为边长的正方形的面积等于以直角边a、b 为边长的四个直角三角形与一个小正方形面积之和。
即c^2=4×(1)/(2)ab+(b - a)^2,化简后可得c^2=a^2+b^2。
3. 勾股定理的应用。
- 已知直角三角形的两边求第三边。
- 当已知两条直角边a、b时,斜边c=√(a^2)+b^{2}。
- 当已知一条直角边a和斜边c时,另一条直角边b=√(c^2)-a^{2}。
- 解决实际问题中的直角三角形问题。
- 例如,在一个长方形中求对角线长度(长方形的相邻两边与对角线构成直角三角形);在一个梯形中,通过作高构造直角三角形来求相关线段长度等。
二、勾股定理的逆定理。
1. 定理内容。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
2. 判断直角三角形的方法。
- 首先计算三边的平方,看是否满足两短边的平方和等于长边的平方。
- 例如,三角形三边分别为3、4、5,因为3^2+4^2=9 + 16 = 25=5^2,所以这个三角形是直角三角形,其中边长为5的边所对的角为直角。
3. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数。
常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。
- 如果(a,b,c)是一组勾股数,那么ka、kb、kc(k为正整数)也是一组勾股数。
例如,(3,4,5)是勾股数,那么(6,8,10)(k = 2时)也是勾股数。
(完整)新版北师大数学八年级上册各章节知识点总结,推荐文档

第一章勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222a b c +=2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系,222a b c +=,那么这个三角形是直角三角形。
勾股数:满足222a b c +=的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x 就叫做a的平方根(或二次方根)。
八年级数学上册 第一章 勾股定理知识点与常见题型总结及练习 (新版)北师大版

第1章 勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c =b,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比拟,切不可不加思考的用两边的平方和与第三边的平方比拟而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC = 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BCCD AB⋅==⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,那么17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DECD == 在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,那么6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,那么以下结论中恒成立的是 ( )A 、2ab<c 2B 、2ab ≥c 2C 、2ab>c 2D 、2ab ≤c22、x 、y 为正数,且│x 2-4│+〔y 2-3〕2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为〔 〕A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,那么满足要求的直角三角形共有〔 〕A 、4个B 、5个C 、6个D 、8个4、以下命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,〔a>b=c 〕,那么a 2∶b 2∶c 2=2∶1∶1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 勾股定理 1.探索勾股定理课时1名师导航·预习指南知识要点勾股定理:如果直角三角形的两直角边为a 、b ,斜边为c ,那么22b a +2c =,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理的作用:勾股定理是直角三角形的重要性质之一,它把直角三角形的“形”的特征转化为两直角边的平方和等于斜边的平方的“数”的关系。
其主要应用有:(1)已知直角三角形的两边,求第三边,求第三边;(2)已知直角三角形的一边,确定另两边的关系;(3)证明含平方关系的问题等。
有时还要构造直角三角形,以便利用勾股定理。
经典例析 例:已知:如图,在△ABC 中,∠ACB = ,AB =5cm ,AC =3cm ,CD ⊥AB 于D ,求CD 的长.分析:由于△ABC 为直角三角形,就可先由勾股定理求出BC 。
再根据面积求出CD 的长。
解:由勾股定理可得222AB BC AC =+,即22253=+BC ,所以4=BC 。
,2121CD AB BC AC S ABC ⋅=⋅=∴∆ ∴,5214321CD ⨯⨯=⨯⨯ ∴.512=CD点评:此题关键在于用好勾股定理以及利用等面积法求高线。
1.在Rt △ABC 中,∠C=90°,(1)若a=5,b=12,则c=_______;(2)若a=9,c=41,•则b=_____. 2已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 . 3.直角三角形的两直角边长分别为5cm 和12cm ,则斜边上的高为_________.4.如图所示,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,•一只小鸟从一棵树的树梢飞到另一棵树的树梢至少飞了_______m .5.一直角三角形的斜边比一直角边大2,另一条直角边长为6,则斜边的长是( ) A .4 B .8 C .10 D .126.若直角三角形的两直角边各扩大1倍,则斜边扩大( ) A .112倍 B .1倍 C .2倍 D .4倍7.如图,字母A 代表的正方形面积是100,字母B 代表的正方形面积是64,则字母C 代表的正方形边长是( ) A .36 B .18 C .6 D .以上都不对8.如图,求下列阴影部分的面积与周长.9.如图,是某人在岛上的寻宝图,登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向走6千米,往东一拐仅1千米找到宝藏,•问登陆点到宝藏点的直线距离是多少?10.在池塘中有一朵荷花,它直立在水中,荷花高出水面半尺,一阵风吹来把荷花吹倒在一边,荷花倒在水面位置距荷花直立水平距离为2尺,如图,试问池塘深浅几何?课时2名师导航·预习指南知识要点勾股定理的验证(1)通过测量进行验证;(2)用直角三角形和正方形通过拼图进行验证。
在用拼图探索勾股定理的过程中,主要要清楚如下两点:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
②根据同一种图形面积的不同表示方法列出等式,是推导勾股定理的一种很重要的方法如图所示。
经典例析1.在Rt△ABC中,∠C=90°,AB=8cm,∠A=30°,则AC=______cm,BC=_______cm.2.在Rt△ABC中,∠C=90°,a:b:c=3:4:5,若c=25,则a=______,b=______.3.如图所示.(1)在图(1)中,AB=5,AC=2,BC=_______.(2)在图(2)中,BC边上的高为______,S△ABC=_______.(3)在图(3)中,正方形ABCD对角线BD=_______.(1) (2) (3)4.一棵树被大风刮倒后,折断处离地面3m,树的顶端,离树根4m,这棵树在折断之前的高度是()A.5m B.6m C.7m D.8m5.如图,折叠长方形的一边AD,使点D落在BC边点F处,若AB=8cm,BC=10cm,求CE的长.6.如图,一部云梯长25m,斜靠在一面墙上,梯子的底部离墙 7m.22(``)(``)A B A C -(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑4m ,那么梯子的底部在水平方向向右边 滑动了4m 吗?•为什么?解题方案: (1)设梯子与墙、地及墙角三点,构成三角形分别为Rt △ABC 及Rt △A ′B ′C ′,•由已知得AB=______,BC=______,由勾股定理可得,22AB BC -.(2)由已知可得AA ′=4m ,又因为AC=______,所以A ′C=______,在Rt △A ′CB ′中,B ′C= =_____,而BC=7m ,BB ′=B ′C-BC=_______,•显然梯子底部在水平方向上不止滑动4m .请与同伴交流.2.能得到直角三角形吗名师导航预习指南知识要点直角三角形的判别条件....(即勾股定理的逆定理) 如果一个三角形的三边长分别是a ,b ,c ,且满足22b a +2c =,那么这个三角形是直角三角形。
作用:它可应用于判断三角形是否为直角三角形,从而得到直角,两条直线垂直等信息,也可解决实际问题。
勾股数:满足22b a +2c =的三个正.整数..,称为勾股数。
常见的勾股数有:3,4,5; 5,12,13; 8,15,17; 7,24,25; 20,21,29; 9,40,41;……这些勾股数组的整数倍仍然是勾股数组,由这些勾股数的倍数为三边长的三角形也是直角三角形。
经典例析例:1如图,在一次夏令营活动中,•小明从营地A 点出发,沿北偏东60°方向走了3B 点,然后再沿北偏西30•°方向走了500米到达目的地C 点,求A 、C 两点间的距离.解:过点B 作NM 垂直于正东方向,垂足为M ,则∠ABM=60°.因∠NBC=30°,所以∠ABC=90°在Rt △ABC 中,2222(5003)500AB BC ++(米).1.(1)3a ,4a ,5a (a>0);(2)5k ,12k ,13k ;(3)3a ,4b ,5c ,•以上各组数能组成直角三角形的是___(填序号). 2.一个三角形的最大边是5,另一边是4,要使三角形为直角三角形,•则第三边长为_______.3.△ABC 中,a=9,b=12,①当c 2=______时,∠C 是直角,②当c 2=______时,∠B 是直角. 4.如图,已知S 1=81,S 2=225,S 3=144,则△ABC 是______,∠ACB=______. 5.在△ABC 中,AB=17,BC=30,BC 上的中线AD=8,则△ABC 为( ) A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 6.设a ,b ,c 为直角三角形的三边,则a :b :c 不可能是( ) A .3:5:4 B .5:12:13 C .2:3:4 D .8:15:177.三角形的三边长分别为n 2-1,2n ,n 2+1(n>1),则此三角形的形状为( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.无法判断 8.正方形的对角线长为1,则正方形的边长为( )A 2B 2.2 D 29.如图,AD⊥CD,AB=13,BC=12,CD=3,AD=4,试求四边形CDAB•的面积.10.如图,已知四边形ABCD 中,AB=20,BC=15,CD=7,AD=•24,∠B=90°,试说明∠A+∠C=180°.3.蚂蚁怎样走最近 名师导航·预习指南知识要点勾股定理在现实世界的广泛应用(1)将实际问题转化为由勾股定理解决实际问题,关键是构造直角三角形。
(2)表面路径问题,一般用拆面展开,展成平面后应用勾股定理。
(3)空间距离问题,一般从立体图形中找到直角三角形并运用勾股定理解题。
最短路线问题路程最短问题利用数学中建模思想构成直角三角形,利用勾股定理解决。
经典例析例:如图,据气象观测距沿海某城市A 的正南方向220km 的B•处有一台风中心,其中心最大风力为12级,每远离台风中心20km 风力就会减弱一级,•该台风中心现正在以15km/h 的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称受台响.风影 (1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?在Rt△ABD 中,∠B=30°,AB=220km .所以11AB 22011022AD =⨯=⨯=(km ). 因为110<20×(12-4)=160,所以A 市受台风影响.(2)在BC 上取点E ,F ,使AE=AF=160.则当台风中心在EF 上运动时,城市受到影响.在Rt△ADE 中,因为AD=110km ,AE=160km .所以2222160110AE AD --15km )EF=6015km ,t=601515=415(h ).1.•如果梯子底端离建筑物7m ,••那么25m•长的梯子可达到建筑物的高度是_______m .2.在野外平地上,刘强以4m/s 的速度向南走,刘亮以3m/s 的速度同时、同地向东走,10s 后两人相隔______m . 3.如图,有一圆柱,其高为12cm ,底面半径为3cm ,在圆柱下底面A 点处有一只蚂蚁,它想得到上底面B 处的食物,则蚂蚁经过的最短距离为_______cm .( 取3.0)(第3题) (第4题) (第5题)4.在三角形纸片ABC 中,∠C=90°,∠A=30°,AC=3,折叠该纸片,使A 点与B 点重合,折痕与AB ,AC 分别相交于点D 和点E ,如图.折痕DE 的长为_______.5.如图,有一个长、宽各2m ,高为3m 的封闭的长方体纸盒,一只昆虫从顶点A 要爬到顶点B ,那么这只昆虫爬行的最短距离为( ). A .3m B .4m C .5m C .6m 6.△ABC 中,∠A=12∠B=13∠C ,它的最长边为10cm ,则此三角形的最短边是( ). A .3cm B .4cm C .5cm D .6cm7.如图,一棵大树折断后倒在地上,请按图中所示的数据,计算大树没折断时的高度.8.如图,∠A=90°,AF=3cm ,AB=4cm ,正方形BCDE 的面积是169cm 2,当EF 为多长时,∠BFE=90°?第二章 实数 1.数怎么又不够用了 课时1知识要点复习回顾有理数的相关知识经典例析 例:下列各数中,哪些是有理数,哪些是不是有理数? 3.23,-21,8,0. ,0.2121121112…(相邻两个2之间1的个数逐次加1).解:因为有理数可以用有限小数或无限循环小数表示,所以3.23和0.是有理数;-21和8是有理数;因为无限不循环小数不是有理数,所以0.2121121112…(相邻两个2之间1的个数逐次加1)不是有理数. 答案有理数有:3.23,-21,8,0.36;不是有理数有:0.2121121112….1.我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,22A BC有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?先来看下面的问题:(1)16个边长为1的正方形拼成一个大的正方形,则这个大的正方形的面积是 ,边长 有理数(填“是” 或“不是”);(2)三个边长为2的正方形拼成一个大的正方形,则这个大的正方形的面积是 ,边长 有理数(填“是” 或“不是”).(3)在下图中,以直角三角形的斜边AC 为边的正方形的面积是 .设以斜边AC 为边的正方形的边长为b ,则b 应满足的条件是 .b 有理数(填“是” 或“不是”).2.我国国旗旗面为长方形,长与宽之比为3∶2,国旗通用制作尺寸为长240 cm ,宽160 cm ,国旗对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?3.为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板(如图),设木板长为a 米,则由勾股定理得a 2=12+22,即a 2=5,a 的值大约是多少?这个值可能是分数吗?4.如图,在△ABC 中,CD ⊥AB ,垂足为D ,AC =6,AD =5,问:CD 可能是整数吗?可能是分数吗?可能是有理数吗?5.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.课时2知识要点1.有理数与无理数的区别有理数总可以用有限小数或无限循环小数表示;反过来,任何有限小数或无限循环小数也都是有理数.而无理数是无限不循环小数,有理数和无理数区别之根本是有限及无限循环和无限不循环.有理数可化为分数,无理数不能化成分数。