2018秋人教版八年级上册数学教案:14.2.3乘法公式——添括号

合集下载

数学人教版八年级上册14.2.2乘法公式-添括号法则(教案)

数学人教版八年级上册14.2.2乘法公式-添括号法则(教案)
首先,我在讲授理论知识时,尽量用生动的语言和实际例子来解释抽象的概念,帮助同学们理解添括号法则的意义和作用。然而,我意识到在讲解过程中,还需要更多地关注学生的反馈,适时调整教学节奏,确保他们能够跟上我的思路。
其次,在实践活动和小组讨论环节,我发现同学们对于乘法公式在实际生活中的应用表现出较高的兴趣。但在讨论过程中,部分同学显得拘谨,不敢大胆提出自己的观点。为此,我计划在今后的教学中,更多地鼓励学生积极参与讨论,培养他们的自信心和团队协作能力。
3.重点难点解析:在讲授过程中,我会特别强调平方差公式和完全平方公式这两个重点。对于难点部分,如分解多项式时的符号确定和正确添括号,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与乘法公式相关的实际问题,如计算长方形面积时如何运用添括号法则。
举例:计算(2x+3)²和(2x-3)²,让学生学会运用完全平方公式展开和简化计算。
(3)添括号法则的应用:重点在于使学生能够根据添括号法则将多项式分解为单项式的乘积,简化计算过程。
举例:将4x²-9y²分解为(2x+3y)(2x-3y),训练学生熟练运用添括号法则。
2.教学难点
(1)平方差公式的理解与运用:学生容易混淆平方差公式中的“加”与“减”,以及如何将实际问题转化为平方差公式的形式。
2.创设更多贴近生活的实例,激发学生的学习兴趣,提高他们的应用能力;
3.鼓励学生大胆发言,培养他们的表达能力和团队合作精神;
4.指导学生掌握有效的复习方法,帮助他们巩固知识点,提高学习效果。
突破方法:通过具体例题,让学生观察、发现并总结平方差公式的特点,加深理解。
(2)完全平方公式的应用:学生在运用完全平方公式时,容易忘记“2ab”项,导致答案错误。

人教版八年级上册数学教案14.2 乘法公式(3课时)

人教版八年级上册数学教案14.2 乘法公式(3课时)

14.2乘法公式14.2.1平方差公式(第1课时)一、基本目标【知识与技能】掌握平方差公式,会用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性,感受数学知识的实际价值.二、重难点目标【教学重点】平方差公式.【教学难点】理解平方差公式的结构特征,灵活应用平方差公式.环节1自学提纲,生成问题【5 min阅读】阅读教材P107~P108的内容,完成下面练习.【3 min反馈】1.根据条件列代数式:(1)a、b两数的平方差可以表示为a2-b2;(2)a、b两数差的平方可以表示为(a-b)2.2.(1)(x+2)(x-2)=x2-4;(1+3a)(1-3a)=1-9a2;(x+5y)(x-5y)=x2-25y2.观察以上算式及其运算结果填空:上面三个算式中的每个因式都是多项式;等式的左边都是两个数的和与两个数的差的乘积,等式的右边是这两个数的平方的差.(2)平方差公式:(a +b )(a -b )=a 2-b 2.也就是说,两个数的和与这两个数的差的积,等于这两个数的平方差.3.已知a +b =10,a -b =8,则a 2-b 2=80. 4.计算(3-x )(3+x )的结果是9-x 2. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】运用平方差公式计算: (1)(3x -5)(3x +5); (2)(-2a -b )(b -2a ); (3)(x -2)(x +2)(x 2+4).【互动探索】(引发学生思考)观察各式子的特点,确定用什么公式计算? 【解答】(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25. (2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2. (3)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.【互动总结】(学生总结,老师点评)运用平方差公式计算时,要注意以下几点:(1)左边是两个二项式相乘,并且这两个二项式中一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【例2】计算:10015×9945.【互动探索】(引发学生思考)观察式子特点,直接计算比较难,将原式转化为⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15,用平方差公式计算.【解答】原式=⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15=10 000-125=99992425. 【互动总结】(学生总结,老师点评)可将两个因数写成相同的两个数的和与差,形成平方差公式结构.活动2 巩固练习(学生独学)1.下列运算中,可用平方差公式计算的是( C ) A .(x +y )(x +y )B .(-x +y )(x -y )C .(-x -y )(y -x )D .(x +y )(-x -y )2.如图1,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图2),利用这两幅图形的面积,可以验证的乘法公式是(a +b )(a -b )=a 2-b 2.3.长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为4a 2-9b 2. 4.若(m +3x )(m -3x )=16-nx 2,则mn 的值为±36. 5.计算:(1)⎝⎛⎭⎫34y +212x ⎝⎛⎭⎫212x -34y ; (2)⎝⎛⎭⎫-56x -0.7a 2b ⎝⎛⎭⎫56x -0.7a 2b ; (3)(2a -3b )(2a +3b )(4a 2+9b 2)(16a 4+81b 4).解:(1)254x 2-916y 2. (2)0.49a 4b 2-2536x 2. (3)256a 8-6561b 8.6.运用平方差公式简算: (1)2013×1923; (2)13.2×12.8.解:(1)原式=⎝⎛⎭⎫20+13×⎝⎛⎭⎫20-13=400-19=39989. (2)原式=(13+0.2)×(13-0.2)=169-0.04=168.96. 活动3 拓展延伸(学生对学)【例3】对于任意的正整数n ,整式(3n +1)(3n -1)-(3-n )(3+n )的值一定是10的倍数吗?【互动探索】要判断整式是否为10的倍数→需化简代数式→化简结果是否是10的倍数→做出判断.【解答】原式=9n 2-1-(9-n 2)=10n 2-10=10(n +1)(n -1). ∵n 为正整数,∴(n -1)(n +1)为整数,即(3n +1)(3n -1)-(3-n )(3+n )的值是10的倍数.【互动总结】(学生总结,老师点评)平方差公式中的a 和b 可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.环节3课堂小结,当堂达标(学生总结,老师点评)平方差公式:(a+b)(a-b)=a2-b2.请完成本课时对应练习!14.2.2完全平方公式第2课时完全平方公式一、基本目标【知识与技能】1.掌握完全平方公式及其结构特征.2.会用完全平方公式进行简单计算.【过程与方法】利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感态度与价值观】培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.二、重难点目标【教学重点】完全平方公式及其结构特征.【教学难点】灵活应用完全平方公式进行计算.环节1自学提纲,生成问题【5 min阅读】阅读教材P109~P110的内容,完成下面练习.【3 min反馈】1.按要求列代数式:(1)a、b两数和的平方可以表示为(a+b)2;(2)a、b两数平方的和可以表示为a2+b2.2.计算下列各式:(a+1)2=(a+1)(a+1)=a2+2a+1;(a-1)2=(a-1)(a-1)=a2-2a+1;(m-3)2=(m-3)(m-3)=m2-6m+9.3.完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.如图1可以用来解释(a+b)2-(a-b)2=4ab,那么通过图2面积的计算,验证了一个恒等式,此等式是(a-b)2=a2-2ab+b2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】运用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2; (4)(a+b+c)2.【互动探索】(引发学生思考)观察式子的特点,怎样运用完全平方公式进行计算?【解答】(1)(5-a)2=52-2·5·a+a2=25-10a+a2.(2)(-3m-4n)2=(-3m)2-2·(-3m)·4n+(4n)2=9m2+24mn+16n2.(3)(-3a+b)2=(-3a)2+2·(-3a)·b+b2=9a2-6ab+b2.(4)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2.【互动总结】(学生总结,老师点评)完全平方公式:(a±b)2=a2±2ab+b2,可巧记为“首平方,尾平方,积的2倍在中央,符号确定看前方”.【例2】计算:(1)9982;(2)(2)20182-2018×4034+20172.【互动探索】(引发学生思考)(1)直接计算9982比较复杂,考虑将998转化为1000-2,再利用完全平方公式计算.(2)逆用完全平方公式即可.【解答】(1)原式=(1000-2)2=1 000 000-4000+4=996 004.(2)原式=20182-2×2018×2017+20172=(2018-2017)2=1.【互动总结】(学生总结,老师点评)(1)中可将该式变形为(1000-2)2,再运用完全平方公式可简便运算.活动2巩固练习(学生独学)1.运算结果是x4y2-2x2y+1的是(C)A.(-1+x2y2)2B.(1+x2y2)2C.(-1+x2y)2D.(-1-x2y)22.若|a-b|=1,则b2-2ab+a2的值为(A)A.1B.-1C.±1D.无法确定3.下列关于962的计算方法正确的是(D)A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92164.运用完全平方公式计算:(1)(-3a+2b)2;(2)(a+2b-1)2;(3)50.012; (4)49.92.解:(1)4b2-12ab+9a2.(2)a2+4ab+4b2-2a-4b+1.(3)2501.0001.(4)2490.01.活动3拓展延伸(学生对学)【例3】如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.【互动探索】根据完全平方公式的结构特点→确定(m+1)xy的值→建立方程→确定m 的值.【解答】∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61.【互动总结】(学生总结,老师点评)两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【例4】已知a+b=4,ab=-5,求下列各式的值.(1)a 2+b 2; (2)(a -b )2.【互动探索】由已知等式联想到什么乘法公式?所求代数式与已知等式有什么关系?怎样求解?【解答】(1)a 2+b 2=(a +b )2-2ab .把a +b =4,ab =-5代入,得a 2+b 2=42-2×(-5)=16+10=26. (2)(a -b )2=(a +b )2-4ab .把a +b =4,ab =-5代入,得(a -b )2=42-4×(-5)=16+20=36. 【互动总结】(学生总结,老师点评)完全平方公式的常用变形: (1)a 2+b 2=(a +b )2-2ab =(a -b )2-2ab ; (2)ab =12[(a +b )2-(a 2+b 2)];(3)(a -b )2+(a +b )2=2(a 2+b 2); (4)(a +b )2+(a -b )2=4ab ; (5)(a +b )2=(a -b )2+4ab ; (6)(a -b )2=(a +b )2-4ab ; (7)ab =⎝⎛⎭⎪⎫a +b 22-⎝ ⎛⎭⎪⎫a -b 22; (8)a 2+b 2+c 2+ab +ac +bc =12[(a +b )2+(b +c )2+(a +c )2];(9)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc . 环节3 课堂小结,当堂达标 (学生总结,老师点评) 完全平方公式两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 字母表示:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2.请完成本课时对应练习!第3课时 添括号法则一、基本目标【知识与技能】理解并掌握添括号法则,综合运用乘法公式进行计算.【过程与方法】经历类比去括号法则,推出添括号法则的过程,发展学生的知识迁移能力,使学生逐渐掌握添括号法则.【情感态度与价值观】通过类比学习,掌握添括号法则,培养学生的归纳概括能力和发散思维.二、重难点目标【教学重点】添括号法则的推导和运用.【教学难点】添括号法则的运用.环节1自学提纲,生成问题【5 min阅读】阅读教材P111的内容,完成下面练习.【3 min反馈】1.去括号法则:a+(b+c)=a+b+c;a-(b+c)=a-b-c.2.反过来,就得到添括号法则:a+b+c=a+(b+c);a-b-c=a-(b+c).3.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.4.在括号内填入适当的项:(1)x2-2x+y=x2-(2x-y);(2)a-2b+3c=-(-a+2b-3c).5.根据添括号法则完成变形:(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)].环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按下列要求,给多项式3x3-5x2-3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“-”号;(3)把多项式后三项括起来,括号前面带有“-”号;(4)把多项式中间的两项括起来,括号前面“-”号.【互动探索】(引发学生思考)根据添括号法则,联系题目要求多项式的各项的符号变化进行添加.【解答】(1)3x3+(-5x2-3x+4).(2)-(-3x3+5x2)-3x+4.(3)3x3-(5x2+3x-4).(4)3x3-(5x2+3x)+4.【互动总结】(学生总结,老师点评)添括号时,明确括号前的符号以及括到的项.无论怎样添括号,原式的值都不能改变,可以用去括号法则检验是否正确.【例2】计算:(1)(a-m+2n)2;(2)(x-y-m+n)(x-y+m-n);(3)(2x-y-3)(2x-y+3);(4)(x-2y-z)2.【互动探索】(引发学生思考)利用添括号法则对原式添加括号→变为乘法公示结构→利用乘法计算公式进行计算.【解答】(1)原式=[(a-m)+2n]2=(a-m)2+4n(a-m)+4n2=a2-2am+m2+4an-4mn+4n2.(2)原式=[(x-y)-(m-n)][(x-y)+(m-n)]=(x-y)2-(m-n)2=x2-2xy+y2-(m2-2mn+n2)=x2-2xy+y2-m2+2mn-n2.(3)原式=[(2x-y)-3][(2x-y)+3]=(2x-y)2-9=4x2-4xy+y2-9;(4)原式=[(x-2y)-z]2=(x-2y)2-2z(x-2y)+z2=x2-4xy+4y2-2xz+4yz+z2.【互动总结】(学生总结,老师点评)此式需添括号变形成公式结构,再运用公式使计算简便.活动2巩固练习(学生独学)1.下列去(添)括号做法正确的有(C)A.x-(y-z)=x-y-zB.-(x-y+z)=-x-y-zC.x+2y-2z=x-2(z-y)D.-a+c+d+b=-(a+b)+(c+d)2.在横线上填入“+”或“-”号,使等式成立.(1)a-b=-(b-a);(2)a+b=+(b+a);(3)(a-b)2=+(b-a)2(4)(a-b)3=-(b-a)3.3.在括号内填上恰当的项:ax-bx-ay+by=(ax-bx)-(ay-by).环节3课堂小结,当堂达标(学生总结,老师点评)添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.简记:遇“加”不变,遇“减”都变.字母表示:a+b+c=a+(b+c);a-b-c=a-(b+c).请完成本课时对应练习!。

初中数学人教版八年级上册14.2 乘法公式教案

初中数学人教版八年级上册14.2 乘法公式教案

初中数学人教版八年级上册实用资料14.2乘法公式(第1课时)【教材分析】【教学流程】自主探究合作交流自主探究合作交流1.用多项式乘多项式的法则计算下列各题:()()()111x x+-=;()()()222m m+-=;()()()32121x x+-=;仔细观察分析上面每小题的两个因式与计算结果,你能发现什么规律,用自己的语言叙述出来.两个数的和与这两个数的差的积等于这两个数的平方差。

2、你能用具有一般性的字母表达式表示这一规律吗?(a+b)(a-b)=a2-b2(二)、探究平方差公式的正确性。

1、公式的代数验证。

思考:由特殊到一般的不完全归纳法得出的规律是需要验证的,你能用我们学过的整式乘法的知识说明(a+b)(a-b)=a2-b2这一公式的成立吗?我们把这个规律(a+b)(a-b)=a2-b2叫做平方差公式2、几何意义的验证。

将长为(a+b),宽为(a-b)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系.(三)、实践探索,类比应用。

例1、用平方差公式计算(1) (3x+2 )( 3x-2 ).(2) (b+2a)(2a-b)教师出示问题1.学生自主探究、合作交流、发现规律:式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,即:两个数的和与这两个数的差的积,就等于这两个数的平方差.这就是:平方差公式.并猜想出:()()22.a b a b a b+-=-教师提出问题,学生讨论解决:∵(a+b)(a-b) =a2-ab+ab-b2 =a2-b2∴(a+b)(a-b)=a2-b2教师出示问题的第2题.学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证平方差公式的正确性.教师引导学生学会从多角度、多方面来思考问题.对于任意的,a b都有()()22.a b a b a b+-=-教师出示例题1,提问:题目条件是否符合平方差?若能,请找出本题中a和b分别表示什么?(注意:3x以及2b都应该以整体形式出现,必须加括号。

人教版数学八年级上册14.2《完全平方公式(2)》名师教案

人教版数学八年级上册14.2《完全平方公式(2)》名师教案

第十四章整式的乘法与因式分解14.2 乘法公式第3课时〔陈丽〕一、教学目标〔一〕学习目标1.知道添括号法那么,并能熟练地给一些代数式添括号.2.进一步熟悉平方差公式和完全平方公式,能灵活运用公式进展计算.〔二〕学习重点理解添括号法那么,进一步熟悉乘法公式的合理运用.〔三〕学习难点在多项式与多项式的乘法中适当添括号到达运用公式的目的.二、教学设计〔一〕课前设计〔1〕阅读类任务:阅读课本完成以下问题添括号法那么:添括号时,如果括号前面是正号,括到括号里的各项都不变;如果括号前面是负号,括到括号里的各项都变为相反数.〔2〕模仿类任务:①a+(b c-+)=a-b+c ②a-( b-c ) = a-b+c③-( a-b )-c= -a+b-c④-( -a-b )+c=a+b+c【设计意图】稳固去括号法那么,为新知铺垫.〔3〕探索归纳类任务:计算以下各式.①a b c a-+=-( )++=+〔〕②a b c a③a b c---=-〔〕-c④a b c--+=-( )+c【设计意图】通过简单的添括号运算,同时稳固去括号法那么.〔1〕在括号内填上适当的项①x y z x+-=-〔〕②a b c d-+-=-〔〕-d【知识点】添括号法那么【思路点拨】添括号时,括号前面是正号,括到括号里面的各项都不变号,括号前面是负号,括到里面的每一项都要都要变成相反的符号,用去括号的逆运算验证.【解题过程】【答案】①y z -+ ②()a b c --+-〔2〕以下去括号和添括号的变形中,错误的选项是〔 〕A.()a b c a b c --=-+B.()a b c a b c --=-+C. ()()11a b c b c a +--+=-+-+D. ()a b c d a b d c -+-=-+-【知识点】添括号、去括号法那么【思路点拨】添〔去〕括号时,括号前面是正号,括号里〔外〕的各项都不变号,括号前面是负号,括号里〔外〕面的每一项都要都要变成相反的符号.【解题过程】()()11a b c b c a +--+=+-+【答案】C〔3〕将()1a b -+- ()1a b ++ 化为()()m n m n +- 的形式为( )A.()()11b a b a ++--⎡⎤⎡⎤⎣⎦⎣⎦B. ()()11b a b a ++-+⎡⎤⎡⎤⎣⎦⎣⎦C.()()11b a b a ++--+⎡⎤⎡⎤⎣⎦⎣⎦D. ()()11b a b a ++--⎡⎤⎡⎤⎣⎦⎣⎦【知识点】添括号法那么在公式中的运用【思路点拨】识别一样项和相反项,通过添括号把一样项和相反项分别结合即可【解题过程】()1a b -+- ()1a b ++=()()11b a b a ++-+⎡⎤⎡⎤⎣⎦⎣⎦【答案】 B(二)课堂设计〔1〕多项式与多项式相乘,就是用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;〔2〕两数和乘以两数差等于两数的平方差;〔3〕两数和〔差〕的平方等于两数的平方和再加上〔减去〕两数乘积的2倍探究一 添括号法那么●活动1 回忆旧知问题1 前面我们学习了整式的运算,其中整式的运算中去括号的法那么是什么呢?请同学们完成以下运算并回忆去括号法那么.〔1〕4+〔5+2〕〔2〕4-〔5+2〕〔3〕a+〔b+c〕〔4〕a-〔b-c〕解:〔1〕4+〔5+2〕=4+5+2=11〔2〕4-〔5+2〕=4-5-2=-3或:4-〔5+2〕=4-7=-3〔3〕a+〔b+c〕=a+b+c〔4〕a-〔b-c〕=a-b+c去括号法那么:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符号;如果括号前是负号,去掉括号后,括号里的各项都改变符号.也就是说,遇“加〞不变,遇“减〞都变.师生活动:学生计算,师生共同分析结果【设计意图】承前启后,为本节内容的引入作铺垫;让学生在计算过程中进一步稳固去括号法那么,体会去括号与添括号的互逆关系,从一般到特殊;四个算式从数到式,可以为抽象概括出一般的结论奠定根底.●活动2 整合旧知追问1:上述问题中恒等的两个多项式左右两边可以交换位置吗?4+5+2=4+〔5+2〕,a+b+c= a+〔b+c〕追问2:从左到右就从无括号变成了有括号,那添括号的法那么又是什么呢?追问3:你能对发现的规律用语言表述出来吗?师生活动:学生观察并独立思考,尝试着进展概括,发现添上括号时,括号前面是正号,括号里的各项都不变号,括号前面是负号,括号里面的每一项都要变成相反的符号.【设计意图】让学生经历具体---抽象的过程,体会研究数学问题从具体到抽象的思想方法,体会从特殊到一般的数学思想.探究二添括号法那么在乘法公式中的应用●活动1 添括号法那么在平方差公式中的应用〔1〕〔x+2y-3〕〔x-2y+3〕(2) (2x+y+z) (2x-y-z)问题2 你能把上面的式子表示成()()a b a b +-吗?【设计意图】让学生将式子转化平方差公式,开展学生观察,比拟,归纳的能力;学生转化的过程中,可以加深对公式构造特征的理解,也加深了理解一样项组合和相反项组合的组合原理. ●活动2 理解平方差公式的构造特征上面的式子变形为〔1〕()23x y +-⎡⎤⎣⎦ ()23x y --⎡⎤⎣⎦(2)()2x y z ++⎡⎤⎣⎦ ()2x y z -+⎡⎤⎣⎦问题3 你能说出谁代表公式里的a 和b 吗?师生活动:教师提出问题,学生独立思考,然后小组交流,师引导学生答复分解问题. 追问:你能运用平方差公式进展计算吗?【设计意图】重视公式的构造特征,可以帮助学生识别公式中的一样项和相反项● 活动3 添括号法那么在完全平方公式的应用你能把()21x y --变形成()2a b + 或者()2a b -吗?【设计意图】让学生将式子转化成完全平方公式,开展学生观察,比拟,归纳的能力;学生转化的过程中,可以加深对公式构造特征的理解,也加深了理解a b + 或a b - 不同的组合原理. ● 活动4 深刻理解完全平方公式的构造特征你能说出谁代表公式里的a 和b 吗?探究三 利用乘法和添括号技巧进展计算例1 ()()+a b c c a b +--【知识点】平方差公式,添括号法那么 【解题过程】 ()()+a b c c a b +--= ()b a c +-⎡⎤⎣⎦ ()b a c --⎡⎤⎣⎦=()222222b a c b a ac c --=-+- 【思路点拨】平方差公式的特征:组合成两数和与两数差.【答案】2222b a c ac --+针对练习 把代数式()()22222+5-25a ab b a ab b -++-+写成()()5+5M M - 的形式,求M .【知识点】平方差公式构造特征,添括号法那么.【解题过程】 ()()22222+5-25a ab b a ab b -++-+=()225+2a ab b ⎡⎤-+⎣⎦ ()2252a ab b ⎡⎤--+⎣⎦【思路点拨】平方差公式的特征:辨析一样项和相反项,组合成两数和与两数差【答案】222a ab b -+例2 计算:()22a b c +-【知识点】完全平方公式,添括号法那么.【解题过程】 ()22a b c +- =()22a b c +-⎡⎤⎣⎦ 或()22a c b -+⎡⎤⎣⎦ 或()22a b c +-⎡⎤⎣⎦ 等,答案为2224442a b c ab ac bc +++--. 【思路点拨】完全平方公式特征:两数和或两数差的平方.【答案】见解题过程针对练习 计算:()223x y --【知识点】完全平方公式,添括号法那么.【解题过程】()223x y -- =()223x y --⎡⎤⎣⎦ 或()223x y --⎡⎤⎣⎦ 或()223x y -+⎡⎤⎣⎦ 等,答案为22496412x y y xy x +++-- 【思路点拨】完全平方公式特征:两数和或两数差的平方【答案】见解题过程3. 课堂总结知识梳理(1)添括号法那么,并能熟练地给一些代数式添括号.添括号法那么:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号〔2〕进一步熟悉平方差公式和完全平方公式,能灵活运用公式进展计算.重难点归纳〔1〕理解添括号法那么,总体原那么,添括号后不改变原式大小.〔2〕在多项式与多项式的乘法中适当添括号到达运用公式的目的.〔3〕三项式的完全平方,等于各项的平方和加上两两相乘的积的2倍,即()bc ac ab c b a c b a 2222222+++++=++〔三〕课后作业根底型 自主突破1. 在以下式子中,变形正确的选项是〔 〕A.()2121x y x y --=+-B.21x y --= ()21x y --C.21x y --=()21x y ++D. 21x y --= ()21x y -+【知识点】添括号法那么【思路点拨】运用法那么括号前面是“+〞,括号里面的每一项都不变号,括号前面是“-〞 ,写在括号里面的每一项都要变成相反的符号.【解题过程】A.()2121x y x y --=+-- B.21x y --= ()2+1x y -C. 21x y --=()21x y -+【答案】D2. 以下运算正确的选项是〔 〕A .〔x +2〕(x -2)=x 2-2 B.(x +3y )(x -3y)=x 2-3y 2C .()22212221x y x y yx x y +-=++--+ D.(-3a -2)(3a -2)=4-9a 2【知识点】平方差、完全平方公式,添括号法那么【解题过程】A 符合平方差公式的构造特征,但是积应该是两数的平方差,2没有平方 B 同A ,D 添括号后符号没变正确,因此选C .【思路点拨】ABD 都能运用平方差公式计算,C 运用完全平方公式计算.【答案】C3. 〔-x -y 〕( )=x 2-y 2【知识点】平方差公式【解题过程】〔-x -y 〕(-x +y )=x 2-y 2【思路点拨】多项式的乘法积要得到两项式,不能直接用平方差公式,对式子进展变形,逆用平方差公式【答案】〔-x +y 〕 ()()2211a a +- 的结果是【知识点】平方差公式,积的乘方【解题过程】()()211a a +-⎡⎤⎣⎦ = ()221a - =4212a a +-【思路点拨】积的乘方的逆运算,平方差公式的运用【答案】4212a a +-5.如下图,从边长为a 的大正方形中挖去一个边长是b 的小正方形,小明将图a 中的阴影局部拼成了一个如图b 所示的矩形,这一过程可以验证〔 〕A.a 2+b 2-2ab =〔a -b 〕2B.a 2+b 2+2ab =〔a +b 〕2a 2-3ab +b 2=〔2a -b 〕〔a -b 〕 D.a 2-b 2=〔a +b 〕〔a -b 〕【知识点】完全平方公式【解答过程】D.a 2-b 2=〔a +b 〕〔a -b 〕【思路点拨】等积法【答案】D20a b -= 23c d -= 那么a c b d --+ 的值是〔 〕A .1 B. 2C . -3 D. -1【知识点】添括号法那么【解题过程】 a c b d --+=()()20233a b c d ---=-=-【思路点拨】把式子变成的形式,整体代入即可【答案】-3能力型 师生共研7.()2a b c +- 需要变形成〔 〕或〔 〕或〔 〕才能利用完全平方公式计算.【知识点】添括号法那么【解题过程】()2a b c +-=()2a b c +-⎡⎤⎣⎦ =()2a c b -+⎡⎤⎣⎦ =()2a b c +-⎡⎤⎣⎦【思路点拨】添括号有两种要么添“+〞要么添“-〞,再依据法那么进展变形【答案】()2a b c +-⎡⎤⎣⎦ ()2a c b -+⎡⎤⎣⎦ ()2a b c +-⎡⎤⎣⎦ ()2a b c --+⎡⎤⎣⎦ 等 8. 假设()212x -= ,那么代数式215-2x x + 的值为〔 〕 【知识点】完全平方公式,添括号法那么【解题过程】∵()212x -=∴22212,21x x x x -+=-= ∴215-2x x +=()2119525222x x --=-= 【思路点拨】由所得,由问题变形为和的形式,然后整体代入即可. 【答案】92探究型 多维突破9.〔m -n 〕2=144,〔m +n 〕2=400,那么m 2+n 2的值为〔 〕【知识点】完全平方公式【数学思想】方程思想【解题过程】∵〔m +n 〕2=222m mn n ++ ∴〔m -n 〕2=222m mn n -+∵〔m -n 〕2=144,〔m +n 〕2=400∴()222m n + =544,∴m 2+n 2=272.【思路点拨】完全平方和与完全平方差的转换【答案】27210. 假设x 2+y 2=12,且x +y =6,求xy 的值.【知识点】完全平方公式【数学思想】方程思想【解题过程】∵ x +y =6,()236x y +=∴()2x y +=222x y xy ++ =36∴xy =12【思路点拨】完全平方的构造特征【答案】12自助餐1.不改变代数式的值,把25x x xy y -+- 的二次项放在前面带有“+〞的括号里,把一次项放在带有“-〞的括号里,正确的选项是〔 〕A .()()2+5x xy x y +-- B.()()2+5x xy x y ---- C.()()2+5x xy y x ----D.()()2+5x xy y x -+--【知识点】添括号法那么【思路点拨】在不改变原式大小的前提下运用添括号法那么【答案】 D2. 23212mn n mn -+=- 〔 〕,括号内所填的代数式是〔 〕A.221n -B.221n mn -+C.221n mn -- D 221mn n -+【知识点】添括号法那么【解题过程】AD 改变了原式的大小;B 括号前面是“-〞每一项都要要改变符号;因此选C.【思路点拨】不改变原式大小的前提下,用添括号法那么做,用去括号法那么验证【答案】C()()a b c a b c +--- 以下变形正确的( )A. []2()a b c -+B. ()()a c b a c b -+--⎡⎤⎡⎤⎣⎦⎣⎦C. ()2a b c ++⎡⎤⎣⎦D.()()b a c b a c +---⎡⎤⎡⎤⎣⎦⎣⎦【知识点】平方差公式的构造特征,添括号法那么【解题过程】AC 两个式子并不是完全一样;B 添括号法那么正确:括号前是正号,括号里面每一项都不变号,D 项符号错误.因此选B .【思路点拨】先从平方差公式的构造特征辨析,然后用添括号法那么进展变形.【答案】B4. 如果多项式22=2242018P a b a b ++++ ,那么P 的最小值是B. 2021C.2021D. 2021【知识点】完全平方公式,平方的非负性【解题过程】222242018a b a b ++++=222112(211)2018a a b b ++-+++-+=()()221212015a b ++++∵21)(+a ≥0,2)1(2+b ≥0, ∴()()221212015a b ++++的最小值为2021 .【思路点拨】观察式子的特征,平方的非负性,灵活运用完全平方公式.【答案】C5. 实数a ,b 满足(a +b )2=1,(a -b )2=25,求a 2+b 2+ab 的值【知识点】完全平方差公式【数学思想】方程思想【解题过程】∵()2a b +22=2a b ab ++,()2222a b a b ab -=+-∴ ()2a b +-()2a b - =4ab ∵(a +b )2=1,(a -b )2=25∴6ab =- a 2+b 2+ab 2+(ab a b =+) ∴a 2+b 2+ab=(a +b )2-ab =7【思路点拨】运用完全平方公式展开找到条件与问题的联系【答案】720142015a x =+ ,20142016b x =+ ,20142017c x =+ ,求多项式222+a b c ab bc ac +--- 的值【知识点】 添括号法那么【解题过程】解:∵ 20142015a x =+,20142016b x =+,20142017c x =+∴a b -= 20142015(20142016)1x x +-+=-()20142016201420171b c x x -=+-+=- ()2014201520142017=-2a c x x -=+-+ ∴222+a b c ab bc ac +--- =2221(22+2222)2a b c ab bc ac ⨯+--- =()()()2221[]2a b a c b c -+-+- =3.【思路点拨】先求出()()()a b b c a c --- 的值,再把式子整理成这种形式代入即可.【答案】3。

人教版八年级数学上册(教案):14.2 乘法公式

人教版八年级数学上册(教案):14.2 乘法公式

乘法公式一、说教材1、教材所处的地位及前后联系本节课是《整式的乘除》的内容,是在学习了多项式和多项式相乘和平方差公式之后引入的又一种比较特殊多项式乘以多项式,即完全平方公式。

它和平方差公式一样,也是数学中最基本的一个公式,理解和运用完全平方公式,对于以后学习因式分解,解一元二次方程都具有举足轻重的作用。

2、教学目标:1)通过合作学习探索得到完全平方公式,培养学生认识由一般法则到特殊法则的能力。

2)通过体念、观察并发现完全平方公式的结构特征,并能从广义上理解公式中字母的含义。

3)初步学会运用完全平方公式进行计算。

3、教材的重点难点:本节课的重点是理解完全平方公式,运用公式进行计算。

难点是从广泛意义上理解公式中的字母,判明要计算的代数式是哪两个数的和(差)的平方。

二、说教法针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。

同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。

边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

另外本节课采用计算机辅助教学,利用多彩的图形世界引导学生完全平方公式的发现和推导,使代数教学不再枯燥。

三、说学法在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

四、说教学程序(一)合作学习,探求新知用投影片显示:1、如图所示,你能用不同的方法表示下面图形的面积吗?2、把学生回答的结果的不同形式板书在黑板上,提问这些表示的结果都相等吗?3、指出:即完全平方和公式。

4、模仿练习:(用两数和的完全平方公式计算(填空))1)=2)=5、换元拓展提问:等于什么?是否可以写成?你能继续做下去吗?通过讨论,尝试得到(二)探求规律,巩固练习1、探求规律在模仿运用公式的基础上,结合两个公式的特征,可用一句顺口溜来强化记忆:“首平方,尾平方,首尾两倍中间放。

人教版八年级数学上册14.2.2乘法公式添括号优秀教学案例

人教版八年级数学上册14.2.2乘法公式添括号优秀教学案例
2.合作探究:引导学生分组讨论,共同解决问题,培养学生的团队合作能力和沟通能力。
3.小组汇报:组织小组代表进行汇报,分享学习成果,提高学生的表达能力和自信心。
(四)反思与评价
1.学生自我反思:鼓励学生对自己的学习过程进行反思,发现自身存在的问题,制定改进措施。
2.同伴评价:学生之间相互评价,互相借鉴,共同提高。
3.练习与讲解:设计相关的练习题,让学生在实践中运用乘法公式,教师进行讲解和指导,帮助学生巩固所学知识。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,每组学生共同讨论乘法公式的应用和添括号的方法。
2.合作探究:引导学生分组讨论,共同解决问题,培养学生的团队合作能力和沟通能力。
3.小组汇报:组织小组代表进行汇报,分享学习成果,提高学生的表达能力和自信心。
4.反思与评价的环节:在教学过程中,我鼓励学生对自己的学习过程进行反思,发现自身存在的问题,制定改进措施。同时,也进行了同伴评价和教师评价,让学生之间相互借鉴,共同提高。这种反思与评价的环节能够帮助学生更好地认识自己的学习情况,提高他们的自我管理和自我提升能力。
5.有针对性的练习设计:我设计了一系列有针对性的练习题,让学生在课后巩固所学知识,提高运用乘法公式解决问题的能力。这些练习题不仅能够帮助学生巩固基础知识,还能够提高他们的应用能力和解决问题的能力。同时,我也会对学生的作业进行批改,给予反馈和指导,帮助学生进一步提高。
本节课的教学目标是通过实例讲解和练习,使学生掌握乘法公式的应用,特别是添括号的正确方法。教学过程中,我将采用启发式教学法、分组讨论法和实践操作法,引导学生主动探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
在教学案例中,我选择了与学生生活实际密切相关的问题,让学生在解决问题的过程中自然地引入乘法公式,并体会到添括号的重要性。同时,我注重个体差异,给予不同程度的学生个性化的指导,使他们在课堂上都能得到有效的提升。

人教版八年级数学上册14.2.3《添括号法则》教学设计

人教版八年级数学上册14.2.3《添括号法则》教学设计

人教版八年级数学上册14.2.3《添括号法则》教学设计一. 教材分析《添括号法则》是人教版八年级数学上册第14章的一节内容。

本节课的主要内容是让学生掌握添括号法则,并能够运用添括号法则解决实际问题。

教材通过例题和练习题的形式,引导学生理解和掌握添括号法则,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了有理数的混合运算和整式的运算,对于整式和有理数的运算法则有一定的了解。

但学生在解决实际问题时,往往不知道如何运用添括号法则,因此需要通过本节课的学习,使学生能够熟练掌握添括号法则,并能够灵活运用到实际问题中。

三. 教学目标1.让学生掌握添括号法则,并能够运用添括号法则解决实际问题。

2.培养学生的数学思维能力和解决问题的能力。

3.提高学生的学习兴趣,增强学生学习数学的自信心。

四. 教学重难点1.掌握添括号法则。

2.能够运用添括号法则解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过问题驱动,引导学生思考和探索;通过案例教学,使学生理解和掌握添括号法则;通过小组合作,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.PPT课件2.教学视频或案例七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生思考,怎样将问题中的数值用添括号的方式表示出来。

例如:一个班级有男生20人,女生15人,请问这个班级有多少人?2.呈现(10分钟)通过PPT课件,呈现添括号法则的定义和运用。

讲解添括号法则的原理和步骤,并通过例题进行演示。

3.操练(10分钟)学生分组进行练习,运用添括号法则解决问题。

教师巡回指导,解答学生的问题,并给予鼓励和评价。

4.巩固(10分钟)教师出示一些练习题,让学生独立完成。

通过练习题的解答,巩固学生对添括号法则的掌握。

5.拓展(10分钟)教师出示一些实际问题,让学生运用添括号法则进行解决。

例如:一个商店进购了苹果和香蕉两种水果,苹果每千克3元,香蕉每千克2元,请问购进苹果和香蕉共需要多少钱?6.小结(5分钟)教师引导学生总结本节课的学习内容,加深学生对添括号法则的理解和记忆。

初中数学添括号教案

初中数学添括号教案

初中数学添括号教案
教学目标:
1. 理解添括号的概念和意义;
2. 掌握添括号的方法和规则;
3. 能够正确运用添括号解决实际问题。

教学内容:
1. 添括号的定义和意义;
2. 添括号的方法和规则;
3. 添括号在实际问题中的应用。

教学过程:
一、导入(5分钟)
1. 引入添括号的概念,让学生尝试用自己的语言解释添括号的意义;
2. 举例说明添括号在数学运算中的作用。

二、讲解(20分钟)
1. 讲解添括号的方法和规则,包括如何添加括号以及添括号对运算结果的影响;
2. 通过例题演示添括号的过程,让学生跟随老师一起练习;
3. 解释添括号在实际问题中的应用,如解方程、简化表达式等。

三、练习(15分钟)
1. 给学生发放练习题,要求学生在纸上完成;
2. 老师巡回指导,解答学生的疑问;
3. 选取部分学生的作业进行讲解和点评。

四、总结(5分钟)
1. 让学生回顾本节课所学的内容,总结添括号的概念、方法和应用;
2. 强调添括号在数学运算中的重要性;
3. 鼓励学生在日常生活中多运用添括号解决问题。

教学评价:
1. 课堂讲解的清晰度和连贯性;
2. 学生练习的完成情况和理解程度;
3. 学生对添括号概念和应用的掌握程度。

教学反思:
本节课通过讲解和练习,让学生掌握了添括号的概念、方法和应用。

在讲解过程中,要注意举例生动有趣,让学生更容易理解和接受。

在练习环节,要关注学生的个别差异,给予个别学生更多的指导和鼓励。

通过本节课的学习,学生能够更好地运用添括号解决实际问题,提高数学运算能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018秋人教版八年级上册数学教案:14.2.3乘法公式——添括号
(1)( 4m+n)2 (2)(y −21)2 (3)(−a −b)2 (4)(b −a)2 解答:(1)( 4m+n)2 = 16m 2+8mn+n 2
(2) (y −21)2 = y 2−y+4
1 (3) (−a −b)
2 = a 2+2ab+b 2
(4) (b −a)2 = b 2−2ba+a 2
例2.运用完全平方公式计算: (1)1022 (2)992 解答:(1)1022 = (100+2)2 = 10000+400+4 = 10404
(2)992 = (100−1)2 = 10000−200+1 = 9801
四、添括号法则在公式里的运用
问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体,例如:(a+b+c)(a −b+c)和(a+b+c)2,这就需要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢? 学生回顾去括号法则,在去括号时:a+(b+c) = a+b+c ,a −(b+c) = a −b −c 反过来,就得到了添括号法则:a+b+c = a+(b+c),a −b −c = a −(b+c)
理解法则:如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.
总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,•所以我们可以用去括号法则验证所添括号后的代数式是否正确.
五、小结:
1.完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.
2.添括号法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算.。

相关文档
最新文档