14.2乘法公式(3)-添括号法则教学设计

合集下载

1422(2)添括号法则教案-人教版八年级数学上册

1422(2)添括号法则教案-人教版八年级数学上册

施秉县第三中学教师集体备课教案主备教师小组教师
上课时间年月日(星期)
第周第课时累计课时
课题14.2.2(2)添括号法则
教学目标:
1.类比去括号法则理解添括号法则。

2.能准确运用添括号法则进行计算。

3.通过经历添括号法则的探究,培养逆向思维能力。

教学重点:
掌握添括号法则的运用
教学难点:
添括号法则在乘法公式中的运用
教学方法及措施:
探究合作
教学过程修订、增减复习导入
1.去括号:
(1)4+(5+2)==
(2)4-(5+2)= =
(3)a+(b+c)=
(4)a-(b-c) =
2.去括号法则:
去括号时,如果括号前是,去括号后,括号里的各项都;如果括号前是,去括号后,括号里的各项都。

反过来,你能尝试得到添括号法则吗?
探究新课
添括号法则探究
阅读教材P111例5之前的内容,完成下面的填空:
(1)a+b+c=a+ ;
(2) a-b+c=a- .
归纳:添括号法则如果括号前是添“+”,括到括号里的各项都;
如果括号前面是添“-”,括到括号里的各项都。

范例
填空:(1)a-b-c=a- ; (2) a+b+c=a- .。

数学人教版八年级上册14.2.2乘法公式-添括号法则(教案)

数学人教版八年级上册14.2.2乘法公式-添括号法则(教案)
首先,我在讲授理论知识时,尽量用生动的语言和实际例子来解释抽象的概念,帮助同学们理解添括号法则的意义和作用。然而,我意识到在讲解过程中,还需要更多地关注学生的反馈,适时调整教学节奏,确保他们能够跟上我的思路。
其次,在实践活动和小组讨论环节,我发现同学们对于乘法公式在实际生活中的应用表现出较高的兴趣。但在讨论过程中,部分同学显得拘谨,不敢大胆提出自己的观点。为此,我计划在今后的教学中,更多地鼓励学生积极参与讨论,培养他们的自信心和团队协作能力。
3.重点难点解析:在讲授过程中,我会特别强调平方差公式和完全平方公式这两个重点。对于难点部分,如分解多项式时的符号确定和正确添括号,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与乘法公式相关的实际问题,如计算长方形面积时如何运用添括号法则。
举例:计算(2x+3)²和(2x-3)²,让学生学会运用完全平方公式展开和简化计算。
(3)添括号法则的应用:重点在于使学生能够根据添括号法则将多项式分解为单项式的乘积,简化计算过程。
举例:将4x²-9y²分解为(2x+3y)(2x-3y),训练学生熟练运用添括号法则。
2.教学难点
(1)平方差公式的理解与运用:学生容易混淆平方差公式中的“加”与“减”,以及如何将实际问题转化为平方差公式的形式。
2.创设更多贴近生活的实例,激发学生的学习兴趣,提高他们的应用能力;
3.鼓励学生大胆发言,培养他们的表达能力和团队合作精神;
4.指导学生掌握有效的复习方法,帮助他们巩固知识点,提高学习效果。
突破方法:通过具体例题,让学生观察、发现并总结平方差公式的特点,加深理解。
(2)完全平方公式的应用:学生在运用完全平方公式时,容易忘记“2ab”项,导致答案错误。

人教版八年级上册数学教案14.2 乘法公式(3课时)

人教版八年级上册数学教案14.2 乘法公式(3课时)

14.2乘法公式14.2.1平方差公式(第1课时)一、基本目标【知识与技能】掌握平方差公式,会用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性,感受数学知识的实际价值.二、重难点目标【教学重点】平方差公式.【教学难点】理解平方差公式的结构特征,灵活应用平方差公式.环节1自学提纲,生成问题【5 min阅读】阅读教材P107~P108的内容,完成下面练习.【3 min反馈】1.根据条件列代数式:(1)a、b两数的平方差可以表示为a2-b2;(2)a、b两数差的平方可以表示为(a-b)2.2.(1)(x+2)(x-2)=x2-4;(1+3a)(1-3a)=1-9a2;(x+5y)(x-5y)=x2-25y2.观察以上算式及其运算结果填空:上面三个算式中的每个因式都是多项式;等式的左边都是两个数的和与两个数的差的乘积,等式的右边是这两个数的平方的差.(2)平方差公式:(a +b )(a -b )=a 2-b 2.也就是说,两个数的和与这两个数的差的积,等于这两个数的平方差.3.已知a +b =10,a -b =8,则a 2-b 2=80. 4.计算(3-x )(3+x )的结果是9-x 2. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】运用平方差公式计算: (1)(3x -5)(3x +5); (2)(-2a -b )(b -2a ); (3)(x -2)(x +2)(x 2+4).【互动探索】(引发学生思考)观察各式子的特点,确定用什么公式计算? 【解答】(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25. (2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2. (3)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.【互动总结】(学生总结,老师点评)运用平方差公式计算时,要注意以下几点:(1)左边是两个二项式相乘,并且这两个二项式中一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【例2】计算:10015×9945.【互动探索】(引发学生思考)观察式子特点,直接计算比较难,将原式转化为⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15,用平方差公式计算.【解答】原式=⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15=10 000-125=99992425. 【互动总结】(学生总结,老师点评)可将两个因数写成相同的两个数的和与差,形成平方差公式结构.活动2 巩固练习(学生独学)1.下列运算中,可用平方差公式计算的是( C ) A .(x +y )(x +y )B .(-x +y )(x -y )C .(-x -y )(y -x )D .(x +y )(-x -y )2.如图1,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图2),利用这两幅图形的面积,可以验证的乘法公式是(a +b )(a -b )=a 2-b 2.3.长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为4a 2-9b 2. 4.若(m +3x )(m -3x )=16-nx 2,则mn 的值为±36. 5.计算:(1)⎝⎛⎭⎫34y +212x ⎝⎛⎭⎫212x -34y ; (2)⎝⎛⎭⎫-56x -0.7a 2b ⎝⎛⎭⎫56x -0.7a 2b ; (3)(2a -3b )(2a +3b )(4a 2+9b 2)(16a 4+81b 4).解:(1)254x 2-916y 2. (2)0.49a 4b 2-2536x 2. (3)256a 8-6561b 8.6.运用平方差公式简算: (1)2013×1923; (2)13.2×12.8.解:(1)原式=⎝⎛⎭⎫20+13×⎝⎛⎭⎫20-13=400-19=39989. (2)原式=(13+0.2)×(13-0.2)=169-0.04=168.96. 活动3 拓展延伸(学生对学)【例3】对于任意的正整数n ,整式(3n +1)(3n -1)-(3-n )(3+n )的值一定是10的倍数吗?【互动探索】要判断整式是否为10的倍数→需化简代数式→化简结果是否是10的倍数→做出判断.【解答】原式=9n 2-1-(9-n 2)=10n 2-10=10(n +1)(n -1). ∵n 为正整数,∴(n -1)(n +1)为整数,即(3n +1)(3n -1)-(3-n )(3+n )的值是10的倍数.【互动总结】(学生总结,老师点评)平方差公式中的a 和b 可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.环节3课堂小结,当堂达标(学生总结,老师点评)平方差公式:(a+b)(a-b)=a2-b2.请完成本课时对应练习!14.2.2完全平方公式第2课时完全平方公式一、基本目标【知识与技能】1.掌握完全平方公式及其结构特征.2.会用完全平方公式进行简单计算.【过程与方法】利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感态度与价值观】培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.二、重难点目标【教学重点】完全平方公式及其结构特征.【教学难点】灵活应用完全平方公式进行计算.环节1自学提纲,生成问题【5 min阅读】阅读教材P109~P110的内容,完成下面练习.【3 min反馈】1.按要求列代数式:(1)a、b两数和的平方可以表示为(a+b)2;(2)a、b两数平方的和可以表示为a2+b2.2.计算下列各式:(a+1)2=(a+1)(a+1)=a2+2a+1;(a-1)2=(a-1)(a-1)=a2-2a+1;(m-3)2=(m-3)(m-3)=m2-6m+9.3.完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.如图1可以用来解释(a+b)2-(a-b)2=4ab,那么通过图2面积的计算,验证了一个恒等式,此等式是(a-b)2=a2-2ab+b2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】运用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2; (4)(a+b+c)2.【互动探索】(引发学生思考)观察式子的特点,怎样运用完全平方公式进行计算?【解答】(1)(5-a)2=52-2·5·a+a2=25-10a+a2.(2)(-3m-4n)2=(-3m)2-2·(-3m)·4n+(4n)2=9m2+24mn+16n2.(3)(-3a+b)2=(-3a)2+2·(-3a)·b+b2=9a2-6ab+b2.(4)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2.【互动总结】(学生总结,老师点评)完全平方公式:(a±b)2=a2±2ab+b2,可巧记为“首平方,尾平方,积的2倍在中央,符号确定看前方”.【例2】计算:(1)9982;(2)(2)20182-2018×4034+20172.【互动探索】(引发学生思考)(1)直接计算9982比较复杂,考虑将998转化为1000-2,再利用完全平方公式计算.(2)逆用完全平方公式即可.【解答】(1)原式=(1000-2)2=1 000 000-4000+4=996 004.(2)原式=20182-2×2018×2017+20172=(2018-2017)2=1.【互动总结】(学生总结,老师点评)(1)中可将该式变形为(1000-2)2,再运用完全平方公式可简便运算.活动2巩固练习(学生独学)1.运算结果是x4y2-2x2y+1的是(C)A.(-1+x2y2)2B.(1+x2y2)2C.(-1+x2y)2D.(-1-x2y)22.若|a-b|=1,则b2-2ab+a2的值为(A)A.1B.-1C.±1D.无法确定3.下列关于962的计算方法正确的是(D)A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92164.运用完全平方公式计算:(1)(-3a+2b)2;(2)(a+2b-1)2;(3)50.012; (4)49.92.解:(1)4b2-12ab+9a2.(2)a2+4ab+4b2-2a-4b+1.(3)2501.0001.(4)2490.01.活动3拓展延伸(学生对学)【例3】如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.【互动探索】根据完全平方公式的结构特点→确定(m+1)xy的值→建立方程→确定m 的值.【解答】∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61.【互动总结】(学生总结,老师点评)两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【例4】已知a+b=4,ab=-5,求下列各式的值.(1)a 2+b 2; (2)(a -b )2.【互动探索】由已知等式联想到什么乘法公式?所求代数式与已知等式有什么关系?怎样求解?【解答】(1)a 2+b 2=(a +b )2-2ab .把a +b =4,ab =-5代入,得a 2+b 2=42-2×(-5)=16+10=26. (2)(a -b )2=(a +b )2-4ab .把a +b =4,ab =-5代入,得(a -b )2=42-4×(-5)=16+20=36. 【互动总结】(学生总结,老师点评)完全平方公式的常用变形: (1)a 2+b 2=(a +b )2-2ab =(a -b )2-2ab ; (2)ab =12[(a +b )2-(a 2+b 2)];(3)(a -b )2+(a +b )2=2(a 2+b 2); (4)(a +b )2+(a -b )2=4ab ; (5)(a +b )2=(a -b )2+4ab ; (6)(a -b )2=(a +b )2-4ab ; (7)ab =⎝⎛⎭⎪⎫a +b 22-⎝ ⎛⎭⎪⎫a -b 22; (8)a 2+b 2+c 2+ab +ac +bc =12[(a +b )2+(b +c )2+(a +c )2];(9)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc . 环节3 课堂小结,当堂达标 (学生总结,老师点评) 完全平方公式两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 字母表示:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2.请完成本课时对应练习!第3课时 添括号法则一、基本目标【知识与技能】理解并掌握添括号法则,综合运用乘法公式进行计算.【过程与方法】经历类比去括号法则,推出添括号法则的过程,发展学生的知识迁移能力,使学生逐渐掌握添括号法则.【情感态度与价值观】通过类比学习,掌握添括号法则,培养学生的归纳概括能力和发散思维.二、重难点目标【教学重点】添括号法则的推导和运用.【教学难点】添括号法则的运用.环节1自学提纲,生成问题【5 min阅读】阅读教材P111的内容,完成下面练习.【3 min反馈】1.去括号法则:a+(b+c)=a+b+c;a-(b+c)=a-b-c.2.反过来,就得到添括号法则:a+b+c=a+(b+c);a-b-c=a-(b+c).3.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.4.在括号内填入适当的项:(1)x2-2x+y=x2-(2x-y);(2)a-2b+3c=-(-a+2b-3c).5.根据添括号法则完成变形:(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)].环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按下列要求,给多项式3x3-5x2-3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“-”号;(3)把多项式后三项括起来,括号前面带有“-”号;(4)把多项式中间的两项括起来,括号前面“-”号.【互动探索】(引发学生思考)根据添括号法则,联系题目要求多项式的各项的符号变化进行添加.【解答】(1)3x3+(-5x2-3x+4).(2)-(-3x3+5x2)-3x+4.(3)3x3-(5x2+3x-4).(4)3x3-(5x2+3x)+4.【互动总结】(学生总结,老师点评)添括号时,明确括号前的符号以及括到的项.无论怎样添括号,原式的值都不能改变,可以用去括号法则检验是否正确.【例2】计算:(1)(a-m+2n)2;(2)(x-y-m+n)(x-y+m-n);(3)(2x-y-3)(2x-y+3);(4)(x-2y-z)2.【互动探索】(引发学生思考)利用添括号法则对原式添加括号→变为乘法公示结构→利用乘法计算公式进行计算.【解答】(1)原式=[(a-m)+2n]2=(a-m)2+4n(a-m)+4n2=a2-2am+m2+4an-4mn+4n2.(2)原式=[(x-y)-(m-n)][(x-y)+(m-n)]=(x-y)2-(m-n)2=x2-2xy+y2-(m2-2mn+n2)=x2-2xy+y2-m2+2mn-n2.(3)原式=[(2x-y)-3][(2x-y)+3]=(2x-y)2-9=4x2-4xy+y2-9;(4)原式=[(x-2y)-z]2=(x-2y)2-2z(x-2y)+z2=x2-4xy+4y2-2xz+4yz+z2.【互动总结】(学生总结,老师点评)此式需添括号变形成公式结构,再运用公式使计算简便.活动2巩固练习(学生独学)1.下列去(添)括号做法正确的有(C)A.x-(y-z)=x-y-zB.-(x-y+z)=-x-y-zC.x+2y-2z=x-2(z-y)D.-a+c+d+b=-(a+b)+(c+d)2.在横线上填入“+”或“-”号,使等式成立.(1)a-b=-(b-a);(2)a+b=+(b+a);(3)(a-b)2=+(b-a)2(4)(a-b)3=-(b-a)3.3.在括号内填上恰当的项:ax-bx-ay+by=(ax-bx)-(ay-by).环节3课堂小结,当堂达标(学生总结,老师点评)添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.简记:遇“加”不变,遇“减”都变.字母表示:a+b+c=a+(b+c);a-b-c=a-(b+c).请完成本课时对应练习!。

14.2.2 乘法公式(3)--添括号

14.2.2 乘法公式(3)--添括号
14.2.2乘法公式(二)
1、平方差公式3、添括号法则
(a+b)(a-b)=a2-b2例::
2、乘法公式练习
(a±b)2=a2±2ab+b2
教学反思
情感、态度与价值观:
培养良好的分析思想和与人合作的习惯,体会到数学算理的重要价值.
教学重点
正确应用乘法公式(平方差公式,完全平方公式).
教学难点
对乘法公式的结构特征以及内涵的理解.
教学用具
多媒体设备,课件。
教学方法(学习方法)
1.采用“引导──发现”法进行教学.
2.讲练、合作交流
教学过程
1、回顾旧知:
练习:P111第1题
3、新是正号,括到括号里的各项都不变号,如括号前面是负号,括到括号里的各项都变号。
四、范例学习,拓展知识
例1计算(2a-3b-4)(2a+3b+4)
该题关键在于正确的分组,一般规律是:把完全相同的项分为一组,符合相反、绝对值相等的项分为另一组.
2.在乘法计算中,能用公式简便计算的应该使用公式,要注意公式的应用条件,记住公式的模样,在此前提下对具体题目进行细致观察,想办法将题目调整或变形,使之能使用公式,当然,有些不能使用公式的整式乘法计算就只能运用一般的多项式乘法来进行了.
七、布置作业,专题突破
课本P112第3、4、5题.
备注(补充)
板书设计
1请同学们说一说平方差公式与完全平方公式的内容.
2.这两个公式有什么区别?如何使用?
平方差公式:(a+b)(a-b)=a2-b2
完全平方公式:(a±b)2=a2±2ab+b2
这里的字母a、b可以是数、单项式、多项式.
2、引入新课:

《添括号法则》教学设计(河北省县级优课)

《添括号法则》教学设计(河北省县级优课)

课题:运用乘法公式计算一、学习目标1、利用添括号法则灵活运用运算律及乘法公式进行多项式的乘法运算2、让学生经历“类比乘法公式对乘法算式进行变形”的过程3、在合作学习中进一步提高与同伴交流的能力,学会倾听,敢于展示二、学习重难点:重点:理解添括号法则,进一步熟悉乘法公式的合理利用难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.三、教学过程(一)自主学习在下列()里填上适当的项。

题(4)和题(5)可以运用哪个乘法公式计算。

类比乘法公式,什么相当于公式当中的a和b。

(1)a+b+c-d=a+( )(2)a-b+c-d=a-( )(3)x+2y-3=2y-( )(4)(2x+3y)(2x-3y)=( )(5)(3a-2b)2=( )教学要求:独立完成,小组内交流,推荐大号同学讲解展示。

设计意图:复习添括号法则及乘法公式,为利用乘法公式计算做准备。

★教师精讲点评:完全平方公式不要丢了“±2ab”项。

(二)合作学习1、出示题1:计算(2a+b+c)(2a+b-c)教学步骤:学生独立思考3分钟,然后小组合作交流5---7分钟,由小组派代表到黑板上板演,其他同学独立完成(板演的同学号越大小组加分越多)3分钟内完成。

学生完成后本组成员点评。

并由学生做总结(怎样添括号,这样添的目的是什么,运用了什么乘法公式)教师适时做点评、点拨。

(设计意图:学生在没有见过这类习题的情况下,让学生经历观察、比较、归纳、提出猜想的过程,学生在发现规律后,通过小组解决,有助于学生合作精神的培养。

学生点评,激发学生的学习热情,唤起学生的求知欲望。

)★教师精讲点评:1、哪两项通过添括号可以变为一个整体,即公式中的a、b也可以表示多项式。

2、计算过程中运用哪一个乘法公式必须要准确。

2、出示题2:计算(2x+y+3)(2x-y-3)教学步骤:学生独立完成,指号(4-5号)板演,换组点评设计意图:在题1已经完成的情况下,通过观察,探究添括号的方法。

数学人教版八年级上册14.2乘法公式(3)-添括号法则教学设计

数学人教版八年级上册14.2乘法公式(3)-添括号法则教学设计

14.2.3乘法公式——添括号法则教学设计天津第五十四中学戴文玉一、教材的地位和作用首先学生们在初一时学习过去括号法则,对此法则较为熟悉。

类比讲解添括号法则,可以借助于去括号法则反过来理解和运用。

同时添括号是本章的一个重点也是难点,对乘法公式的变式计算,以及今后学习因式分解、分式的运算及解方程等内容都会用到去括号和添括号的问题。

所以本节知识的教学对学生们的学习有承上启下的作用,要使学生掌握去括号和添括号法则,为今后学习打下基础。

二、学情分析初二的学生已经通过一年的学习掌握了一些必要数学基础知识和思考方式。

学生已初步了解了多项式的加减法、多项式乘法以及去括号法则等,这样的话本节课的知识比较易于理解。

另外学生们处于求知欲和表现欲都很强的阶段,可以给学生提高更多的表现机会,加强合作交流,多互动,多反馈。

同时在教学时,应注意讲练结合,随时注意纠正、反馈学生可能出现的符号、系数和计算等方面的错误。

二、教学目标(一)知识目标:掌握添括号法则的推导,能运用添括号法则,结合乘法公式,对项数是三项的多项式乘法进行运算;(二)能力目标:理解添括号法则的探究过程,学生经历合作交流,能够根据式子的结构特点,适当变形和灵活运用公式;(三)情感目标:让学生体会知识间的相互联系,掌握类比推理的方法。

培养学生合作交流的意识和探索知识的创新精神,鼓励学生大胆灵活运用知识和多角度思考问题的习惯。

三、教学重点、难点重点:添括号法则的推导,进一步熟悉乘法公式并灵活应用。

难点:掌握添括号法则,综合运用乘法公式对多项式变形计算。

四、教学方法小组合作、问题探究、变式训练、练习反馈五、教学过程六、教学反思:本节课的重点是添括号法则,所以在教学中要让学生掌握此法则并能灵活运用。

同时,计算的依据是各种乘法公式,所以学生对公式的熟练程度需要关注。

另外,添括号对式子进行变形时,要注意观察结构特点,掌握技巧,同时也要注意做题的步骤和依据。

本节课后还要加强训练,提醒学生符号的变化和公式的灵活应用。

2018秋人教版八年级上册数学说课稿:14.2.3乘法公式——添括号

2018秋人教版八年级上册数学说课稿:14.2.3乘法公式——添括号

2018秋人教版八年级上册数学说课稿:14.2.3乘法公式——添括号三、说学法按照新课改生本课堂的要求,把学习的主动权还给学生,提倡积极主动、勇于探索、合作交流的学习方式,体现学生在教学活动中的主体地位。

我在教学过程中努力把更多的学习时间还给学生,让他们在活动中学习,在学习中提高。

四、说教学过程(一)知识链接,引入课题首先,引导学生回忆平方差公式和完全平方公式,进一步巩固平方差公式中的相同项和相反项,以及公式中的“a”和“b”的意义,熟练运用乘法公式的关键就是准确找出公式中的“a”和“b”。

因此,我在这一环节中设计了三个练习题,让学生找出“a”和“b”。

前两题一目了然就能找出,第三题出现了三项,学生找“a”和“b”时出现了障碍。

我利用这一时机引入本节课的课题并展示学习目标,学生深刻体会到学习本节课的重要作用,让学生认识到学习数学新知识是为了解决遇到的新问题。

(二)独立预学,探索新知教学目标出示之后让学生带着问题去思考导学案上的以下四个问题:1、回顾去括号法则;2、练习去括号;3、将练习题的结果题目颠倒位置;4、观察上面式子的符号变化,探索添括号法则。

设计意图:四个问题环环相扣,层层递进,让学生一步一个脚印的完成了从去括号到添括号的过渡,培养了学生的逆向思维能力。

为了让每个同学都紧张高效的学习,我从自学哪些内容、思考哪些问题、明确时间等几个方面为同学做了一个自学指导,让学生带着问题在规定的时间内自主学习。

(三)合作互学,运用新知互学一:在学生充分思考并有了自己的见解之后,我让学生带着自己的见解由组长主持和组内学生交流。

设计意图:设计这一环节是为了培养学生独立思考的习惯和主动探究的意识。

互学二:在小组意见基本达到一致的前提下,由各组推选本组发言人,在全班进行展示。

设计意图:本环节的设计目的是让学生充分表现自己,体现自己的价值,更好的培养学生合作交流的能力,充分体现学生的主体地位。

通过小组评价激发了学生的积极性。

1422(3)添括号法则课件--人教版八年级数学上册

1422(3)添括号法则课件--人教版八年级数学上册
解:原式=[x+(2y-3)][x-(2y-3)] =x2+(2y-3)2 =x2+4y2-6y+9.
施秉县第三中学2020—2021学年度第一学期集体备课
(2)(a b c)2
解:原式=[a+(b+c)]2 =a2+(b+c)2 =a2+b2+2bc+c2.
施秉县第三中学2020—2021学年度第一学期集体备课
施秉县第三中学2020—2021学年度第一学期集体备课
14.2.2(3) 添括号法则
教研组:数学组 制作人:
时间:2020年7月
施秉县第三中学2020—2021学年度第一学期集体备课
导入新知
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2) (2)4-(5+2)
(3)a+(b+c)
(3)a-(b-c)
归纳小结
通过本节课的学习,你有何收获和体会
1. 我们学会了添括号法则,利用添括号 法则可以将整式变形,从而灵活利用乘 法公式进行计算.
2. 要体会到转化思想的重要作用,数 学的学习可以通过不断的转化得到新 知识,比如由繁到简的转化,由难道 易的转化.
施秉县第三中学2020—2021学年度第一学期集体备课
去括号法则: 去括号时,如果括号前是正号,去掉括号后,
括号里各项不变号;如果是负号,去掉括号 后,括号里各项都变号.
也就是说,遇“加”不变,遇“减”都变
施秉县第三中学2020—2Fra bibliotek21学年度第一学期集体备课
例题解析
4+5+2=4+(5+2)
4-5-2=4-(5+2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.2.3乘法公式——添括号法则
教学设计
天津第五十四中学戴文玉
一、教材的地位和作用
首先学生们在初一时学习过去括号法则,对此法则较为熟悉。

类比讲解添括号法则,可以借助于去括号法则反过来理解和运用。

同时添括号是本章的一个重点也是难点,对乘法公式的变式计算,以及今后学习因式分解、分式的运算及解方程等内容都会用到去括号和添括
号的问题。

所以本节知识的教学对学生们的学习有承上启下的作用,
要使学生掌握去括号和添括号法则,为今后学习打下基础。

二、学情分析
初二的学生已经通过一年的学习掌握了一些必要数学基础知识
和思考方式。

学生已初步了解了多项式的加减法、多项式乘法以及去括号法则等,这样的话本节课的知识比较易于理解。

另外学生们处于求知欲和表现欲都很强的阶段,可以给学生提高更多的表现机会,加强合作交流,多互动,多反馈。

同时在教学时,应注意讲练结合,随
时注意纠正、反馈学生可能出现的符号、系数和计算等方面的错误。

二、教学目标
(一)知识目标:掌握添括号法则的推导,能运用添括号法则,结合
乘法公式,对项数是三项的多项式乘法进行运算;
(二)能力目标:理解添括号法则的探究过程,学生经历合作交流,
能够根据式子的结构特点,适当变形和灵活运用公式;
(三)情感目标:让学生体会知识间的相互联系,掌握类比推理的方法。

培养学生合作交流的意识和探索知识的创新精神,鼓励学生大胆灵活运用知识和多角度思考问题的习惯。

三、教学重点、难点
重点:添括号法则的推导,进一步熟悉乘法公式并灵活应用。

难点:掌握添括号法则,综合运用乘法公式对多项式变形计算。

四、教学方法
小组合作、问题探究、变式训练、练习反馈
五、教学过程
教学环节教学思考
环节一
(一)温故知新(导行-复习回顾)
1、多项式与多项式相乘法则:(a+b)(m+n)=
2、公式:(x+a)(x+b)=
3、平方差公式:(a+b)(a-b)=
4、完全平方公式:(a+b)2= (a-b)2= 复习提问:计算下列各题
(1)(3x+2)(3x-2)= (2)(y-2)2=
(3)(2a+b)2=
(4)(x+2y-3)(x-2y+3)=? (5)(a+b+c)2= ?通过复习提问,引导学生回顾之前学习的乘法公式,并再最后提出问题导出本节课要探究的内容。

教学环节教学思考
环节二
(二)新知探究——热身运动(导行-复习回顾)
1、去括号法则是什么?
(1)4+(5+2)= (2)4-(5+2)=
(3)a+(b+c)= (4)a-(b-c)=
去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合。

通过复习去括号法则,让学生熟悉遇加不变,遇减都变的原则。

为接下来的学习做好准备。

教学环节教学思考环节三
(三)新课讲解(教师伴行,师生同行)
添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。

a+b-c=a+(b-c) a+b-c=a-(-b+c)
也是:遇“加”不变,遇“减”都变。

基础练习,加深理解
练习1.在等号右边的括号内填上适当的项: 把去括号的几组式子反过来看,引导学生观察思考。

并尝试归纳出:添括号法则。

(1)a+b-c=a+( );(2)a-b-c=a-( )
(3)a-b+c=a+( );(4)a+b+c=a-( )
思考:怎样检验添括号是否正确?
练习2.在括号内填入适当的项
(1)x2-x+2=x2-( )
(2)2x2-3x-1=2x2+( )
(3)(a-b)-(c-d)=a-( )
练习3.判断下列运算是否正确,不正确的请改正。

(1)2a-b-2c=2a-(b-2c);
(2)m-3n+2a-b=m+( 3n+2a-b)
(3)2y-3y+2=-( 2y+3y+2);
(4)a-2b-4c+5=(a-2b)-(4c+5) 巩固所学,归纳法则,并加强练习。

学生分组讨论,交流完成。

提醒学生注意法则,同时掌握技巧。

教学环节教学思考环节四
(四)例题讲解 1
例题1运用乘法公式计算(1)(x+2y-3)(x-2y+3)
变式一(x-2y-3)(x-2y+3)
变式二(x+2y+3)(x-2y-3)
变式三 (x+2y-3-m)(x-2y+3+m) 讲解例题,归纳做题步骤,并提醒关键问题。

归纳:对于只有只有符号不同的两个三项式相乘,通过添括号可以将算式变形(符号相同的一组,符号相反的一组),然后综合运用平方差公式、完全平方公式计算。

通过变式训练,巩固所学。

教学环节教学思考环节五
(五)例题讲解 2
例题(2)(a+b+c)2
归纳当平方的底数有三项时,运用添括号对底数进行
分组,经过适当变形,看作二项式,再使用完全平方
公式计算。

同时,引导学生思考其他方法?
通过面积推导出三数和的平方公式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca 提醒学生公式变形的原则,添括号时的符号变化。

同时不同方法的提出,引导学生灵活运用。

教学环节教学思考
环节六
(六)课堂练习(学生分组自行完成,教师点评)练习1.运用乘法公式计算(1)(a+2b-1)2
(2)(2x+y+z)(2x-y-z) 不同类型的练习题,巩固所学。

同时,让学生
练习2.小组挑战题(分别找同学出题挑战,巩固练习)当堂反馈,随机提问
(1)(a+2b-1)(a+2b+1)
(2)(2m+n-1)(2m-n+1)
(3)(a-b-c)2
(4)(a-2b-3)(a+2b-3)
(5)(2a+b-c)2
(6)(m-3n-1)2自己出题挑战,增加互动性,加深学生理解。

当堂反馈提问使学生进一步掌握所学。

教学环节教学思考环节七
(七)当堂监测,布置作业
当堂监测,挑战第一关
1.下列变形是否正确?
(1)2a-b-c/2=2a-(b-c/2);
(2)2x-3y+2=-(-2x+3y+2)
(3)a-2b-4c+5=(a-2b)-(4c-5)
2.对(x-y+z)(x+y+z)变形正确,能用乘法公式进行计算的是( )
A.[x-(y+z)][x+(y+z)]
B.[(x-y)+z][ (x+y)+z]
C.[(x+z)-y] [(x+z)+y]
D.[x-(y-z)][x+(y+z)]
当堂监测,挑战第二关小组合作完成,通过当堂反馈,监测学生掌握情况。

对出现的问题及时点评,指正。

同时提出学习课后思考题,并布置
3.下列将式子(a+2b-1)2变形不正确的是()
A.[a+(2b-1)]2
B.[(a+2b)-1]2
C.[(a-1)+2b]2
D.[a-(2b-1)]2
4.计算(1)(a-b-3)(a-b+3) (2)(a+b-1)2
拓展思考
5(1)(2x+3)2(2x-3)2
(2)(x-3)(x+3)(x2+9)
思考题(2+1)(22+1)(24+1)…(264+1)
课后作业:书后练习
作业。

教学环节教学思考环节八
(八)总结和反思
总结和反思:本节课的学习有哪些收获?通过本课时的学习,需要我们掌握:
①熟记公式和公式的拓展
②灵活运用公式进行计算
③掌握一条法则---添括号法则
④理解一种方法---整体代换法
⑤了解一种思想---转化思想提问学生,回顾本节课所学知识,对重点知识加以强调,对做题方法归纳总结。

六、教学反思:
本节课的重点是添括号法则,所以在教学中要让学生掌握此法则并能灵活运用。

同时,计算的依据是各种乘法公式,所以学生对公式的熟练程度需要关注。

另外,添括号对式子进行变形时,要注意观察结构特点,掌握技巧,同时也要注意做题的步骤和依据。

本节课后还要加强训练,提醒学生符号的变化和公式的灵活应用。

七、板书设计
14.2.3乘法公式——添括号法则
1、添括号法则
a+b-c=a+(b-c)=a-(-b+c)
遇加不变,遇减都变
2、(x+2y-3)(x-2y+3)
①添括号变形成(a+b)(a-b)形式
②应用平方差公式计算
③应用完全平方公式计算
④去括号,合并整理结果
3、(a+b+c)2
法一:①变形为[(a+b)+c]2或[a+(b+c)]2或[(a+c)+b]2
②应用完全平方公式展开计算
③依次运用公式计算,合并整理结果
法二:三项完全平方公式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc。

相关文档
最新文档