专题 动能、动能定理
动能和动能定理教案(优秀5篇)

动能和动能定理教案(优秀5篇)动能定理教学设计篇一《动能和动能定理》是高中物理必修2第五章《机械能及其守恒定律》第七节的内容,我从:教材分析、目标分析、教法学法、教学过程、板书设计和教学反思六个纬度作如下汇报:一、教材分析1.内容分析《动能和动能定理》主要学习一个物理概念:动能;一个物理规律:动能定理。
从知识与技能上要掌握动能表达式及其相关决定因素,动能定理的物理意义和实际的应用。
过程与方法上,利用牛顿运动定律和恒力功知识推导动能定理,理解“定理”的意义,并深化理解第五节探究性实验中形成的结论;通过例题1的分析,理解恒力作用下利用动能定理解决问题优越于牛顿运动定律,在课程资源的开发与优化和整合上,要让学生在课堂上切实进行两种方法的相关计算,在例题1后,要补充合力功和曲线运动中变力功的相关计算;通过例题2的探究,理解正负功的物理意义,初步从能量守恒与转化的角度认识功。
在态度情感与价值观上,在尝试解决程序性问题的过程中,体验物理学科既是基于实验探究的一门实验性学科,同时也是严密数学语言逻辑的学科,只有两种方法体系并重,才能有效地认识自然,揭示客观世界存在的物理规律。
2.内容地位通过初中的学习,对功和动能概念已经有了相关的认识,通过第六节的实验探究,认识到做功与物体速度变化的关系。
将本节课设计成一堂理论探究课有着积极的意义。
因为通过“动能定理”的学习,深入理解“功是能量转化的量度”,并在解释功能关系上有着深远的意义。
为此设计如下目标:二、目标分析1、三维教学目标(一)、知识与技能1.理解动能的概念,并能进行相关计算;2.理解动能定理的物理意义,能进行相关分析与计算;3.深入理解W合的物理含义;4.知道动能定理的解题步骤;(二)、过程与方法1.掌握恒力作用下动能定理的推导;2.体会变力作用下动能定理解决问题的优越性;(三)、情感态度与价值观体会“状态的变化量量度复杂过程量”这一物理思想;感受数学语言对物理过程描述的简洁美;2.教学重点、难点:重点:对动能公式和动能定理的理解与应用。
动能定理与动能守恒

动能定理与动能守恒在物理学中,动能是描述物体运动的能量。
动能定理和动能守恒是两个重要的概念,它们帮助我们理解物体运动的规律以及能量的转化与守恒。
动能定理是指物体的动能与物体所受合力做功的关系。
它描述了当一个力对物体做功时,物体的动能会发生变化。
动能定理公式可以表示为:物体的动能变化等于物体所受力做功的大小。
动能定理的公式可以用如下方程表示:ΔK = W,其中ΔK表示物体动能的变化量,W表示物体所受力做的功。
动能定理的一个重要应用是在运动学中计算物体的速度。
根据动能定理,物体的动能变化等于物体所受力做功,根据功的定义,功等于力乘以移动的距离,所以我们可以得到动能定理的另一种形式:物体的动能变化等于物体所受力乘以物体的位移。
根据动能定理,我们可以利用该公式来计算物体的速度变化,从而得到物体的速度。
另一个重要的概念是动能守恒。
动能守恒是指在没有外力做功或外力做功为零的情况下,物体的总动能保持不变。
换句话说,物体的动能守恒意味着物体内部的能量转化不会导致总动能的变化。
例如,在一个封闭的系统中,如果物体之间没有能量的转移(如热量传递),那么系统中的总动能将保持不变。
动能守恒的一个实例是简单的弹性碰撞。
在弹性碰撞中,物体之间的能量转化不会导致总动能的变化,即碰撞前后的总动能保持不变。
这是因为在弹性碰撞中,物体之间的能量转化是完全可逆的,没有发生能量损失。
这也是为什么弹性碰撞可以用来解释一些日常生活中的现象,例如弹球的反弹以及弹簧的压缩与释放等。
动能守恒也可以应用于一些复杂的物理现象,例如机械能守恒。
机械能是指物体的动能与势能的总和。
在没有外力做功或外力做功为零的情况下,机械能保持恒定。
这意味着物体的总能量保持不变,能量在动能和势能之间转换,但总能量保持不变。
总之,动能定理和动能守恒是描述物体运动和能量转化的重要概念。
动能定理揭示了物体的动能与物体所受力做功的关系,而动能守恒则说明了在某些条件下,物体的总动能保持不变。
高中物理必修二 专题四 动能定理 功能关系

动能定理与功能关系一、动能定理1.变力做功过程中的能量分析;2.多过程运动中动能定理的应用;3.复合场中带电粒子的运动的能量分析。
二、功能关系:做功的过程是能量转化的过程,功是能的转化的量度。
不能说功就是能,也不能说“功变成了能”。
1.物体动能的增量等于合外力做的总功:W 合=ΔE k ,这就是动能定理。
2.物体重力势能的增量等于重力做的功:W G = -ΔE P3.弹力做的功等于弹性势能的变化量:W=ΔE P4.物体机械能的增量等于除重力以外的其他力做的功:W 非重=ΔE 机,(W 非重表示除重力以外的其它力做的功)5.一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的 机械能,也就是系统增加的内能。
f ΔS=Q (ΔS 为这两个物体间相对移动的路程)。
专项练习1.一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,下列说法不正确的是( )A 、手对物体做功10JB 、合外力对物体做功12JC 、合外力对物体做功2JD 、物体克服重力做功2J2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。
当每个物体受到大小相同的制动力时,它们的制动距离之比是( )A .1∶2∶3B .12∶22∶32C .1∶1∶1D .3∶2∶13.质量为m的物体在距地面高h处以g/3的加速度由静止竖直下落到地面,下列说法不正确的( )A.物体重力势能减少mgh/3 B.物体的机械能减少2mgh/3 C.物体的动能增加mgh/3 D .重力做功mgh4.如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置,用水平拉力F 缓慢将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功是( )A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 5. 如图所示,小球以大小为v 0的初速度由A 端向右运动,到B 端时的速度减小为v B ;若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为v A 。
动能定理物体的动能与力的做功

动能定理物体的动能与力的做功动能定理:物体的动能与力的做功动能定理是物理学中的基本定理之一,它描述了物体的动能与力的做功之间的关系。
在本文中,我们将探讨动能定理的定义、原理以及应用。
一、动能定理的定义动能定理是指在外力作用下,物体的动能的变化量等于力的做功。
简而言之,物体的动能增加或减少的大小,正好等于作用于物体的力所作的功。
二、动能定理的原理物体的动能可以通过它的质量和速度来定义,即动能 = 1/2 ×质量 ×速度的平方。
力的功可以用力的大小、物体的位移和力与位移之间的夹角来定义,即做功 = 力 ×位移× cosθ。
根据动能定理,在外力作用下,物体的动能的变化量等于力的做功。
表示为:物体的动能的增量 = 力的做功。
三、动能定理的应用1. 物体的动能和速度关系:根据动能定理,物体的动能正比于其速度的平方。
当速度增加时,动能增加;当速度减小时,动能减小。
2. 动能与重力势能的转换:在重力场中,当物体从较高位置下降到较低位置时,重力对物体做功,并将其势能转化为动能。
反之,当物体由较低位置上升到较高位置时,动能将转化为重力势能。
3. 动能与弹性势能的转换:在弹性体系中,物体由于受到压缩或伸展而具有弹性势能。
当物体释放出弹性势能时,它将转化为动能。
4. 动能定理的应用于机械工作:在机械运动中,动能定理可应用于机器的工作原理和能量转换的分析。
比如,在运输系统中,我们可以通过应用动能定理来计算物体在传送过程中所需的能量和功率。
总结:动能定理是物体的动能与力的做功之间的关系。
它可以帮助我们理解物体运动时的能量转化过程,并应用于各种实际情况的分析和计算。
通过深入研究动能定理,我们可以更好地理解物体运动的本质和力学规律。
功,功率,动能定理知识点总结

功,功率,动能定理知识点总结一、功。
1. 定义。
- 一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
- 公式:W = Fxcosθ,其中W表示功,F是力的大小,x是位移的大小,θ是力与位移方向的夹角。
2. 功的正负。
- 当0≤slantθ <(π)/(2)时,cosθ> 0,力对物体做正功,力是动力,物体的能量增加。
- 当θ=(π)/(2)时,cosθ = 0,力对物体不做功,例如物体做圆周运动时向心力不做功。
- 当(π)/(2)<θ≤slantπ时,cosθ<0,力对物体做负功,力是阻力,物体的能量减少。
3. 合力的功。
- 方法一:先求出物体所受的合力F_合,再根据W = F_合xcosθ计算合力的功,这里的θ是合力与位移方向的夹角。
- 方法二:分别求出各个力做的功W_1,W_2,W_3,·s,然后根据W_合=W_1 + W_2+W_3+·s计算合力的功。
二、功率。
1. 定义。
- 功率是描述力对物体做功快慢的物理量。
- 公式:P=(W)/(t),其中P表示功率,W是功,t是完成这些功所用的时间。
2. 平均功率和瞬时功率。
- 平均功率:P=(W)/(t),也可以根据P = F¯vcosθ计算,其中¯v是平均速度。
- 瞬时功率:P = Fvcosθ,其中v是瞬时速度。
当F与v同向时,P = Fv。
3. 额定功率和实际功率。
- 额定功率:是发动机正常工作时的最大功率,通常在发动机铭牌上标明。
- 实际功率:是发动机实际工作时的功率,实际功率可以小于或等于额定功率,不能长时间大于额定功率。
三、动能定理。
1. 动能。
- 定义:物体由于运动而具有的能量叫动能,表达式为E_k=(1)/(2)mv^2,其中m是物体的质量,v是物体的速度。
- 动能是标量,且恒为正。
2. 动能定理。
- 内容:合外力对物体做的功等于物体动能的变化。
动能定理物体动能与功的关系

动能定理物体动能与功的关系动能定理是物理学中一个重要的定理,它描述了物体的动能与所受的做功之间的关系。
本文将详细介绍动能定理,并探讨物体动能与功之间的关系。
一、动能定理的定义和表达式动能定理是描述物体动能变化的定理。
它可以表达为:物体的动能变化等于物体所受的净外力所做的功。
动能定理的数学表达式为:物体的动能的变化量等于物体所受的净外力所做的功的总和。
数学表达式为:ΔKE = W_net其中,ΔKE表示物体动能的变化量,W_net表示物体所受的净外力所做的功的总和。
二、物体动能与功的关系根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
这意味着,当一个物体所受的净外力做功时,它的动能会发生变化。
1. 净外力与功的关系在动能定理中,功是由物体所受的净外力所做的。
净外力是指物体所受的所有作用力的矢量和。
功可以由净外力的大小和方向以及物体位移的大小和方向来计算。
2. 功对动能的影响根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
如果物体所受的净外力所做的功为正值,那么物体的动能将增加;如果功为负值,物体的动能将减小;如果功为零值,物体的动能将保持不变。
3. 动能与功的关系示例例如,当一个人用力推动一辆静止的小车,小车受到的作用力将进行功,将其推动到一定的位移。
这时,小车的动能将增加,同时也可以通过功的大小来计算增加的动能。
另一个示例是,当一个物体从高处自由下落时,在下落过程中,重力对物体进行功,使其动能增加。
这也可以通过功的大小来计算物体的动能增加量。
三、总结动能定理是描述物体动能与所受的净外力所做的功之间的关系的定理。
根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
净外力的大小和方向以及物体位移的大小和方向都会影响功的大小,进而影响物体动能的变化。
在实际问题中,我们可以利用动能定理来分析物体的运动情况和动能的变化。
通过计算功的大小和方向,我们可以了解物体动能的增加或减少,从而加深对动能和功之间关系的理解。
第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律

第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。
【高中物理】动能定理的应用知识点总结,考前必过一遍!

【⾼中物理】动能定理的应⽤知识点总结,考前必过⼀遍!⼀、动能1、定义:物体由于运动⽽具有的能量叫做动能,⽤符号来表⽰。
⽐如运动的汽车、飞机,流动的河⽔、空⽓等,都具有动能。
2、公式:3、动能是⼀个标量,只有⼤⼩没有⽅向,其单位为焦⽿(J)。
4、动能是状态量,对应物体运动的某⼀个时刻。
5、动能具有相对性,对于不同的参考系⽽⾔,物体的运动速度具有不同的瞬时值,也就有不同的动能。
在研究物体的动能时,⼀般都是以地⾯为参考系。
⼆、动能定理动能定理的推导过程:设物体质量为m,初速度为,在与运动⽅向相同的恒⼒作⽤下发⽣⼀段位移s,速度增加到。
在这⼀过程中,⼒F所做的功。
根据⽜顿第⼆定律有,根据匀加速运动的公式,有,由此可得1、动能定理的内容:合外⼒对物体做的总功等于物体动能的改变量。
2、动能定理的物理意义:该定理提出了做功与物体动能改变量之间的定量关系。
3、动能定理的表达式:4、动能定理的理解:(1)是所有外⼒做功的代数和。
可以包含恒⼒功,也可以包含变⼒功;做功的各⼒可以是同时作⽤的,也可以是各⼒在不同阶段做功的和。
应注意分析各⼒做功的正、负。
(2)求各外⼒功时,必须确定各⼒做功所对应的位移段落,逐段累计,并注意重⼒、电场⼒做功与路径⽆关的特点。
(3)下述关系式提供了⼀种判断动能(速度)变化的⽅法。
(4)代⼊公式时,要注意书写格式和各功的正负号,所求的功⼀般都按正号代⼊,如,式中动能增量为物体的末动能减去初动能,不必考虑中间过程。
(5)利⽤动能定理解题时也有其局限性,有时不能利⽤其直接求出速度的⽅向,且只适⽤于单个质点或能看成质点的物体。
5、应⽤动能定理的解题步骤(1)选择过程(哪⼀个物体,由哪⼀位置到哪⼀位置)过程的选取要灵活,既可以选取物体运动的某⼀阶段为研究过程,也可以选取物体运动的全过程为研究过程。
(2)分析过程。
分析各⼒做功情况,求解合⼒所做的功。
如果在选取的研究过程中物体受⼒情况有变化,则⼀定要分段进⾏受⼒分析,求解各个⼒的做功情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点:动能、动能定理一、动能物体由于运动而具有的能.E k=mv2/2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。
二、动能定理内容:公式:W=E K2一E k1、(一)、动能定理的理解要点1.动能定理的计算式为标量式,计算外力对物体做总功时,应明确各个力所做功的正负,然后求所有外力的代数和;求动能变化时,应明确动能没有负值,动能的变化为末动能减初动能.2.位移和速度必须是相对于同一个参考系的,一般以地面为参考系.3.动能定理应用广,直线运动、曲线运动、恒力做功、变力做功、同时做功和分段做功各种情况均适用.4.动能定理既适用于一个持续的过程,也适用于分段过程的全过程.5.动能定理的研究对象是单个物体或可看成单个物体的系统.(二)、应用动能定理的方法及解题步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.1.分段研究:明确研究对象的研究过程,针对每一个研究过程,利用动能定理分别列方程求解,前一阶段的末状态(末速度等)是后一阶段的初状态(初速度等).2.整段研究:明确研究对象的研究过程,找出整个过程的始末状态的速度情况,利用动能定理列方程求解,特别强调的是要对物体进行正确的受力分析,明确各力的做功情况,最后求出不同过程、不同时间段各力做功的代数和.3.解题步骤:(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各个力做功情况:受哪些力? 每个力是否做功? 做正功还是做负功? 做多少功? 然后求各个外力做功的代数和;(3)明确物体在过程始末状态的动能E k1和E K2;(4)列出动能定理的方程 W=E K2一E k1及其它必要的辅助方程,进行求解.1、下列说法中正确的是()A. 物体所受合外力对物体做功多,物体的动能就一定大B. 物体所受合外力对物体做正功,物体的动能就一定增大C. 物体所受合外力对物体做正功,物体的动能有可能减小D. 物体所受合外力对物体做功多,物体的动能的变化量就一定大2、下面关于运动物体所受合外力、合外力做功和动能变化的说法,正确的是( )A.如果物体所受合外力为零,那么物体的动能一定不变B.如果合外力对物体做的功为零,那么合外力一定为零C.物体在合外力作用下做变速运动,物体的动能一定变化D.物体的动能保待不变,该物体所受合外力不一定为零3、关于做功和物体动能变化的关系,不正确的是( )A.只有动力对物体做功,物体动能增加B.外力对物体做功的代数和等于物体的末动能与初动能之差C.只有物体克服阻力做功,它的动能减少D.动力和阻力都对物体做功,物体的动能一定变化4、一学生用100N的力,将质量为0.5kg的球以8m/s的初速,沿水平方向踢出20m远,则该学生对球做的功是 ( ) A.200J B.16J C.1000J D.无法确定5、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( )A、0B、8JC、16JD、32JF 6、如上图所示,用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,F 与水平方向成α角,木箱与冰道间的动摩擦因数为μ,求木箱获得的速度?7.某物体在沿斜面向上的拉力F 作用下,从光滑斜面的底端运动到顶端,它的动能增加了△E K ,势能增加了△E P .则下列说法中正确的是[ ]A . 拉力F 做的功等于△E K ;B . 物体克服重力做的功等于△E P ;C .合外力对物体做的功等于△E K ;D . 拉力F 做的功等于△EK +△E P8.如图所示,质量为m 的小球用长为L 的细线悬挂且静止在竖直位置,现用水平恒力F 将小球拉到与竖直方向成倾角θ的位置,而且拉到该位置时小球的速度刚好为零.在此过程中,拉力F 做的功为[ ]A .FLsinθB .FLcosθC .mgL(1—cosθ)D .mgL(1—sinθ) 9.如图所示,轻质弹簧的一端与墙相连,质量为2kg 的滑块以5m/s 的速度沿光滑水平面运动并压缩弹簧,求(1)弹簧在被压缩过程中最大弹性势能(5分),(2)当木块的速度减为2m/s 时,弹簧具有的弹性势能(5分)。
10一质量为m 的物体.从h 高处由静止落下,然后陷入泥土中深度为Δh 后静止,求阻力做功为多少?10(2)、某消防队员从一平台上跳下,下落2米后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降0.5米。
在着地过程中地面对他双脚的平均作用力估计为自身所受重力的多少倍?11.子弹以水平速度500m/s 射入一块固定的木板,射出时的速度为400m/s ;如果子弹紧接着再射入一块同样的木板,则射出时子弹的速度为多大?12如图所示质量为1kg 的小物块以5m/s 的初速度滑上一块原来静止在水平面上的木板,木板质量为4kg ,木板与水平面间动摩擦因数是0.02,经过2S 以后,木块从木板另一端以1m/s相对于地的速度滑出,g 取10m /s ,求这一过程中木板的位移.13.如图所示,质量m =1kg 的木块静止在高h =1.2m 的平台上,木块与平面间的动摩擦因数 =0.2,用水平推力F =20N ,使木块产生位移l 1=3m 时撤去,木块又滑行l 2=lm 时飞出平台,求木块落地时速度的大小?14质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为多少15.如图所示,滑块在恒定外力F =2mg 的作用下从水平轨道上的A 点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C ,滑块脱离半圆形轨道后又刚好落到原出发点A ,求AB 段与滑块间的动摩擦因数。
16如图,光滑圆弧的半径为80cm ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后又沿水平面前进4m ,到达C 点停止,求: (1)物体到达B 点时的速度;(2)物体沿水平面运动的过程中摩擦力做的功;(3)物体与水平面间的动摩擦因数。
(g 取10m/s 2)17.如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。
质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=0.25,求:(sin37°=0.6,cos37°=0.8,g =10m/s 2)1)物块滑到斜面底端B 时的速度大小。
2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。
第13题图 OA B C θ A B Oh θ P Q O17.如图所示,半径分别为R 和r 的甲、乙两个光滑的圆形轨道安置在同一竖直平面上,轨道之间有一条水平轨道CD 相通,一小球以一定的速度先滑上甲轨道,通过动摩擦因数为μ的CD 段,又滑上乙轨道,最后离开两圆轨道。
若小球在两圆轨道的最高点对轨道压力都恰好为零,试求水平CD 段的长度。
14、质量为m 的物体从高为h 的斜面顶端自静止起下滑,最后停在平面上的B 点,如图所示,若该物体从斜面顶端以初速度V0沿斜面滑下,则停在平面上的C 点,已知AB=BC ,则物体在斜面上克服摩擦力所做的功为多少?30.如图,质量为M 、长度为l 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的摩擦力为F f .物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是[ ] A.物块到达小车最右端时具有的动能为F (l+s ) B.物块到达小车最右端时,小车具有的动能为F f s C.物块克服摩擦力所做的功为F f (l+s )D.物块和小车增加的机械能为F f s31.据2008年2月18日北京新闻报导:北京地铁10号线进行运行试验。
为节约能源,一车站站台建得高些,车辆进站时要上坡将动能转换为重力势能,出站时要下坡将重力势能换为动能,如图所示。
已知坡长为x ,坡高为h ,重力加速度为g ,车辆的质量为m ,进站车辆到达坡下A 处时的速度为v 0,此时切断电动机的电源。
(1)车辆在上坡过程中,若只受重力和轨道的支持力,求车辆“冲”到站台上的速度多大?(2)实际上车辆上坡时,还受到其它阻力作用,要使车辆能“冲”上站台,车辆克服其它阻力做的功最大为多少?7、如图所示,一个质量m 为2kg 的物块,从高度h=5m 、长度l =10m 的光滑斜面的顶端A 由静止开始下滑,那么,物块滑到斜面底端B 时速度的大小是(不计空气阻力,g 取10m/s 2) ( ) A .10m/s B .102m/s C .100m/s D .200m/s 5、某消防队员从一平台上跳下,下落2米后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降0.5米。
在着地过程中地面对他双脚的平均作用力估计为 自身所受重力的多少倍 ( )A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍3、一子弹以水平速度v 射入一树干中,射入深度为S. 设子弹在树中运动所受阻力是恒定的,那么子弹以v/2的速度水平射入树干中,射入深度是( )A. SB. S/2C. 22S D.S/4 12、以10m/s 的初速度竖直向上抛出一个质量为0.5kg 的物体,它上升的最大高度为4m ,设空气对物体的阻力大小不变,求物体落回抛出点时的动能C B m A h M m F l hhAl B。