第四章练习题及参考解答(第四版)计量经济学

合集下载

【VIP专享】计量经济学第四章练习题及参考解答

【VIP专享】计量经济学第四章练习题及参考解答

(2) 3.060 1.657ln() 1.057ln()
(0.337) (0.092) (0.215)0.992 0.991 F 1275.093
GDP CPI R =-+-===进口居民消费价格指数的回归系数的符号不能进行合理的经济意义解释可能数据中有多重共线性。

计算相关系数:
22ln Y 4.09071.2186ln () t= (-10.6458) (34.6222)
0.9828 0.9820 1198.698
GDP R R F =-+===ln Y 5.4424 2.6637ln (PI)C =-+
从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,著。

可是其中的lnX3、lnX4、lnX6对lnY影响不显著,而且lnX2、lnX5
可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于作为解释变量,很可能会出现严重多重共线性问题。

在本章开始的“引子”提出的“农业的发展反而会减少财政收入吗?
表4.13 1978-2007
财政收入(亿元)CS农业增加值(亿元)NZ工业增加值(亿元)GZ建筑业增加值
1132.31027.51607
1146.41270.21769.7
1159.91371.61996.5
1175.81559.52048.4
(1)根据样本数据得到各解释变量的样本相关系数矩阵如下:样本相关系数矩阵
解释变量之间相关系数较高,特别是农业增加值、工业增加值、建筑业增加值、最终消费之间,相关系数都在这显然与第三章对模型的无多重共线性假定不符合。

《计量经济学》习题(第四章)

《计量经济学》习题(第四章)

《计量经济学》习题(第四章)第四章习题⼀、单选题1、如果回归模型违背了同⽅差假定,最⼩⼆乘估计量____A .⽆偏的,⾮有效的 B.有偏的,⾮有效的C .⽆偏的,有效的 D.有偏的,有效的2、Goldfeld-Quandt ⽅法⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性3、DW 检验⽅法⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性4、在异⽅差性情况下,常⽤的估计⽅法是____A .⼀阶差分法 B.⼴义差分法C .⼯具变量法 D.加权最⼩⼆乘法5、在以下选项中,正确表达了序列⾃相关的是____j i u x Cov D j i x x Cov C ji u u Cov B ji u u Cov A j i j i j i j i ≠≠≠≠≠=≠≠,0),(.,0),(.,0),(.,0),(.6、如果回归模型违背了⽆⾃相关假定,最⼩⼆乘估计量____A .⽆偏的,⾮有效的 B.有偏的,⾮有效的C .⽆偏的,有效的 D.有偏的,有效的7、在⾃相关情况下,常⽤的估计⽅法____A .普通最⼩⼆乘法 B.⼴义差分法C .⼯具变量法 D.加权最⼩⼆乘法8、White 检验⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性9、Glejser 检验⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性10、简单相关系数矩阵⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性2222)(.)(.)(.)(.σσσσ==≠≠i i i i x Var D u Var C x Var B u Var A12、所谓不完全多重共线性是指存在不全为零的数k λλλ,,,21 ,有____1112211221221122.0.0..k k k k k x x x k k k k A x x x v B x x x C x x x v e D x x x v e v λλλλλλλλλλλλ++++=+++=∑?++++=++++=式中是随机误差项13、设21,x x 为解释变量,则完全多重共线性是____0.(021.0.021.22121121=+=++==+x x e x D v v x x C e x B x x A 为随机误差项)14、⼴义差分法是对____⽤最⼩⼆乘法估计其参数 11211211121121)()1(....-------+-+-=-++=++=++=t t t t t t t t t t t t t t t u u x x y y D u x y C u x y B u x y A ρρβρβρρρβρβρββββ15、在DW 检验中要求有假定条件,在下列条件中不正确的是____A .解释变量为⾮随机的 B.随机误差项为⼀阶⾃回归形式C .线性回归模型中不应含有滞后内⽣变量为解释变量D.线性回归模型为⼀元回归形式16、在下例引起序列⾃相关的原因中,不正确的是____A.经济变量具有惯性作⽤B.经济⾏为的滞后性C.设定偏误D.解释变量之间的共线性17、在DW 检验中,当d 统计量为2时,表明____A.存在完全的正⾃相关B.存在完全的负⾃相关C.不存在⾃相关D.不能判定18、在DW 检验中,当d 统计量为4时,表明____A.存在完全的正⾃相关B.存在完全的负⾃相关C.不存在⾃相关D.不能判定19、在DW 检验中,当d 统计量为0时,表明____A.存在完全的正⾃相关C.不存在⾃相关D.不能判定20、在DW 检验中,存在不能判定的区域是____A. 0﹤d ﹤l d ,4-l d ﹤d ﹤4B. u d ﹤d ﹤4-u dC. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l dD. 上述都不对21、在修正序列⾃相关的⽅法中,能修正⾼阶⾃相关的⽅法是____A. 利⽤DW 统计量值求出ρB. Cochrane-Orcutt 法C. Durbin 两步法D. 移动平均法22、在下列多重共线性产⽣的原因中,不正确的是____A.经济本变量⼤多存在共同变化趋势B.模型中⼤量采⽤滞后变量C.由于认识上的局限使得选择变量不当D.解释变量与随机误差项相关23、在DW 检验中,存在正⾃相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d24、逐步回归法既检验⼜修正了____A .异⽅差性 B.⾃相关性 C .随机解释变量 D.多重共线性25、设)()(,2221i i i i i ix f u Var u x y σσββ==++=,则对原模型变换的正确形式为____ )()()()(.)()()()(.)()()()(..212222122121i i i i i i i i i i i i i i i i i i i i i i i i x f u x f x x f x f y D x f u x f x x f x f y C x f u x f x x f x f y B u x y A ++=++=++=++=ββββββββ 26、在修正序列⾃相关的⽅法中,不正确的是____A.⼴义差分法B.普通最⼩⼆乘法C.⼀阶差分法D. Durbin 两步法27、在检验异⽅差的⽅法中,不正确的是____A. Goldfeld-Quandt ⽅法B. spearman 检验法C. White 检验法28、在DW 检验中,存在零⾃相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d29.如果模型中的解释变量存在完全的多重共线性,参数的最⼩⼆乘估计量是()A .⽆偏的 B. 有偏的 C. 不确定 D. 确定的30. 已知模型的形式为u x y 21+β+β=,在⽤实际数据对模型的参数进⾏估计的时候,测得DW 统计量为0.6453,则⼴义差分变量是( )A. 1t t ,1t t x 6453.0x y 6453.0y ----B. 1t t 1t t x 6774.0x ,y 6774.0y ----C. 1t t 1t t x x ,y y ----D. 1t t 1t t x 05.0x ,y 05.0y ----31. 在具体运⽤加权最⼩⼆乘法时,如果变换的结果是x u x x x 1xy 21+β+β=,则Var(u)是下列形式中的哪⼀种?( )A. 2σxB. 2σ2x B. 2σx D. 2σLog(x)32. 在线性回归模型中,若解释变量1x 和2x 的观测值成⽐例,即有i 2i 1kx x =,其中k 为⾮零常数,则表明模型中存在( )A. 异⽅差B. 多重共线性C. 序列⾃相关D. 设定误差33. 已知DW 统计量的值接近于2,则样本回归模型残差的⼀阶⾃相关系数ρ近似等于( ) A. 0 B. –1 C. 1 D. 4⼆、多项选择1、能够检验多重共线性的⽅法有____A.简单相关系数法B. DW检验法C. 判定系数检验法D. ⽅差膨胀因⼦检验E.逐步回归法2、能够修正多重共线性的⽅法有____A.增加样本容量B.岭回归法C.剔除多余变量E.差分模型3、如果模型中存在异⽅差现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的⽅差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是⽆偏的4、能够检验异⽅差的⽅法是____A. gleiser检验法B. White检验法C. 图形法D. spearman检验法E. DW检验法F. Goldfeld-Quandt检验法5、如果模型中存在序列⾃相关现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的⽅差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是⽆偏的6、检验序列⾃相关的⽅法是____A. gleiser检验法B. White检验法C. 图形法D. DW检验法E. Goldfeld-Quandt检验法7、能够修正序列⾃相关的⽅法有____A. 加权最⼩⼆乘法B. Durbin两步法C. ⼴义最⼩⼆乘法D. ⼀阶差分法E. ⼴义差分法8、Goldfeld-Quandt检验法的应⽤条件是____A. 将观测值按解释变量的⼤⼩顺序排列B. 样本容量尽可能⼤C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉9、在DW检验中,存在不能判定的区域是____A. 0﹤d﹤l dB. u d﹤d﹤4-u dC. l d﹤d﹤u dD. 4-u d﹤d﹤4-l dE. 4-l d﹤d﹤4。

计量经济学精要习题参考答案(第四版)

计量经济学精要习题参考答案(第四版)

计量经济学(第四版)习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。

为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础2.1 略,参考教材。

2.2 NS S x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。

2.3 原假设 120:0=μH备择假设 120:1≠μH 检验统计量()10/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即此样本不是取自一个均值为120元、标准差为10元的正态总体。

计量经济学(第四版)习题及参考答案解析详细版

计量经济学(第四版)习题及参考答案解析详细版

计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。

一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3什么是时间序列和横截面数据? 试举例说明二者的区别。

时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础2.1 略,参考教材。

2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NS S x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。

(完整word版)计量经济学第四章习题详解

(完整word版)计量经济学第四章习题详解

第四章习题4.1 没有进行t检验,并且调整的可决系数也没有写出来,也就是没有考虑自由度的影响,会使结果存在误差.4.3200224430.3120332。

7 330.6200334195。

6135822.8 334。

6200446435.8159878.3 l347.7200554273.7183084.8 353.9200663376.9211923。

5 359。

2200773284。

6249529。

9 376.5200879526.5314045.4 398.7200968618。

4340902。

8 395。

9201094699.3401512.8 408。

92011113161.4472881.6 431.0一研究的目的和要求我们知道,商品进口额与很多因素有关,了解其变化对进出口产品有很大帮助。

为了探究和预测商品进口额的变化,需要定量地分析影响商品进口额变化的主要因素。

二、模型的设定及其估计经分析,商品进口额可能与国内生产总值、居民消费价格指数有关。

为此,考虑国内生产总值GDP、居民消费价格指数CPI为主要因素。

各影响变量与商品进口额呈正相关。

为此,设定如下形式的计量经济模型:=+ln+lnCP式中,亿元);lnGDP为国内生产总值(亿元);lnCPI为居民消费价格指数(以1985年为100)。

各解释变量前的回归系数预期都大于零。

为估计模型,根据上表的数据,利用EViews软件,生成Y、lnGDP、lnCPI等数据,采用OLS方法估计模型参数,得到的回归结果如下图所示:模型方程为:lnY=-3。

111486+1。

338533lnGDP-0.421791lnCPI(0。

463010)(0。

088610)(0。

233295)t= (—6。

720126) (15。

10582)(—1。

807975)=0.988051 =0.987055 F=992。

2582该模型=0.988051,=0。

987055,可决系数很高,F检验值为992.2582,明显显著。

计量经济学第四版习题及参考答案

计量经济学第四版习题及参考答案

计量经济学第四版习题及参考答案The final revision was on November 23, 2020计量经济学(第四版)习题参考答案潘省初第一章 绪论试列出计量经济分析的主要步骤。

一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 计量经济模型中为何要包括扰动项为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

什么是时间序列和横截面数据 试举例说明二者的区别。

时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

估计量和估计值有何区别估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础略,参考教材。

请用例中的数据求北京男生平均身高的99%置信区间NSS x ==45= 用=,N-1=15个自由度查表得005.0t =,故99%置信限为 x S t X 005.0± =174±×=174±也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在至厘米之间。

25个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体 原假设 120:0=μH备择假设 120:1≠μH 检验统计量查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即 此样本不是取自一个均值为120元、标准差为10元的正态总体。

第四章练习题及参考解答(第四版)计量经济学

第四章练习题及参考解答(第四版)计量经济学

第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,有人建议你分别进行如下回归:1221i i i Y X u αα=++ 1332i i i Y X u γγ=++(1) 是否存在3322ˆˆˆˆβγβα==且?为什么? (2) 1ˆβ会等于1ˆα或1ˆγ或者两者的某个线性组合吗? (3) 是否有()()22ˆˆVar Var βα=且()()33ˆˆVar Var βγ=?【练习题4.1参考解答】(1) 存在2233ˆˆˆˆαβγβ==且 。

因为 ()()()()()()()2233232ˆi iii ii iy x x y x x x-∑∑∑∑资料来源:《中国统计年鉴2017》考虑建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。

(2)你认为数据中有多重共线性吗?(3)进行以下回归:121ln ln t t i Y A A GDP v =++ 122ln ln t t i Y B B CPI v =++ 123ln ln t t i GDP C C CPI v =++ 根据这些回归你能对多重共线性的性质有什么认识?(4)假设经检验数据有多重共线性,但模型中32ˆˆββ和在5%水平上显著,并且F 检验也显著,你对此模型的应用有何建议?【练习题4.2参考解答】建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。

(2)你认为数据中有多重共线性吗?其中居民消费价格指数CPI 对商品进口额影响为负,与预期不符合,可能存在多重共线性。

(3)分别进行以下回归:1)作回归121ln ln t t i Y A A GDP v =++说明GDP 的确对商品进口额有正的影响,是重要变量。

庞皓计量经济学练习题及参考解答第四版

庞皓计量经济学练习题及参考解答第四版

庞皓计量经济学练习题及参考解答第四版目录1.简介2.练习题及解答–第一章:引言–第二章:回归分析的基本步骤–第三章:多元回归分析–第四章:假设检验和检定–第五章:函数形式选择和非线性回归–第六章:虚拟变量和联合假设检验–第七章:时间序列回归分析–第八章:面板数据回归分析–第九章:工具变量法–第十章:极大似然估计3.总结1. 简介《庞皓计量经济学练习题及参考解答第四版》是一本与《庞皓计量经济学》教材配套的习题集,旨在帮助读者巩固和加深对计量经济学理论和方法的理解。

本书第四版相比前三版进行了全面的修订和更新,更加贴近实际应用环境,同时也增加了一些新的内容。

本文档为《庞皓计量经济学练习题及参考解答第四版》的摘要,包含了各章节的练习题及参考解答。

2. 练习题及解答第一章:引言1.什么是计量经济学?计量经济学的研究范围是什么?–答案:计量经济学是运用统计学方法研究经济理论及实证问题的学科。

它主要研究经济学中的理论模型和假设是否能得到实证支持,对经济变量之间的关系进行定量分析和预测。

2.计量经济学中常用的方法有哪些?–答案:常用的计量经济学方法包括线性回归分析、假设检验、面板数据分析、时间序列分析等。

这些方法能够帮助研究者解决实际经济问题,预测经济变量,评估政策效果等。

第二章:回归分析的基本步骤1.请解释什么是回归分析?–答案:回归分析是一种研究因变量和自变量之间关系的统计方法。

通过建立一个数学模型来描述二者之间的函数关系,并利用样本数据对该函数关系进行估计和推断。

回归分析的基本思想是找到自变量对因变量的解释能力,并进行统计推断。

2.利用最小二乘法进行回归分析的基本思想是什么?–答案:基本思想是通过最小化预测值与实际观测值之间的差异,来确定最佳的参数估计值。

也就是说,最小二乘法通过选择一组参数,使得预测值与实际观测值之间的平方差最小化。

3.如何判断回归模型的拟合优度?–答案:拟合优度可以通过判断回归方程的决定系数R2来评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章练习题及参考解答4。

1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,有人建议你分别进行如下回归:1221i i i Y X u αα=++ 1332i i i Y X u γγ=++(1) 是否存在3322ˆˆˆˆβγβα==且?为什么? (2) 1ˆβ会等于1ˆα或1ˆγ或者两者的某个线性组合吗? (3) 是否有()()22ˆˆVar Var βα=且()()33ˆˆVar Var βγ=?【练习题4.1参考解答】(1) 存在2233ˆˆˆˆαβγβ==且 。

因为 ()()()()()()()22332322222323ˆi iii ii iiii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑当23X X 与 之间的相关系数为零时,离差形式的230i i x x =∑有 ()()()()223222222223ˆˆi i i i i iiiy x x y x xx x βα===∑∑∑∑∑∑ 同理有: 33ˆˆγβ= (2)会的。

(3) 存在 ()()()()2233ˆˆˆˆvar var var var βαβγ==且 因为 ()()2222223ˆvar 1ix r σβ=-∑当 230r = 时, ()()()22222222223ˆˆvar var 1iix x r σσβα===-∑∑ 同理,有 ()()33ˆˆvar var βγ=4。

2 表4.4给出了1995—2016年中国商品进口额Y 、国内生产总值GDP 、居民消费价格指数CPI 的数据.表4.4 中国商品进口额、国内生产总值、居民消费价格指数资料来源:《中国统计年鉴2017》考虑建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。

(2)你认为数据中有多重共线性吗?(3)进行以下回归:121ln ln t t i Y A A GDP v =++ 122ln ln t t i Y B B CPI v =++ 123ln ln t t i GDP C C CPI v =++ 根据这些回归你能对多重共线性的性质有什么认识?(4)假设经检验数据有多重共线性,但模型中32ˆˆββ和在5%水平上显著,并且F 检验也显著,你对此模型的应用有何建议?【练习题4.2参考解答】建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。

(2)你认为数据中有多重共线性吗?其中居民消费价格指数CPI 对商品进口额影响为负,与预期不符合,可能存在多重共线性。

(3)分别进行以下回归:1)作回归121ln ln t t i Y A A GDP v =++说明GDP 的确对商品进口额有正的影响,是重要变量。

2)作回归122ln ln t t i Y B B CPI v =++说明CPI 的确对商品进口额有正的影响,是重要变量。

3)作回归 123ln ln t t i GDP C C CPI v =++说明CPI与GDP也高度相关,这是引起多重共线性的原因所在。

4。

3在本章开始的“引子"提出的“工业增加值增长会减少财政收入吗?"的例子中,如果所采用的数据如表4。

5所示,试分析:为什么会出现本章开始时所得出的异常结果?你怎样解决所出现的问题?表4。

5 2000—2016年财政收入及其影响因素数据(单位:亿元)年份一般公共预算收入CZSR国内生产总值GDP税收总额SSZE工业增加值GYZJZ200013395.23100280.112581。

5140259。

7 200116386.04110863.115301.3843855.6 200218903。

64121717.417636。

4547776。

6 200321715。

25137422。

020017。

3155363.8 200426396。

47161840.224165.6865776。

8 200531649.29187318.928778.5477960。

5 200638760.20219438。

534804.3592238.4 200751321.78270232。

345621.97111693。

9 200861330。

35319515.554223.79131727.6 200968518.30349081。

459521.59138095.5 201083101。

51413030。

373210.79165126。

4 2011103874.43489300。

689738。

39195142。

8 2012117253.00540367。

4100614.28208905.6 2013129209.64595244.4110530。

70222337.6 2014140370。

03643974。

0119175。

31233856.4 2015152269。

23689052.1124922。

20236506。

3 2016159604.97744127.2130360。

73247860.1【练习题4。

3参考解答】计算解释变量的相关系数:解释变量的方差扩大因子VIF :这说明由于严重的多重共线性导致工业增加值的参数为负。

工业增加值与国内生产总值、税收总额都高度相关,为分析工业增加值对一般公共预算收入是否有负的影响,可删除国内生产总值、税收总额作回归:这说工业增加值对一般公共预算收入是有证的租金作用的。

不过国内生产总值、税收总额都是对一般公共预算收入有重要影响的变量,删除后可能模型会有设定误差。

4。

4 表4.6是中国家电零售总额及国内生产总值、人均可支配收入、家电广告投放总额、居民消费价格指数等数据。

表4。

6 1997年—2015年中国家电零售总额及相关数据年份 家电零售总额t Y (亿元)GDP 2X (亿元) 人均可支配收入3X (元) 家电广告投放总额4X (亿元) 居民消费价格指数5X (以1996年为100) 1997 506.0 78802.95160。

3 64。

71 102。

8 1998 651.7 83817.6 5425.1 79。

02 102。

0 1999 724.3 89366。

5 5854。

0 67。

14 100.5 2000 831。

6 99066。

1 6280.0 73.51 101.0 2001 784。

7 109276。

2 6859.6 65。

88 101.7 2002 953.0 120480。

4 7702.8 78.74 100。

8 2003 1127。

2 136576.3 8472。

2 88。

00 102。

1 2004 1415.7 161415。

4 9421。

6 76.51 106.0 2005 1636。

0 185998。

9 10493。

0 77。

4 107.9 2006 1921。

7 219028.5 11759。

5 88。

61 109.6 2007 2370.7 270844 13785.8 94.40 114.8 2008 2706.6 321500。

5 15780.8 87。

92 121。

6 2009 3154.4 348498。

5 17174.7 98。

67 120。

7 2010 4056.5 411265。

2 19109.4 119.43 124。

7 2011 5374.9 484753。

2 21809。

8 140。

34 131.5 2012 5935.8 539116.5 24564。

7 205。

09 134.9 2013 6944。

5 590422。

4 26955。

1 229.73 138.4 2014 7603.3 644791.1 29381.0 246。

83 141。

2 20158269.5682635。

131790.3277.19143.1数据来源:国家统计局( 。

cn )。

(1)如果请考虑建立模型:122334455+tt t t t i Y X X X X u βββββ=++++,利用表中数据估计此模型的参数.(2)根据模型估计结果,你认为参数估计结果合理吗?数据中有吗?(3)分别采用简单相关系数检验法和方差扩大因子法验证模型是否存在多重共线性。

(4)如果存在多重共线性,如何才能解决?【练习题4。

4参考解答】OLS 方法估计模型参数,得到的回归结果.该模型220.9977,0.9970R R ==,可决系数很高,F 检验值1501。

140,明显显著。

但是当/20.0250.05()(195) 2.145t n k t αα=-=-=时,不仅X3、X5的系数不显著,而且X3的符号与预期相反,这表明可能存在严重的多重共线性。

计算各解释变量的相关系数。

变量X2 X3 X4 X5 X2 1。

000000 0。

998932 0。

937585 0.995145 X3 0.998932 1.000000 0.941257 0。

991385 X4 0.937585 0.941257 1。

000000 0。

917290 X50。

9951450.9913850.9172901.000000由相关系数矩阵可以看出,所有解释变量之间的相关系数较高,证实确实存在一定的多重共线性。

解释变量的方差扩大因子VIF被解释变量方差扩大因子 X2 1335。

613 X3 723.4567 X4 10.4945 X5185。

1135所有解释变量的方差扩大因子都远大于10,表明存在严重多重共线性问题.对多重共线性的处理:将各变量进行对数变换(5X 除外),再对以下模型进行估计。

122334455ln ln ln ln t t t t t t Y X X X X u βββββ=+++++该模型220.9974,0.9967R R ==,可决系数很高,F 检验值1366。

756,明显显著。

但是取/20.0250.05()(195) 2.145t n k t αα=-=-=时,LNX3和LNX5依然不显著,且LNX3的回归系数符号与预期不相符,这表明经对数变换后的模型依然存在严重的多重共线性,需要更进一步的修正方法。

采用逐步回归方法筛选并剔除引起多重共线性的变量,最后保留的解释变量为2X 和4X ,估计结果为ˆ958.34890.0090210.95474YX X =-++ (75。

0751) (0。

0005) (1.5102)t=(-12。

7652) (18.2819) (7。

2538) 20.9970R = 20.9966R = F =2627。

512该模型中220.9970,0.9966R R ==,可决系数很高,F 检验值2627.512,明显显著。

相关文档
最新文档