(完整版)信号与系统知识要点

合集下载

信号与系统知识点归纳

信号与系统知识点归纳
频谱特性
周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。

下面是信号与系统的知识点整理。

1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。

-离散信号:在时间上是离散的信号,如数字音频、数字图像等。

-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。

-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。

2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。

-冲击信号:在其中一时刻瞬间出现并消失的信号。

-正弦信号:以正弦函数表示的周期信号。

-方波信号:由高电平和低电平构成的周期信号。

3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。

-线性系统:满足叠加性质的系统。

-因果系统:输出仅依赖于当前和过去的输入的系统。

-稳定系统:有界的输入产生有界的输出的系统。

4.线性时不变系统的特性:-线性性质:满足叠加性质。

-时不变性:系统的输出只取决于输入信号的当前和过去的值。

-冲激响应:线性时不变系统对单位冲激信号的响应。

5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。

-传输函数:用传输函数表示系统的输入和输出之间的关系。

6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。

-序列的频率表示:幅度谱、相位谱和角频率。

7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。

-传递函数:用传递函数表示系统的输入和输出之间的关系。

8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。

-傅里叶变换:将连续时间非周期信号从时域变换到频域。

9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。

-图像处理:对图像进行滤波、增强、压缩等处理。

-音频处理:对音频信号进行降噪、消除回声、变声等处理。

-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。

信号与系统总复习要点

信号与系统总复习要点

《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t)的抽样性质 (式1-14)4.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,频域分析法(FT),复频域分析法(LT)离散子系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法9.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析1.微分方程的齐次解+特解的求法自由响应+强迫响应2.系统的零输入响应+零状态响应求法3.系统的暂态响应+稳态响应求法4.0-→0+跳变量冲激函数匹配法5.单位冲激响应h(t), 单位阶跃响应g(t), 与求法h(t)=g'(t), g(t)=h (-1)(t)类似δ(t)与u(t)的关系6.卷积的计算公式,零状态响应y zs (t)=e(t)*h(t)=∫∞-∞e(τ)h(t-τ)d τ=h(t)*e(t)7.卷积的性质串连系统,并联系统的单位冲激响应f(t)*δ(t)= f(t)f(t)*δ(t-3)= f(t-3)8. 理解系统的线性 P57 (1) (2) (3)第三章 傅立叶变换 t →w1.周期信号FS ,公式,频谱:离散谱,幅度谱2.非周期信号FT ,公式,频谱:连续谱,密度谱3. FT FT -14.吉布斯现象 P100---P1015.典型非周期信号的FT (单矩形脉冲)6.FT 的性质①对称性②信号时域压缩,频域展宽 P127,P128 ()[]⎪⎭⎫ ⎝⎛=a F a at f F ω1()()j t F f t e dt ωω∞--∞=⎰1()()2j t f t F e d ωωωπ∞-∞=⎰③尺度和时移性质 P129④频移性质:频谱搬移 cos(w 0t)的FT⑤时域微积分特性,频域微分特性⑥卷积定理(时域卷积定理、频域卷积定理)7.周期信号的FT :冲激8.抽样信号f s (t)的FT 及频谱F s (ω)9.抽样定理①条件 f s >=2f m w s >=2w m②奈奎斯特频率 f s =2f m③奈奎斯特间隔 T s =1/f s10.关于频谱混叠的概念第四章 拉普拉斯变换、连续时间系统的s 域分析 t →s 1. LT LT -12.典型信号的LT3.LT 性质:时移,频移,尺度,卷积()j 1e baf at b F a a ωω⎛⎫+↔⋅ ⎪⎝⎭0001[()cos()][()()]2F f t t F F ωωωωω=++-()()⎰∞∞--=tt f s F ts d e ()()⎰∞+∞-=j j d e j π21 σσss F t f t s []000()()()e st L f t t u t t F s ---=()e ()αt L f t F s α-⎡⎤=+⎣⎦[]()1() 0s L f at F a a a ⎛⎫=> ⎪⎝⎭4.LT 的逆变换①查表法②部分分式展开法(系数求法)③留数法5.LT 分析法 (第四章课件63张,64张,78张,81张) 求H(s), h(t), y zi (t), y zs (t), y(t)6.系统函数H(s) h(t) 一对拉氏变换对 H(s)的极点决定h(t)的形式H(s)的零点影响h(t)的幅度和相位7.H(s)的零极点 稳定性: ①②极点全在S 面左半面 P241 例4-26 8.连续系统的频响特性 H(jw)=H(s)│s=jw9.全通网络(相位校正),最小相移网络第五章 傅立叶变换应用于通信系统-滤波、调制与抽样1.h(t) H(jw) 构成傅式变换对2.无失真传输概念3.实现无失真传输的系统要满足的时域条件、频域条件4.理想低通滤波器的频响特性,及其单位冲激响应5.信号调制、解调的原理()||h t dt M ∞-∞≤⎰第七章 离散时间系统的时域分析1.离散序列的周期判定:2π/w 0,分三种情况讨论2.离散时间信号的运算、典型离散时间信号3.离散系统的阶次确定4.离散时间系统的差分方程,及模拟图的画法5.u(n), δ(n), g(n), h(n)的关系δ(n)= u(n)- u(n-1) h(n)= g(n)- g(n-1) 6.离散时间系统的时域求解法 (迭代、齐次解+特解、零输入+零状态)7.离散系统的单位冲激响应h(n)及其求法8.卷积和9.系统的零状态响应y zs (n)=x(n)*h(n) 10.有限长两序列求卷积:x 1(n):长N x 2(n):长M 见书例7-16, 对位相乘求和法, 长度:N+M-111.卷积性质:见课件第七章2,第35张12.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n)=0稳定性 h(n)绝对可和()()k u n n k δ∞==-∑0()()k g n h n k ∞==-∑()()()()∑∞-∞=-=*m m n h m x n h n x ()n h n ∞=-∞<∞∑第八章 Z 变换、离散时间系统的Z 域分析1.LT →ZT: z=e sTZ 平面与S 平面的映射关系2. ZTZT -13.典型序列的Z 变换 4.Z 变换的收敛域: 有限长序列 有无0,∞右边序列 圆外左边序列 圆内双边序列 圆环5.逆Z 变换 ①查表法②部分分式展开法(与LT -1不同的,先得除以Z ) ③留数法6.ZT 的性质时移性质 (1)双边序列移位(2)单边序列移位 ①左移 ②右移 序列的线性加权性质序列的指数加权性质卷积定理7.Z 域分析法解差分方程:书P81 例8-16第八章课件2 第33张~37张 ()()n n X z x n z ∞-=-∞=∑()⎰-π=c n z z z X jn x d 21)(18.系统函数H(z) h(n) H(z) Z 变换对 求H(z), h(n), y zs (n), y zi (n), y(n), H(e jw ) *见书P86:例8-19, P109 8-36 8-379.离散系统的稳定性,因果性稳定性 因果性时域 n<0, h(n)=0 频域 H(z)所有极点在单位圆内 收敛域(圆外)含单位圆10.离散系统的频响特性H(e jw )=H(z)│z=ejw =│H(e jw )│e j ψ(w)幅度谱:描点作图,2π为周期相位谱书P98,例8-22, 第八章课件:59张,60张 ()n h n ∞=-∞<∞∑。

(完整版)信号与系统复习知识点

(完整版)信号与系统复习知识点
《信号与系统》复习要点
第一章
1.信号的运算:时移、反褶、尺度变换、微分、积分等;
2.LTI系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性;
3.阶跃型号与冲激信号及其特性。
单位冲激信号的性质:
1.
2.
3.
4.
5.
6.
7.
例、求下列积分
例、已知信号 的波形如下图1所示,试画出下列各信号的波形
抽样信号的拉氏变换
求半波整流和全波整流周期信号的拉氏变换
(1)
(2)
4-29求下列波形的拉氏变换
(1)
解题思路:单对称方波 ——周期方波——乘
—— ——
(2)
第一周期:
周期信号的拉氏变换:
第五章
1.频域系统函数 ,理想低通滤波器频谱特性;
2.无失真传输条件:幅频特性为常数,相频特性是过原点的直线;
3.系统的物理可实现性判断(1)佩利-维纳准则;(2)系统可实现性的本质是因果性。
被理想抽样信号的傅立叶变换:
被非理想抽样信号傅立叶变换:
第四章
1.典型信号的拉氏变换及拉氏变换的基本性质;
2.S域元件模型、系统函数、系统函数与激励信号极点分布与电响应的关系、系统函数与输入输出方程的关系(利用拉氏变换求解电系统响应);
3.线性系统的稳定性分析。
周期信号的拉氏变换
为信号第一个周期 的拉氏变换;整个周期信号 的拉氏变换为:
第七章
1.离散系统和信号的描述方法、基本性质
2.差分方程的经典解法
3.卷积和定义及其求解方法
第八章
1. z变换的定义、收敛域和基本性质,常用序列的z变换
2.逆z变换的求解方法
3. 的定义、零极点分布与信号/系统性质的关系

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。

2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。

二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。

2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。

3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。

三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。

四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。

2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。

3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。

五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。

2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。

(完整版)信号与系统知识要点.doc

(完整版)信号与系统知识要点.doc

信号与系统知识要点第一章信号与系统, t 01,t 0(t )0, t 0单位阶跃信号(t) u(t )0 单位冲激信号0,t(t ) 1d (t ) (t )dtt( )d (t )(t ) 的性质:f (t ) (t ) f (0) (t )f (t ) (t t 0 )f (t 0 ) (t t 0 )f (t ) (t)dtf (0)f (t ) (t t 0 )dt f (t 0 )(t ) ( t )(tt 0 ) [ (t t 0 )]1 (t)(at )a(at t 0 )1 (t t)aa 单位冲激偶信号(t)(t )d (t )dt(t ) ( t)(t t 0 )[ (t t 0 )](t )dt 0t( )d (t )f (t ) (t)f (0) (t) f (0) (t)f (t ) (t t 0 )f (t 0 ) (t t 0 ) f (t 0 ) (t t 0 )f (t ) (t) dt f (0)f (t ) (t t 0 ) dtf (t 0 )符号函数 sgn(t )1,tsgn(t )0, t 0 或 sgn(t ) u(t ) u( t ) 2u(t ) 11,t单位斜坡信号r (t)0, t 0 tdr (t) r (t ) tu(t)r (t )u( )du(t)t,tdt门函数 g (t )g (t)1, t2 0, 其他取样函数 Sa(t ) sin ttsin t lim Sa(t)Sa(0) lim 1tt 0t 0当 t k(k1, 2,ggg)时, Sa(t ) 0Sa(t)dtsin t dt lim sin t 0ttt第二章连续时间信号与系统的时域分析1 、基本信号的时域描述( 1 )普通信号普通信号可以用一个复指数信号统一概括,即f (t ) Ke st ,t 式中 sj , K 一般为实数,也可以为复数。

根据与 的不同情况, f (t ) 可表示下列几种常见的普通信号。

信号与系统第1章总结

信号与系统第1章总结

第一章:信号与系统的基本概念1.1 信号的基本概念一、什么是信号信号是信息的表现形式。

例如,光信号、声信号和电信号等。

二、信号的分类1、确定性信号和随机信号()f t 确定性信号有确定的函数表达式2、周期信号和非周期信号f(t)=f(t+kT) k=1,2,3...周期信号3、连续时间信号和非连续时间信号时间t 连续的是连续时间信号,时间变量t 只取特定值的为离散时间信号4、有始信号和无始信号0t t <若,0()0,f t t =为起始点三、典型的连续时间信号1、正旋信号21()cos(),,,2f t A wt T f w f w T πϕπ=+===AMFMPM A w ϕ不为常数,调幅信号不为常数,调频信号不为常数,调相信号欧拉公式:cos 2sin 2j j e e j j ee jθθθθθθ-+--=⎧⎪⎪⎨⎪⎪⎩=2、指数信号为实数αα,)(t ke t f =3、复指数信号(一种数学模型)(),st f t ke s jw δ==+4、抽样信号sin (),a ts t t t =-∞<<∞性质1、偶函数,随着t 的增大,幅值减小0sin 2()lim 1a x tt t →==性质:t=0,s3sin 0,1, 2...t t k k π=⇒==±±性质:过零点1.2 信号的运算一、信号的时域变换1、平移(时移)000()()()()()()f t f t t f t f t t f t f t t =±→-→+右移,左移2、反转以纵轴为中心,左右反转()()f t f t =-t 3、展缩{011,()(),a a f t f at <<>=,扩展压缩二、信号的相加、相乘、微分和积分1、相加:对应点相加2、相乘:主要用于信号的截取3、微分:t 4∞、积分:指(-,0)上积分t-(),f d t ττ∞⎰为变量t<0()0t 1()t>1()1t t t f d f d tf d ττττττ-∞-∞-∞=<<==⎰⎰⎰当时,当0时,当时,1.3 奇异信号----------------------------------------------------一种数学模型信号的取值或导数出现了奇异值(极大),趋于无穷一、单位阶跃信号{0,01,0()t t t ε<>=t因果信号{0,0(),0()()t f t t f t t ε<>=二、单位冲击信号----------------也是一种数学模型作用时间极短,但幅值极大{()0,0()1,1t t t dt δδ+∞-∞=∀≠=⎰即冲激强度为性质1:抽样性0000001.()()(0)()2.()()(0)()3.()()(0)()(0)4.()()()()()t t t t f t t f t f t t t f t t f t t d f t d f f t t t d f t t t d f t δδδδδδδδ+∞+∞-∞-∞+∞+∞-∞-∞=-=-==-=-=⎰⎰⎰⎰性质2:卷积特性1212()()()()()f t f t f t f f t d τττ+∞-∞=*=-⎰0005.()()()()()6.()()()()()f t t f t d f t f t t t f t t d f t t ττδτδτδτδτ+∞-∞+∞-∞*=-=*-=--=-⎰⎰注:一个信号与冲激信号的卷积就是信号本身三、阶跃、冲激信号的关系 {0,01,0()()()()t t t d t d t t dt δττεεδ<-∞>===⎧⎰⎨⎩注:阶跃信号求导即为冲激信号1.4 信号分解为冲激信号的叠加1.5系统及分类一、分类1.连续时间系统:微分方程离散时间系统:差分方程2.线性系统:叠加性、齐次性f(t)→系统→y(t) kf(t)→系统 →ky(t)f1(t)+f2(t)→系统→y1(t)+y2(t)当齐次和叠加只要有一个不满足则是非线性的3.因果系统:响应不早于激励非因果系统4.时变系统是不变系统:输入输出都做相应的变化,并不随时间变化二、线性时不变系统(LTI 系统)性质1:线性、齐次性、叠加性Yzi(t):零输入响应,外部激励为0,仅在初始状态作用下的响应 Yzs(t):零状态响应,仅在外部激励作用下的响应性质2:是不变性性质3:微分、积分性f(t)→系统→y(t)()y ()f t t ''→→系统t -()()tf t dt y t dt-∞∞→→⎰⎰系统 性质4:因果性。

信号与系统的基本知识

信号与系统的基本知识

04 信号与系统的分析方法
时域分析法
时间波形分析
01
直接观察信号的时域波形,了解信号的基本特征和变化规律。
相关分析
02
研究信号自身或信号之间的相似性,用于信号检测、识别和提
取有用信息。
卷积积分
03
描述线性时不变系统对输入信号的响应,用于求解系统的零状
态响应。
频域分析法
频谱分析
将信号分解为不同频率的正弦波, 研究信号的频率成分和幅度、相 位随频率的变化规律。
02
周期信号的判定
03
周期信号的频率
一个信号是否是周期的,可以通 过观察其波形是否在一定时间后 重复出现来判断。
周期信号的频率是指单位时间内 信号重复的次数,与周期成倒数 关系。
信号的奇偶性
奇信号的定义
奇信号是指对于任意时刻t,都有f(-t) = -f(t) 的信号。
偶信号的定义
偶信号是指对于任意时刻t,都有f(-t) = f(t)的信号。
生物系统建模与仿真
信号与系统的方法可用于建立生物系统的数学模型,并通过计算机 仿真研究和理解生物系统的复杂行为。
其他领域中的信号与系统
01
语音与音频处理
在语音和音频处理领域,信号与系统理论用于声音的采集、编码、合成
和分析等方面。
02
图像处理与计算机视觉
图像处理和计算机视觉中涉及大量的信号与系统方法,如图像滤波、边
05 信号与系统的应用举例
通信系统中的信号与系统
信号传输与处理
在通信系统中,信号与系统理论用于分析和设计信号的传输、调制、 编码和解码等过程,以确保信息的可靠传输和高效处理。
信道建模与均衡
通信系统中的信道往往存在多径效应、衰落和干扰等问题,信号与 系统理论可用于建立信道模型,设计均衡算法以补偿信道失真。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

根据σ与ω的不同情况,)(t f 可表示下列几种常见的普通信号。

)(00)sin (cos )(s )(00sin cos )(s 00)()(s 00)()(0s )(号振幅变化的正、余弦信时),(即复数时当正弦信号与余弦信号时),(即虚数时当时),(即实指数信号实数时当时),(即直流信号时当≠≠+==≠=+===≠======⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒=-ωσωωωσωωωσωσσσt t Ke t f t j t K t f Ke t f K t f Ke t f t t st (2)奇异信号常见的连续时间奇异信号有单位冲激偶)(t δ'、单位冲激信号)(t δ、单位阶跃信号)(t u 和斜坡信号)(t r 。

任意的连续信号)(t f 可用冲激信号)(t δ,冲激信号)(t δ是信号进行时域分析的本证信号。

冲激信号的定义:⎪⎪⎩⎪⎪⎨⎧=≠∞→≠=⎰∞∞-A dt t A t t A t t A )(0,)(0,0)(δδδ式中A 为实数。

若1=A ,冲激信号)(t δ称为单位冲激信号)(t δ。

冲激信号的主要性质:①筛选特性)()0()()(t f t t f δδ= )()()()(000t t t f t t t f -=-δδ 0t 为实常数②取样特性)0()()(f dt t t f =⎰∞∞-δ)()()(00t f dt t t t f =-⎰∞∞-δ③展缩特性)(1)(abt a b at +=+δδ,a ,b 为实常数 ④冲激信号、阶跃信号、斜坡信号和冲激偶信号之间关系)]([)(t dt d t δδ=' )]([)(t u dt d t =δ )]([)(t r dtdt u = )()(t d tδττδ='⎰∞-)()(t u d t=⎰∞-ττδ)()(t r d u t=⎰∞-ττ冲激偶信号的定义:⎪⎩⎪⎨⎧≠=='0,00),()(t t t dt dt δδ冲激偶信号的主要特性: ①筛选特性)()()()()()(00000t t t f t t t f t t t f -'--'=-'δδδ 0t 为实常数②取样特性)()()(00t f dt t t t f '-=-'⎰∞∞-δ,0t 为实常数③展缩特性)(1)(abt a a b at +'=+'δδ,a ,b 为实常数 )()(t t δδ'-=-' 2、 连续时间信号的时域分析 信号的基本运算:加、乘、微分、积分、翻转、平移、展缩、分解。

3、卷积积分(1) 定义 τττd t f f t f t f )()()()(2121-=*⎰∞∞-(2) 性质交换律 )()()()(1221t f t f t f t f *=*分配率 )()()()()]()([)(3121321t f t f t f t f t f t f t f *+*=+* 结合律 )]()([)()()]()([321321t f t f t f t f t f t f **=** 卷积的微积分性质 )()()()()1(t g t f t gt f *=*'-)()()()()()(t g t f t g t f n n *=* )()()()()()(t g t f t g t f n n --*=*奇异信号的卷积性质)()()(t f t t f =*δ)(0t t -δ是0t 秒的延时器 )()()(00t t f t t t f -=-*δ)(t δ'是微分器 )()()(t f t f t '=*'δ)(t u 是积分器 )()()()()1(t f d f t f t u t -∞-==*⎰ττ系统的时域分析就是在时间域内分析输入与输出的时间特性,也可以认为,在输入激励信号已确定的情况下,主要分析输出响应的时间特性。

时域分析有经典法和卷积积分法。

第三章 连续时间信号与系统的频域分析 1、周期信号的傅里叶级数对于满足狄里赫利条件的周期为T 的信号)(t f ,可以展开成三角形式和指数形式的傅里叶级数。

记Tπω20=Ω=,称之为基频。

(1) 三角形式的傅里叶级数 ∑∞=++=1000)]sin()cos([)(n n nt n b t n aa t f ωω(2) 指数形式的傅里叶级数 t jn n n e F t f 0)(ω∑∞-∞== 式中 dt e t f TF tjn n 0)(1ω-∞∞-⎰=2、傅里叶变换(1) 傅里叶变换的定义式 dt e t f j F t j ωω-∞∞-⎰=)()( ωωπωd e j F t f t j )(21)(⎰∞∞-=)(ωj F ——)(ωj F 的模,表示信号)(t f 中各频率分量的相对大小,称之为信号的幅频特性;)(ωϕ——)(ωj F 的相角,表示信号)(t f 中各频率分量的相对位置关系,称之为信号的相频特性;(2)傅里叶变换的性质利用傅里叶变换的性质求定积分 利用零点 dt t f F )()0(⎰∞∞-=,ωωπd F f )(21)0(⎰∞∞-=,)()(21)(22ωωπd j F dt t f ⎰⎰∞∞-∞∞-=(3) 周期信号的傅里叶变换一方面,周期信号)(t f T 可以展开为傅里叶级数:tjn n n T eF t f 0)(ω∑∞-∞==所以 )(2)(0ωωδπωn F j F n n T -=∑∞-∞=,Tπω20=另一方面,设)(t f 为周期信号)(t f T 对应的主周期信号,)(t f 的傅里叶变换为)(ωj F ,则有 )()()()(t t f nT t f t f T nT δ*=-=∑∞-∞=所以)()()()()(00000ωωδωωωωδωωωn jn F n j F j F n n T -=-⨯=∑∑∞-∞=∞-∞=,Tπω20=3、系统的频率响应系统的单位冲激响应)(t h 傅里叶变换)(ωj H 称为系统的频率响应,有称为系统函数。

设)()()(ωϕωωj ej H j H =,则)(ωj H 称为系统的幅频特性,反映了系统对输入信号各频率分量相对大小的改变;)(ωϕ称为系统的相频特性,反映了系统对输入信号各频率分量相对位置的改变。

设输入)(t f 的傅里叶变换为)(ωj F ,零状态响应)(t y zs 的傅里叶变换为)(ωj Y zs ,则 )()()(ωωωj H j F j Y zs =,即 )()()(ωωωj F j Y j H zs =4、无失真传输与滤波 (1)无失真传输的条件时域:)()(0t t k t h -=δ 频域:0)(t j ke j H ωω-= 或者 k j H =)(ω,0)(t ωωϕ-=其中,k 和0t 为实常数,且00>t (保证系统的因果性)。

(2)理想低通滤波器频率响应d c d t j cct j e G e j H ωωωωωωωωω--=⎪⎩⎪⎨⎧>≤=)(,0,)(2c ω为截止频率。

(3)理想高通滤波器d c d t j cctj e G e j H ωωωωωωωωω---=⎪⎩⎪⎨⎧<≥=)](1[,0,)(2(4)理想带通滤波器)]()([)()(001ωωδωωδωω-++*=j H j H 5、抽样 (1)冲激串抽样)()()()()(nT t t f t t f t f n T s -=•=∑∞-∞=δδ,其中,)()(nT t t n T -=∑∞-∞=δδ)(t f s 的频谱为)(1)(0ωωωjn j F T j F n s -=∑∞-∞=,Tπω20= (2)脉冲串抽样)()()(t f t P t f T s =,其中,)()(nT t G t P n T -=∑∞-∞=τ)()2()(00ωωτωτωjn j F n Sa Tj F n s -=∑∞-∞= (3)时域抽样定理若)(t f 是频带有限的信号,其频谱只占据),(m m ωω-的范围,则当抽样周期ms T ωπ≤(或抽样频率m s Tωπω22≥=)称为奈奎斯特(Nyquist )频率,把最大允许抽样间隔m s T ωπ=称为奈奎斯特间隔。

相关文档
最新文档