406-光源、光的相干性
波动的相干性和光的相干性

波动的相干性和光的相干性在物理学中,相干性(coherence)是指两个或多个波之间存在稳定的关系,特别是在时间和空间上存在稳定的相位关系。
这种相位关系可以描述波动的相干性,也可以用来研究光的相干性。
一、波动的相干性1. 相干的定义相干是指两个或多个波在空间或时间上存在稳定的相位关系,这种相位关系保持稳定性,使得波的幅度可以增强或减弱,而不是简单地叠加。
相干性是波动现象中重要的特性之一。
2. 相干性的条件相干性的存在需要满足以下两个条件:- 波源的稳定性:波源的频率、振幅和相位保持稳定,没有明显的涨落。
- 波源的相位关系:相干波源之间的相位关系要满足一定的条件,比如稳定相位差或相同的相位。
3. 相干性的影响相干性的存在对波动现象具有显著的影响:- 干涉现象:两个相干波叠加,会产生明显的干涉现象,如干涉条纹。
- 衍射现象:相干波通过狭缝或物体时,会产生衍射现象,如衍射条纹。
- 波纹消亡:相干波叠加可以相互干涉,导致某些区域波纹增强或消亡。
二、光的相干性1. 光的相干性概述光是一种电磁波,因此也具有相干性。
光的相干性是指在时间和空间上存在稳定的相位关系,使得光的干涉和衍射现象可以观察到。
2. 单色光的相干性单色光是频率稳定的光,它具有很强的相干性。
单色光的相干性可以通过狄拉克(Dirac)符号来描述。
3. 白光的相干性白光是由多种不同频率的光组成的复合光,它的相干性相对较弱。
白光的相干性可以通过多普勒效应来解释。
4. 干涉仪和干涉条纹干涉仪是用来观察光的干涉现象的仪器。
利用干涉仪可以观察到干涉条纹,这些条纹是由相干光叠加造成的。
5. 光的相干时间和相干长度光的相干时间和相干长度是描述光的相干性的重要参数。
相干时间是指光波在时间上保持相位关系的时间,相干长度是指光波在空间上保持相位关系的距离。
结论:波动的相干性和光的相干性是波动现象中的重要特性。
相干性的存在使得波能够产生干涉和衍射现象,这对于我们深入理解光和其他波的行为有着重要的意义。
光源的相干性分析与应用—工程光学课程设计正文终稿

工程光学课程设计(论文)题目数字化分析光的相干性学院物理与电子工程学院光源的相干性分析与应用摘要:光的相干性是光学中的重要概念之一。
相干效应可分为空间相干性和时间相干性,前者与光源的几何尺寸有关,后者则与光源的相干长度或单色性(带宽)有关。
迈克耳逊干涉仪为测量时间相干性提供了一种方便的技术;空间相干性则由杨氏双逢实验作出了最好的证明。
实际上许多光源都不是理想的点光源,而是有一定的几何尺寸的扩展光源,产生的光不可能是单色的。
一般来说,我们可以这样认为,对普通光源(扩展光源)的相干性分析,同时也适用于点光源,最深层的精髓没有发生变化。
本文介绍了用MATLAB仿真杨氏双缝干涉的实验,来数字化处理实验现象,以减少客观的误差对于整个实验的影响,方便同学们能够更好地了解。
同时也着重介绍了迈克尔逊干涉仪工作的基本原理,时间相干性的基本概念以及用不同光源为例,简单的说明光源的时间相干性的问题。
根据光源的一些特性,还有一些具体的应用,激光具有单色性,相干性等一系列极好的特性。
比如激光的应用。
激光在未来的发展过程中,将会有更大的发展前景。
关键字:时间相干性;MATLAB;空间相干性;迈克耳孙干涉仪;激光目录第一章引言 (1)第二章理论基础 (1)2.1 相干时间和相干长度 (1)2.2 空间相干性 (2)2.3 时间相干性 (3)2.4相干性的描述 (4)2.4 迈克尔逊干涉仪的工作原理 (4)第三章光源的相干性分析和应用 (5)3.1 杨氏双缝干涉与空间相干性 (5)3.2 迈克耳孙干涉仪与时间相干性 (8)3.2.1干涉条纹的可见度 (8)3.2.2不同的光说明时间相干性 (9)3.3应用 (10)第四章全文总结 (11)4.1 主要结论 (11)4.2 主要创新点 (12)仿真代码 (12)参考文献 (13)第一章引言虽然光学是物理学中最古老的一门基础学科,但是在当前科学研究中依然活跃,具有很强的生命力和研究价值。
光的时间相干性

目录中文摘要Abstract引言 (1)1.光的相干 (1)1.1干涉条纹的对比度 (1)1.2 空间相干性 (1)1.3 时间相干性 (2)2.迈克尔孙干涉仪 (5)2.1迈克尔孙干涉仪装置 (5)2.2迈克尔孙干涉仪原理 (5)3.应用 (5)3.1用迈克尔逊干涉仪测量汞相干长度 (7)3.1.1实验方法 (8)3.1.2数据记录 (8)3.1.3 实验结果 (9)3.2用迈克尔逊干涉仪测量钠相干长度 (9)3.2.1 实验数据结果 (9)致谢 (10)参考文献 (10)引言虽然光学是物理学中最古老的一门基础学科,但是在当前科学研究中依然活跃,具有很强的生命力和研究价值。
从十七世纪开始,人们发现彩色的干涉条纹并开始对其进行观察研究,一直以来以光的直线传播观念为基础的光的本性理论动摇了,从此开始进入了光的波动理论的萌芽期。
十九世纪初,波动光学初步形成,产生了很多一系列的干涉方面的理论,光源的时间相干性概念也就是此刻被提出并引入了干涉理论当中去的。
光源的时间相干性是掌握光的干涉和衍射现象的一个很重要的方面,它用相干长度和相干时间来表示。
光源时间相干性主要是与干涉现象中条纹的清晰度有着很大的关联,知道了它们之间内在的影响关系之后,就可以很容易的,通过改变某些条件来得到清晰的对比度较好的条纹,从而便于我们观察,加深认识,也更容易对波动光学理论的基础进行理解跟掌握。
在当今,社会生活中的很多方面都与光的时间相干性有着紧密的联系,在光的时间相干性的基础上运用光的干涉进行精度的评估,如长度的精密测量,及检验工件表面的差异等。
1.光的相干1.1干涉条纹的对比度为了描述两波交叠区域内的干涉条纹的清晰程度,引入对比的概念。
干涉条纹对比定义为 minmax min max I I I I V +-= (1.1) 式(1.1)中max I ,min I 分别为条纹光强的极大值和极小值。
当max I =0时,1=V ,此时条纹的反差最大,对比度最大,干涉条纹最清晰;当max min I I ≈时,0≈V ,此时条纹模糊,对比度为0,甚至不可辨认,看不到干涉条纹。
光源的相干性一

二、空间相干性
3 综合空间相干性 为了综合描述纵向空间相干性和横向空间相干性,将相
干长度和相干面积的乘积定义为一个新的物理量—相干
体积。
V =LA
c c
c
3 c c 2 c ( ) ( )2 2 ( ) 2
c
物理意义:如果要求传播方向上 角之内并具有频带宽
Δθ
二、空间相干性
2 横向空间相干性 在杨氏双缝干涉实验中,宽度为Δx 的光源(A)照 射两对称小孔 S1 、 S2 后,光波场具有明显相干
性的条件为:
x
该式称为空间相干性反比公式,即光源的线度与相
干孔径角的乘积为常数。
二、空间相干性
2 横向空间相干性 得出
2 Ac (x) ( )
根据相干时间tc的定义:在光传播方向上,两个光 波场之间能够相遇的最大时间间隔也就是每列光波 经过P点的持续时间。
P t
一、时间相干性
P ∆t t
P
t ∆t
P
t
∆t
∆t>t,两列光波在传播方向上没有交叠区域; ∆t=t,两列光波在传播方向上首尾相连;
∆t<t,两列光波在传播方向上有交叠区域;
相干时间tc=每列光波经过P点的持续时间
1 纵向空间相干性 根据光谱学中光源单色性参数R的定义:
R
0
1 tc 0
0
得到
R
0
Lc
该式进一步说明了相干时间 t c 和相干长度 Lc 是反映光源单色性物理量。
二、空间相干性
2 横向空间相干性 定义:在与光传播方向垂直的平面上,任意两个 不同点 S1 、 S2 处光波可具有相干性的最大面积, 常用相干面积Ac来进行描述。
光波的相干条件

光波的相干条件光波的相干条件光学是一门探究光的性质和行为的科学,其中一个重要的概念就是光波的相干性。
光波的相干性是衡量光波的稳定度和强度的因素之一。
因此,深入了解光波的相干条件对于光学领域的学习和研究至关重要。
1.相干性的定义相干性是指两个或更多的光波在时间和空间上保持稳定和有序的现象。
具体来说,光波的相位相对稳定且相互关联,导致它们能够产生干涉现象。
光波的相干性对于干涉、衍射和散射等现象的产生有着重要的影响。
2.相干的种类相干性可以分为两种类型,即时域相干和频域相干。
时域相干是指光波的相位关系在时间上保持稳定。
频域相干是指光波的相位关系在频率或波长上保持稳定。
3.相干条件相干条件是指产生相干性的物理条件。
两个最基本的相干条件是:同一光源发出的光波应当是相干的;两个不同光源发出的光波应当在相对位置、波长和相位上一致。
4.相干长度相干长度是指一个光子在光学路径中保持相干的长度。
相干长度是波导、光纤和其他光学系统中的重要参数。
波长越长,相干长度越短,因为波长越短,相位关系更容易被破坏。
5.相干度相干度是用来描述两个或多个光源的相干性程度的参数。
其数学定义是两个相干光波的平均干涉强度与它们的总亮度之比。
相干度越高,干涉模式就越易于观察和测量。
6.应用相干性是光学中许多重要现象的基础,如Michelson干涉仪的原理、自聚焦效应和光波导。
相干光的应用范围广泛,包括激光器、干涉仪、成像、通信、拉曼光谱学和光场计算等领域。
总结光波的相干性是光学领域的重要概念,对于干涉、衍射和散射等现象的产生有着重要的影响。
在相干度和相干长度的帮助下,科学家能够更好地理解光学系统的行为,提高其稳定性和每单位时间的光功率。
相干性的理解和应用有助于推动光学领域的发展,满足未来的日益增长的需求。
大学物理光源、光的相干性、杨氏双缝

⼤学物理光源、光的相⼲性、杨⽒双缝第三篇波动光学基础第5章光的⼲涉第6章光的衍射第7章光的偏振第5章光的⼲涉光学------研究光的现象;光的本性;光与物质相互作⽤。
⼏何光学:以光的直线传播规律为基础,研究各种光学仪器的理论。
波动光学:以光的电磁波本性为基础,研究传播规律,特别是⼲涉、衍射、偏振的理论和应⽤量⼦光学:以光的量⼦理论为基础,研究光与物质相互作⽤的规律。
§5-1 光源光的相⼲性⼀、光源普通光源:⾃发辐射激光光源:受激辐射1、普通光源的发光机理:例如:普通灯泡发的光;⽕焰;电弧;太阳光等等。
光源的最基本的发光单元是分⼦、原⼦!)/hE 1E 2⾃发辐射跃迁波列波列长 L = τ c发光时间τ≈10-8s原⼦发光是间隙式的。
各个原⼦的发光是完全独⽴的,互不相关:它们何时发光完全是不确定的;发光频率、光的振动⽅向、光波的初相位以及光波的传播⽅向等都可能不同。
因此,不同原⼦发的光不可能产⽣⼲涉现象!多原⼦不同步地发出许多相互独⽴的波列。
2、光的颜⾊和光谱可见光:3900 ? —— 7600 ?包含各种波长成分 3、光强光是电磁波:实验表明,能引起眼睛视觉和照相底⽚感光作⽤的是光波中的电场 E 光⽮量:E光振动:E随时间周期性的变化光的波动⽅程002cos E E t x πω?λ?=+-E →光⽮量Hv独⽴(不同原⼦发的光)独⽴(同⼀原⼦先后发的光)能流密度:S E H =?002cos E E t x πω?λ?=+-光强 20I E ∝⼆、光的相⼲性1、光的相⼲性光的相⼲条件:频率相同,光振动⽅向相同,相位差恒定两光源发出的光传播到 P 点,在 P 点所引起的光振动⽅程分别为=+-2202022c o s E E t r πω?λ?=+-P 点合成光振动()00cos E E t ω?=+P 点合成光⽮量的振幅2220102010202c o s E E E E E ?=++? ()()2010212r r πλ=---P 点光强12I I I ?=++? (1)⾮相⼲叠加相位差 ?? 不恒定 12I I I =+ (2)相⼲叠加相位差 ??恒定12I I I ?=++?S 2S 1r 1r 2pP 点的光强不随时间变化,不同位置 ?? 不同,光强 I 不同光强稳定分布的图样⼲涉相长: 2k ?π?=± (0,1,2,k = )→明纹中⼼⼲涉相消: ()21k ?π?=±+ (0,1,2,k = )→暗纹中⼼ 2、获得相⼲光的⽅法:“将光源上同⼀原⼦同⼀次发的光分成两部分,再使它们叠加”分波阵⾯法:杨⽒双缝⼲涉,菲涅⽿双⾯镜,洛埃镜分振幅法:薄膜⼲涉§5-2 杨⽒双缝⼲涉⼀、杨⽒双缝⼲涉实验英国科学家 Thomas Young(1773-1829)~10, ~d m D m -)波程差: 21sin r r d δθ=-≈( D d ,θ很⼩)任⼀点P 的位置:tan sin x D D θθ=≈1、条纹位置:两条光线的相位差为()()0201212r r πλ?=---()2122r r ππδλλ=--=-ss 1 s 2细线光源单⾊⼲涉相长和⼲涉相消的条件为2k ?π?=± (0,1,2,k = ⼲涉相长(21)k ?π?=±- (1,2,k = )⼲涉相消⽤波程差δ表⽰为sin 22d k λδθ==± (0,1,2,k = 光强最⼤(亮)()212d k λδ==±- (1,2,k = )光强最⼩(暗)θδ=其它值介于亮暗之间线位置 t a nθθδ=≈= (1)明纹中⼼Dx k d λ=± (0,1,2,k = )光强最⼤→明纹中⼼位置0k =,00x = ,0δ= ? 0级中央明纹( 0??= )1k =,1D x d λ±=±,δλ=± ? 1±级明纹 2k =,22D x dλ±=±,2δλ=± ? 2±级明纹可以看出:x 越⼤,波程差越⼤,⼲涉条纹的级次也越⼤。
光的干涉和光的相干性 (2)

干涉现象与相干性的区别
干涉现象:光波 叠加后形成的明 暗条纹,是光的 相干性的直接表 现。
相干性:光波之 间的相位差和频 率差,决定了干 涉现象的性质和 强度。
干涉条纹:干涉 现象中形成的明 暗条纹,其宽度 和间距与相干性 有关。
相干性测量:通 过测量干涉条纹 的性质,可以了 解光波的相干性。
干涉与相干性在光学实验中的应用
光的干涉:两束或两束以上的光波在空间相遇时,会发生叠加,形成干涉现象 相干性:光波的相干性是指光波之间的相位差和频率差之间的关系 干涉条件:光的干涉需要满足相干性、频率相同和相位差恒定的条件 干涉图样:干涉现象会产生各种不同的干涉图样,如明暗相间的条纹、彩色的环状等 相干性的影响:相干性的大小会影响干涉图样的清晰度和亮度,相干性越好,干涉图样越清晰,亮度越高
对信息科学的影响
光的干涉和相干性是信息科学的基础理论之一 光的干涉和相干性在光纤通信、激光雷达等领域有广泛应用 光的干涉和相干性研究有助于提高信息传输速度和质量 光的干涉和相干性研究有助于推动量子通信、量子计算等新兴领域的发展
对现代科技发展的贡献
光的干涉和相干性是现代光学技术的基础,如激光、光纤通信等。
干涉现象的应用
光学仪器:如显微镜、望远镜等,利用光的干涉原理提高成像质量
光纤通信:利用光的干涉原理实现高速、大容量的信息传输
激光技术:利用光的干涉原理产生高强度、单色性的激光束 生物医学:利用光的干涉原理进行细胞、组织、器官等的无损检测和治 疗
02 光的相干性
相干性的定义
光的相干性是指两 束光在空间和时间 上的相位差保持恒 定的特性。
两列光波的相位差恒 定
两列光波的振动方向 相同
两列光波的强度相同
干涉现象的分类
光学光的时间空间相干性完美版资料

二其、之光 间源的上(关gu系ā式n傅g立yu表叶án变)的明换非.单,色性光与光源的时的间相单干性色性决定了产生清晰的干涉图样条纹的
最大光程差 (即与光源的光谱宽度成反比) 具体来说,当我们把同一光源发出(fāchū)的光分成两束,然后在空间某一点叠加时,如果可以形成干涉条纹,我们就说着两束光是相干的
x
dx S r
S1
bS
r
d
z
S
S2
r 0
r0
图6.6 扩展光源的相干性
第七页,共10页。
r rd
b d / 2
r0
dbdd2 bd
r0 2r0 r0
略去二阶小量 d 2 2 r 0
当光程(ɡuānɡ chénɡ)差等于半个波长:
bd
r0 2
临界(lín jiè)宽度bc
d max
r0 b
d m a x 表示出了光场中相干范围的横向线度。
b
(14)
(13)
图6.8
第九页,共10页。
4、空间(kōngjiān)相干性
① 定义:光场的空间相干性是描述光场中在光的传播路径 (lùjìng)上空间横向两点在同一时刻光振动的关联程度,所以又 称为横向干性。
(7)
它们(tā men)实际上是分别在时域和频域之间的描述.
相干长度与光谱(guāngpǔ)宽度的 现在从具体的干涉装置中解脱(jiětuō)出来,倒过来的问题是、给定宽度为的面光源,在它照明空间中在波前上多大范围里,提取出来的两
次波源还是相干的?这便是光场的空间相干问题。
关系 它们(tā men)实际上是分别在时域和频域之间的描述.
M 1
M1
ba
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
406光源、光的相干性
1. 选择题
1,来自不同光源的两束白光,例如两束手电筒光照射在同一区域内,是不能产生干涉图样的,这是由于
(A)白光是由不同波长的光构成的(B)两光源发出不同强度的光
(C)两个光源是独立的,不是相干光源(D)不同波长的光速是不同的
[ ]
2,有三种装置
(1)完全相同的两盏钠光灯, 发出相同波长的光,照射到屏上;
(2)同一盏钠光灯,用黑纸盖住其中部将钠光灯分成上下两部分同时照射到屏上;
(3)用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行间距很小的两条狭缝,此二亮缝的光照射到屏上;
以上三种装置,能在屏上形成稳定干涉花样的是:
(A) 装置(3) (B) 装置(2)
(C) 装置(1)(3) (D) 装置(2)(3)
[ ]
3,对于普通光源,下列说法正确的是:
(A)普通光源同一点发出的光是相干光(B)两个独立的普通光源发出的光是相干光(C)利用普通光源可以获得相干光(D)普通光源发出的光频率相等
[ ]
4,杨氏双缝干涉实验是:
(A) 分波阵面法双光束干涉(B) 分振幅法双光束干涉
(C) 分波阵面法多光束干涉(D) 分振幅法多光束干涉
[ ] 2. 判断题
1,光波振动的量是电场强度E和磁场强度H,起光作用的主要是电场强度。
2,两个独立的普通光源如果频率相同,也可构成相干光源。
3,光强均为I0的两束相干光相遇而发生干涉时, 在相遇区域内有可能出现的最大光强是4I0。
4,普通光源发光特点是断续的,每次发光形成一个短短的波列, 各原子各次发光相互独立,各波列互不相干。
5,洛埃德镜和双镜等光的干涉实验都是用波阵面分割的方法来实现的。
6,获得相干光源只能用波阵面分割和振幅分割这两种方法来实现。
7,发光的本质是原子、分子等从具有较高能级的激发态到较低能级的激发态跃迁过程中释放能量的一种形式。
8,光波的相干叠加服从波的叠加原理,不相干叠加不服从波的叠加原理。