人教版七中2020年中考数学模拟试卷G卷

合集下载

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。

即1x y x+=-的自变量取值范围是0x ≠。

故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)一、单选题1.下列四个图案中,不是轴对称图形的是()A .B .C .D .2.任意写出一个偶数和一个奇数,则这两数之和是偶数的概率是()A .1B .12C .0D .无法确定3.按图1~图4的步骤作图,下列结论错误的是()A .12AOB AOP ∠=∠B .AOP BOP∠=∠C .2BOP AOB∠=∠D .2BOP AOP ∠=∠4.列方程组解古算题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”题目大意是:几个人共同购买一件物品,每人出8钱,余3钱;每人出7钱,缺4钱.设参与共同购物的有x 个人,物品价值y 钱,可列方程组为()A .8374x y x y -=⎧⎨+=⎩B .8374x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨-=⎩D .8374x y x y +=⎧⎨+=⎩5.下列事件是随机事件的是()A .画一个三角形,其内角和为361°B.任意做一个矩形,其对角线相等C.任意取一个实数,其绝对值是非负数D.外观相同的10件同种产品中有两件是不合格产品,现从中抽取一件恰为合格品6.已知下列命题:①若a b≠,则22a b≠;②若代数式有意义,则x的取值范围为x≤1且x≠0;③我市生态旅游初步形成规模,2014年全年生态旅游收入为302600 000元,用科学记数法表示为3.026×108元;④已知都是正实数,且,则;⑤在反比例函数中,如果函数值y<1时,那么自变量x>2;⑥解分式方程的结果是原方程无解.是真命题的个数是()A.5个B.4个C.3个D.2个7a>0时,如a=3结果是a本身;当a=0=0a<0时,如a=﹣3,则﹣(﹣3)=3a的相反数.这种分析问题的方法所体现的数学思想是()A.分类讨论B.数形结合C.公理化D.转化8.如图,某数学兴趣小组想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60︒,然后在坡顶D测得树顶B的仰角为30︒,已知斜坡CD的长度为10m,DE的长为5m,则树AB的高度是()A.10m B.15m C.D.9.小明用教材上的计算器输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为100,那么第2020步之后,显示的结果是()A .100B .0.0001C .0.01D .1010.如图,在菱形ABCD 中,60A ∠=︒,点M 、N 是边AD 、AB 上任意两点,将菱形ABCD 沿MN 翻折,点A 恰巧落在对角线BD 上的点E 处,下列结论:①MED ENB∽②若25DME ∠=︒,则105ENB ∠=︒③若菱形边长为4,M 是AD 的中点,连结MC ,则线段27MC =④若:1:2DE BE =,则:4:5AM AN =,其中正确结论的个数是()A .1B .2C .3D .4二、填空题11.在Rt ABC △中,90C ∠=︒,5BC =,12AC =,则sin B 的值是______.12.如图,为了测量某建筑物CD 的高度,在地面上取A ,B 两点,使A 、B 、D 三点在同一条直线上,小丽同学在点A 处测得该建筑物顶部C 的仰角为30︒,小明同学在点B 处测得该建筑物顶部C 的仰角为45︒,且14AB m =.建筑物CD 的高度为_________.(小丽和小明同学的身高忽略不计.结果保留根号)13.如图在ABC 中,=45ABC ∠︒,30ACB ∠=︒,2AB cm =,点P 是直线AC 上的一个动点(与A ,C 两点不重合),点F 是直线BC 上的一个动点(与BC 两点不重合),连结点P ,点F ,使PFC △与BAC 全等,则AP =________.14.如图,正方形ABCD 边长为1,点E 在边AB 上(不与A ,B 重合),将ADE V 沿直线DE 折叠,点A 落在点1A 处,连接1A B ,将1A B 绕点B 顺时针旋转90︒得到2A B ,连接112,,A A AC A C .给出下列四个结论:①12ABA CBA ≌△△;②145ADE ACB ∠+∠=︒;③点P 是直线DE 上动点,则1CP A P +2;④当30ADE ∠=︒时,1A BE 的336-_______________.(填写序号)15.如图,在矩形ABCD 中,AB=4,BC=3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为_____,线段DH 长度的最小值为_____.三、解答题16.某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?17.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.18.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5321>⎧⎨>⎩5+23+13512->-⎧⎨->-⎩﹣3﹣1﹣5﹣21421<⎧⎨-<⎩1﹣24+1(2)一般地,如果a b c d >⎧⎨>⎩那么a +c b +d (用“<”或“>”填空).请你说明上述性质的正确性.19.计算:01123(2015)2sin 60(3π--++ .20.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围;(2)x 为何值时,y 有最大值?最大值是多少?21.如图1,已知抛物线y =ax 2+bx +3=0(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,请问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A 、B 两点,且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一点,2ABD BAC ∠=∠,直接写出点D 的坐标.23.矩形AOCD 绕顶点A (0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE 交边CD 于M ,且ME=2,CM=4.(1)求AD的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A、B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使ΔPAM 25 2S 若存在,求出P点坐标;若不存在,请说明理由.参考答案与解析1.B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:A、是轴对称图形,不合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意.故选:B.【点睛】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.2.C【详解】分析:根据一个奇数与一个偶数的和为奇数,再根据概率公式即可得出答案.详解:∵一个奇数与一个偶数的和为奇数,∴任意写出一个偶数和一个奇数,两数之和是偶数的概率为0,故选C.点睛:考查不可能事件,不可能事件发生的概率为0.3.D【分析】根据图1~图4的步骤及折叠的性质对各选项进行逐一分析即可.【详解】根据图1~图4的步骤及折叠的性质知:OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.【点睛】本题考查了折叠的性质,角平分线的定义.解题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.4.A【分析】设人数为x人,物价为y钱,根据“每人出8钱,会多出3钱;每人出7钱,又差4钱”,即可得出关于x,y的二元一次方程组,此题得解【详解】设人数为x人,物价为y钱,依题意得:83 74x y x y-=⎧⎨+=⎩故选:A【点睛】本题考查二元一次方程组的实际问题,找到题目中的等量关系是解题关键5.D【详解】分析:根据必然事件、不可能事件、随机事件的概念,可得答案.详解:A、画一个三角形,其内角和为361°是不可能事件,故A错误;B、任意做一个矩形,其对角线相等是必然事件,故B错误;C、任取一个实数,与其相反数之和为0是必然事件,故C错误;D、外观相同的10件同种产品中有2件是不合格产品,现从中抽取一件恰为合格品是随机事件,故D正确;故选D.点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.D【详解】试题分析:①、当a=1,b=-1时,22a b=,∴为假命题;②代数式有意义的条件为:2-2x≥0且2x-x≠0,解得:x<1且x≠0,∴为假命题;③为真命题;④、根据题意得:b da b c d++,∴为假命题;⑤、当y<1时,x>2或x<0,∴为假命题;⑥、真命题.考点:真假命题的判定.7.A【详解】根据题意可知,探究过程是分三种情况讨论的,因此可知体现了数学思想是:分类讨论.故选A8.B【分析】先根据已知条件结合三角函数得∠DCE=30°,进而得到∠DCB=90°,再由∠BDF=30°,可知∠DBE=60°,由DF//AE可得出∠BGF=60°,进一步可得∠ABC=30°,∠DCB=90°.故∠DBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可解答.【详解】解:在Rt△CDE中,CD=10m,DE=5m,∴sin∠DCE=51102 DE m CD m==∴.∠DCE=30°∵∠ACB=60°,DF//AE.∴∠BGF=60°∴∠ABC=30°,∠DCB=90°∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴tan30CDBC︒==(m)∴sin6015AB BC︒=⋅==(m).故选答案为B.【点睛】本题考查的是解直角三角形的应用,正确作出辅助线、构造直角三角形并灵活运用锐角三角函数的知识是解答本题的关键.9.B【分析】分别计算出第1至第8步的显示结果,据此可以得出显示结果每6步为周期循环,利用此循环规律求解可得.【详解】解:第1步显示结果为10000,第2步显示结果为110000,第3步显示结果为1100,第4步显示结果为110000,第5步显示结果为10000,第6步显示结果为100,第7步显示结果为10000,第8步显示结果为110000,……所以显示结果每6步为周期循环,∵2020÷6=336……4,∴第2020步后显示结果与第4步显示结果相同,为110000=0.0001,故选:B .【点睛】本题主要考查计算器的计算和数字的变化规律,解题的关键是多次计算后得出显示结果每6步为周期循环的规律.10.C【分析】①正确.根据两角对应相等两三角形相似判断即可.②错误.利用相似三角形的性质求出BEN ∠即可解决问题.③正确.构造直角三角形,利用勾股定理即可解决问题.④错误.设DE a =,2BE a =,则3AB AD a ==,设BN x =,则3AN EN a x ==-,利用相似三角形的性质求出x 与a 的关系,即可解决问题.【详解】解: 四边形ABCD 是菱形,AB AD ∴=,60A ∠=︒ ,ABD ∴ 是等边三角形,60ADB ABD ∴∠=∠=︒,60A MEN ∠=∠=︒ ,120MED BEN ∴∠+∠=︒,120MED DME ∠+∠=︒ ,DME BEN ∴∠=∠,MED ENB ∴△∽△,故①正确,25DME ∠=︒ ,25BEN DME ∴∠=∠=︒,180602595ENB ∴∠=︒-︒-︒=︒,故②错误,作MH CD ⊥交CD 的延长线于H .在Rt DMH △中,90H ∠=︒ ,60MDH ∠=︒,2DM =,1DH ∴=,MH =415CH =+=,CM ∴==,故③正确,设DE a =,2BE a =,则3AB AD a ==,设BN x =,则3AN EN a x ==-,MED ENB △∽△,∴ME ED DM EN BN EB==,∴32ME a DM a x x a ==-,(3)a a x EM AM x -∴==,22a DM x=,3AM DM a += ,∴2(3)23a a x a a x x-+=,解得54x a =,75AM a ∴=,74AN a =,:4:5AM AN ∴=,故④正确,故选C .【点睛】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.11.1213【分析】先由勾股定理求解AB ,再由锐角的正弦的定义可得:12sin 13AC B AB ==,从而可得答案.【详解】解:如图, 90C ∠=︒,5BC =,12AC =,2251213AB ∴=+=,12sin .13AC B AB ∴==故答案为:12.13【点睛】本题考查的是锐角的正弦的定义,勾股定理的应用,掌握锐角的正弦的定义是解题的关键.12.737m+【分析】先证明BD CD =,再设出CD 的长度,再根据tan CAD ∠列出方程,从而求出CD 的长度.【详解】解:如图所示,连接AC 、BC∵45DBC ∠=︒∴BD CD=设CD xm=则BD xm=∴CD CD tan CAD AD AB BD∠==+∵14mAB =∴330143x tan x ︒==+∴37x =∴37CD m=故答案为:37m .【点睛】本题主要考查了锐角三角函数解直角三角形,熟练运用锐角三角函数解直角三角形是解答本题的关键.13.)31cm -【分析】根据PFC BAC ≌,做出符合要求的图形,过点A 作AD BC ⊥于点D 从而得到两个特殊的直角三角形,再根据已知条件求出相关线段的长度即可求解.【详解】解:∵PFC BAC≌∴延长CA 至点P ,使PC BC =,在CB 上截取CF CA=过点A 作AD BC ⊥于点D ,如图:∵在Rt ABD 中,=45ABC ∠︒,2AB cm=∴1AD BD cm==∴在Rt ACD 中,30ACB ∠=︒∴2AC cm =,3CD cm=∵PFC BAC≌∴)31CP CB cm ==∴)31AP CP CA cm =-=故答案是:)31cm【点睛】本题考查了全等三角形的判定和性质、通过添加辅助线构造出直角三角形进一步推导求解.注意全等三角形中的对应关系.14.①②③【分析】根据全等三角形判定即可判断①;过D 作DM ⊥CA 1于M ,利用等腰三角形性质及折叠性质得∠ADE +∠CDM ,再等量代换即可判断②;连接AP 、PC 、AC ,由对称性知,PA 1=PA ,知P 、A 、C 共线时取最小值,最小值为AC 长度,勾股定理求解即可判断③;过点A 1作A 1H ⊥AB 于H ,借助特殊角的三角函数值求出BE ,A 1H 的长度,代入三角形面积公式求解即可判断④.【详解】解:∵四边形ABCD 为正方形,∴AB =BC ,∠ABC =90°,由旋转知,∠A 1BA 2=90°,A 1B =A 2B ,∴∠ABA 1=∠CBA 2,∴△ABA 1≌△CBA 2,故①正确;过D 作DM ⊥CA 1于M ,如图所示,由折叠知AD =A 1D =CD ,∠ADE =∠A 1DE ,∴DM 平分∠CDA 1,∴∠ADE +∠CDM =45°,又∠BCA 1+∠DCM =∠CDM +∠DCM =90°,∴∠BCA 1=∠CDM ,∴∠ADE +∠BCA 1=45°,故②正确;连接AP 、PC 、AC ,由对称性知,PA 1=PA ,即PA 1+PC =PA +PC ,当P 、A 、C 共线时取最小值,最小值为AC 2,故③正确;过点A 1作A 1H ⊥AB 于H ,如图所示,∵∠ADE =30°,∴AE =tan30°·AD 33DE 233∴BE =AB -AE由折叠知∠DEA =∠DEA 1=60°,AE =A 1E ∴∠A 1EH =60°,∴A 1H =A 1E 12=,∴△A 1BE 的面积=11122⎛⨯⨯= ⎝⎭,故④错误,故答案为:①②③.【点睛】本题考查了正方形性质、等腰三角形性质、全等三角形的判定、折叠性质及解直角三角形等知识点,综合性较强.15.【分析】连接EF 交PQ 于M ,连接BM ,取BM 的中点O ,连接OH ,OD ,过点O 作ON ⊥CD 于N .首先利用相似三角形的性质证明EM=2FN ,推出EM=2,FM=1,当点P 与A 重合时,PQ 的值最大,解直角三角形求出OD ,OH 即可解决问题.【详解】连接EF 交PQ 于M ,连接BM ,取BM 的中点O ,连接OH ,OD ,过点O 作ON ⊥CD 于N .∵四边形ABCD 是矩形,DF=CF ,AE=EB ,∴四边形ADFE 是矩形,∴EF=AD=3,∵FQ ∥PE ,∴△MFQ ∽△MEP ,∴MF FQ ME PE=,∵PE=2FQ ,∴EM=2MF ,∴EM=2,FM=1,当点P 与A 重合时,PQ 的值最大,此时2=∴PQ =∵MF ∥ON ∥BC ,MO=OB ,∴FN=CN=1,DN=DF+FN=3,ON=1()2FM BC +2=,∴,∵BH ⊥PQ ,∴∠BHM=90°,∵OM=OB ,∴OH=12BM=12∵DH≥OD ﹣OH ,∴-,由于M 和B 点都是定点,所以其中点O 也是定点,当PQ 垂直于OD 时,O ,H ,D 共线,此时DH 最小,∴DH故答案为:【点睛】本题考查了矩形的性质,解直角三角形,梯形的中位线的性质,勾股定理的应用,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.16.中型12辆,小型18辆.【分析】根据题意设中型x 辆,小型y 辆,即可列出方程组求出答案.【详解】解:设中型x 辆,小型y 辆,根据题意可得:30158324x y x y +=⎧⎨+=⎩,解得1218xy=⎧⎨=⎩,故中型汽车12辆,小型汽车18辆.【点睛】本题主要考查的是方程组,掌握相关方法即可得出答案.17.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.18.(1)>,>,<;(2)结论:a+c>b+d.理由见解析.【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明.【详解】(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1.故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.【点睛】本题考查了不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.19.4.【分析】根据绝对值、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可.【详解】解:原式2123=+⨯13=+4=.【点睛】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解题的关键是熟记特殊角的三角函数值.20.(1)23304y x x =-+(0<x <40);(2)当x=20时,y 有最大值,最大值是300平方米.【详解】试题分析:(1)根据三个矩形面积相等,得到矩形AEFD 面积是矩形BCFE 面积的2倍,可得出AE=2BE ,设BE=a ,则有AE=2a ,表示出a 与2a ,进而表示出y 与x 的关系式,并求出x 的范围即可;(2)利用二次函数的性质求出y 的最大值,以及此时x 的值即可.试题解析:(1)∵三块矩形区域的面积相等,∴矩形AEFD 面积是矩形BCFE 面积的2倍,∴AE=2BE ,设BE=a ,则AE=2a ,∴8a+2x=80,∴a=-14x+10,3a=-34x+30,∴y=(-34x+30)x=-34x 2+30x ,∵a=-14x+10>0,∴x <40,则y=-34x 2+30x (0<x <40);(2)∵y=-34x 2+30x=-34(x-20)2+300(0<x <40),且二次项系数为-34<0,∴当x=20时,y 有最大值,最大值为300平方米.考点:二次函数的应用.21.(1)y =﹣x 2﹣2x +3;(2)存在符合条件的点P ,其坐标为(-或(1,-或(﹣1,6)或5(1,)3-;(3)存在,Q (﹣1,2).【分析】(1)已知抛物线过A 、B 两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,②当CM=MP时,③当CM=CP时,可分别得出P的坐标;(3)根据轴对称﹣最短路径问题解答.【详解】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴30 9330 a ba b++=⎧⎨-+=⎩,解得:12 ab=-⎧⎨=-⎩.∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)存在,如图1,∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为212x-==-,∴设P点坐标为(﹣1,a),∴C(0,3),M(﹣1,0),PM2=a2,CM2=(﹣1)2+32,CP2=(﹣1)2+(3﹣a)2,分类讨论:(1)当PC=PM时,(﹣1)2+(3﹣a)2=a2,解得53 a=,∴P点坐标为:P1(﹣1,5 3);(2)当MC=MP时,(﹣1)2+32=a2,解得a=∴P点坐标为:2P(-或3P(1,-;(3)当CM=CP时,(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,a=0(舍),∴P点坐标为:P4(﹣1,6).综上所述存在符合条件的点P,其坐标为(P-或(P-或P(﹣1,6)或5P1,3⎛⎫-⎪⎝⎭.(3)存在,Q(﹣1,2),理由如下:如图2,点C(0,3)关于对称轴x=﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q.设直线AC′函数关系式为:y=kx+t(k≠0).将点A(1,0),C′(﹣2,3)代入,得23 k tk t+=⎧⎨-+=⎩,解得11kt=-⎧⎨=⎩,所以,直线AC′函数关系式为:y=﹣x+1.将x=﹣1代入,得y=2,即Q(﹣1,2).【点睛】本题主要考查了二次函数的综合知识,熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.22.(1)213222y x x =-++(2)(2,3)【分析】(1)由直线解析式求得A 、B 点的坐标,再由A 、B 点的坐标待定系数法求抛物线解析式即可;(2)取AB 中点E ,连接OE ,直角三角形斜边中线的性质和三角形外角的性质可得BD ∥OE ,求得直线OE 的解析式,再由平移的性质可得直线BD 的解析式,再与抛物线联立解方程,即可求得D 点坐标;【详解】(1)解:在122y x =-+中,当0y =时,4x =;当0x =时,2y =,∴(4,0),(0,2)A B ,把(4,0),(0,2)A B 代入212y x bx c =-++中,得2,11640.2c b c =⎧⎪⎨-⨯++=⎪⎩∴3,22.b c ⎧=⎪⎨⎪=⎩∴213222y x x =-++.(2)解:如图,取AB 中点E ,连接OE,∵OE 为Rt △ABO 斜边中线,∴OE =AE ,∴∠AOE =∠EAO ,∴∠BEO =∠EOA +∠EAO =2∠OAE ,∵∠ABD =2∠BAC ,∴∠ABD =∠BEO ,∴BD ∥OE ,∵A (4,0),B (0,2),∴E (2,1),∴OE 所在直线解析式为y =12x ,∵直线OE 向上平移2个单位可以得到直线BD ,∴BD 所在直线解析式为y =12x +2,与抛物线相交时:213222x x -++=12x +2,解得:x =0(B 点)或x =2(D 点),x =2代入y =12x +2,可得y =3,∴D 点坐标(2,3);【点睛】本题考查了一次函数与二次函数的综合,利用一次函数的平移求直线BD 解析式是解题关键.23.(1)7;(2)16,157y x =-+;(3)217533y x x =-+;(4)P (3,1)、(257,4549)、(237+,841147-)、(237-,841147+).【详解】试题分析:(1)作BP ⊥AD 于P ,BQ ⊥MC 于Q ,如图1,由旋转的性质得AB=AO=5,BE=OC=AD ,∠ABE=90°,得到∠ABP=∠MBQ ,可证明Rt △ABP ∽Rt △MBQ 得到AP BP AB MQ BQ BM==,设BQ=PD=x ,AP=y ,则AD=x+y ,所以BM=x+y ﹣2,利用比例性质得到PB•MQ=xy ,而PB ﹣MQ=DQ ﹣MQ=DM=1,利用完全平方公式和勾股定理解得x+y=7,则BM=5,BE=BM+ME=7,所以AD=7;(2)由AB=BM 可得到Rt △ABP ≌Rt △MBQ ,则BQ=PD=7﹣AP ,MQ=AP ,利用勾股定理可得到MQ=3,则BQ=4,根据三角形面积公式和梯形面积公式,利用S 阴影部分=S 梯形ABQD ﹣S △BQM 进行计算即可;然后利用待定系数法求直线AM 的解析式;(3)先确定B (3,1),然后利用待定系数法求抛物线的解析式;(4)设P (x ,y ),则点P (x ,y )到直线AM的距离为:d,而AM=ΔPAM S =12AM•d=12⨯252,得到73525x y +-=,由217533y x x =-+,得到27462533x x -=,即2746250x x -+=或2746250x x --=,解方程即可得到点P 的坐标.试题解析:(1)作BP ⊥AD 于P ,BQ ⊥MC 于Q ,如图1,∵矩形AOCD 绕顶点A (0,5)逆时针方向旋转得到矩形ABEF ,∴AB=AO=5,BE=OC=AD ,∠ABE=90°,∵∠PBQ=90°,∴∠ABP=∠MBQ ,∴Rt △ABP ∽Rt △MBQ ,∴AP BP ABMQ BQ BM==,设BQ=PD=x ,AP=y ,则AD=x+y ,BM=x+y ﹣2,∴52y BP MQ x x y ==+-,∴PB•MQ=xy ,∵PB ﹣MQ=DQ ﹣MQ=DM=1,∴2()1PB MQ -=,即2221PB PB MQ MQ -⋅+=,∴222252(2)1y xy x y x --++--=,解得x+y=7,∴BM=5,∴BE=BM+ME=5+2=7,∴AD=7;(2)∵AB=BM ,∴Rt △ABP ≌Rt △MBQ ,∴BQ=PD=7﹣AP ,MQ=AP ,∵222BQ MQ BM +=,∴222(7)5MQ MQ -+=,解得MQ=4(舍去)或MQ=3,∴BQ=7﹣3=4,∴S 阴影部分=S 梯形ABQD ﹣S △BQM =12×(4+7)×4﹣12×4×3=16;设直线AM 的解析式为y kx b =+,把A (0,5),M (7,4)代入得:5{74b k b =+=,解得:1{75k b =-=,∴直线AM 的解析式为157y x =-+;(3)设经过A 、B 、D 三点的抛物线的解析式为2y ax bx c =++,∵AP=MQ=3,BP=DQ=4,∴B (3,1),而A (0,5),D (7,5),∴931{54975a b c c a b c ++==++=,解得:137{35a b c ==-=,∴经过A 、B 、D 三点的抛物线的解析式为217533y x x =-+;(4)存在.∵A (0,5),M (7,4),∴=P (x ,y ),则点P (x ,y )到直线AM的距离为:d =,∵ΔPAM S =12AM•d=12⨯252,∴73525x y +-=,∵217533y x x =-+,∴27462533x x -=,∴2746250x x -+=或2746250x x --=,由2746250x x -+=,解得:13x =,2257x =,此时P 点坐标为(3,1)、(257,4549);由2746250x x --=,解得:237x ±=,此时P点坐标为(237+,841147-)、;综上所述,点P 的坐标为(3,1)、(257,4549)、(237+,841147-)、(237-,).考点:1.几何变换综合题;2.二次函数综合题;3.存在型;4.综合题;5.压轴题.。

人教版数学中考模拟试卷七套卷4(含解析)

人教版数学中考模拟试卷七套卷4(含解析)

【寒假特辑】人教版数学中考模拟试卷七套卷4(含解析)姓名:__________班级:__________学号:__________一、选择题(本大题12小题,每小题3分,共36分)1.已知|a﹣1|=2,则a的值是()A.3 B.﹣1 C.3或﹣1 D.不确定2.使代数式+有意义的整数x有()A.5个B.4个C.3个D.2个3.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5 500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米4.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.125.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④6.为了了解石家庄市八年级男生的身高,有关部门准备对200名八年级男生的身高作调查,以下调查方案中比较合理的是()A.查阅外地200名八年级男生的身高统计资料B.测量该市一所中学200名八年级男生的身高C.测量该市两所农村中学各100名八年级男生的身高D.在该市市区内任选一所中学,农村选三所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高7.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)38.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列添加的条件不正确的是()A.AB=CD B.BC=AD C.∠A=∠C D.BC∥AD9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=103510.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2﹣4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()(根据2008武汉卷改编)A.①②B.①③C.②③D.①②③11.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°12.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4二、填空题(本大题6小题,每小题3分,共18分)13.若2(a+3)的值与4互为相反数,则a的值为.14.改革开放后,我市农村居民人均消费水平大幅度提升,下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元),则这几年我市农村居民人均食品消费支出的中位数是.年份200420052006200720082009167418432048256027672786人均食品消费支出15.计算:=.16.﹣=.17.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共9个小题,满分66分)19.(5分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.20.(5分)为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)抽取的学生数为名;(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有名;(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的%.21.(6分)解不等式组:,并把解集在数轴上表示出来.22.(6分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.23.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.24.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系?(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?25.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O 于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.26.(10分)如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC 于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.27.(12分)如图甲,在△ABC中.∠ACB=90°.AC=4.BC=3.如果点P由点B出发沿BA方向向点A匀速运动.同时点Q由点A出发沿AC方向向点C匀速运动.它们的速度均为每秒钟1个单位长度.连接PQ,设运动时间为t秒钟(0<t<4).(1)设△APQ的面积为S,当实数t为何值时,S取得最大值?S的最大值是多少?(2)在(1)的前提下.当S取得最大值时.把此时的△APQ沿射线AC以每秒钟1个单位长度的速度平移,当点A平移至与点C重合时停止,写出平移过程中,△APQ与△ABC的重叠部分面积y与平移时间x的函数解析式,并写出对应的x的取值范围;(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求实数t的值.答案与试题解析一、选择题(本大题12小题,每小题3分,共36分)1.已知|a﹣1|=2,则a的值是()A.3 B.﹣1 C.3或﹣1 D.不确定【分析】先根据题意求出(a﹣1)的值,从而不难求得a的值,注意绝对值等于正数的数有两个.解:∵|a﹣1|=2∴a﹣1=±2∴a=3或a=﹣1故选C.2.使代数式+有意义的整数x有()A.5个B.4个C.3个D.2个【分析】根据被开方数是非负数,分母不能为零,可得答案.解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤,整数有﹣2,﹣1,0,1,故选:B.3.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5 500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.解:5 500万千米,这个数据用科学记数法可表示为5.5×107千米,故选:B.4.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.12【分析】根据三角形内角和定理可求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.5.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【分析】根据点E有4种可能位置,分四种情况进行讨论,分别画出图形,依据平行线的性质以及三角形外角性质进行计算求解即可.解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.6.为了了解石家庄市八年级男生的身高,有关部门准备对200名八年级男生的身高作调查,以下调查方案中比较合理的是()A.查阅外地200名八年级男生的身高统计资料B.测量该市一所中学200名八年级男生的身高C.测量该市两所农村中学各100名八年级男生的身高D.在该市市区内任选一所中学,农村选三所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高【分析】样本的随机性和代表性很重要.解:A,外地学生身高不能准确反映本地学生的身高,调查方案不合理.B,C 单独去取城市或农村的学生都没有代表性.相对来说D比较合理.故选D7.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.8.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列添加的条件不正确的是()A.AB=CD B.BC=AD C.∠A=∠C D.BC∥AD【分析】根据平行四边形的判定方法,逐项判断即可.解:∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别的四边形为平行四边形可知该条件正确;故选B.9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选C.10.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2﹣4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()(根据2008武汉卷改编)A.①②B.①③C.②③D.①②③【分析】根据△与0的关系,即可求出答案.解:①若a+b+c=0,则b=﹣a﹣c,∴b2﹣4ac=(a﹣c)2≥0,正确;②若b=2a+3c则△=b2﹣4ac=4a2+9c2+12ac﹣4ac=4a2+9c2+8ac=(2a+2c)2+5c2,∵a≠0∴△恒大于0,∴有两个不相等的实数根,正确;③若b2﹣4ac>0,则二次函数的图象,一定与x轴有2个交点,当与y轴交点是坐标原点时,与x轴的交点有两个,且一个交点时坐标原点,抛物线与坐标轴的交点个数是2.当与y轴有交点的时候(不是坐标原点),与坐标轴的公共点的个数是3,正确.故选D.11.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠ADE,从而求解.解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.12.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4【分析】设E点坐标为(a,b),则AO+DE=a,AB﹣BD=b,根据△ABO和△BED都是等腰直角三角形,得到EB=BD,OB=AB,再根据OB2﹣EB2=10,运用平方差公式即可得到(AO+DE)(AB﹣BD)=5,进而得到a•b=5,据此可得k=5.解:设E点坐标为(a,b),则AO+DE=a,AB﹣BD=b,∵△ABO和△BED都是等腰直角三角形,∴EB=BD,OB=AB,BD=DE,OA=AB,∵OB2﹣EB2=10,∴2AB2﹣2BD2=10,即AB2﹣BD2=5,∴(AB+BD)(AB﹣BD)=5,∴(AO+DE)(AB﹣BD)=5,∴a•b=5,∴k=5.故选:C.二、填空题(本大题6小题,每小题3分,共18分)13.若2(a+3)的值与4互为相反数,则a的值为﹣5.【分析】根据相反数的意义,可得答案.解:由题意,得2(a+3)+4=0,解得a=﹣5,故答案为:﹣5.14.改革开放后,我市农村居民人均消费水平大幅度提升,下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元),则这几年我市农村居民人均食品消费支出的中位数是2304元.年份200420052006200720082009167418432048256027672786人均食品消费支出【分析】原数据已经排序找到中间位置的数或中间两数的平均数即可求得中位数.解:共6个数,故中位数为:=2304元,故答案为:2304元.15.计算:=5﹣5.【分析】先把各根式化为最简二次根式,再合并同类项即可.解:原式=3﹣5+2=5﹣5.故答案为:5﹣5.16.﹣=﹣.【分析】首先将原式分解因式,进而找出最简公分母通分,进而化简求出即可.解:﹣=﹣=﹣==﹣.故答案为:﹣.17.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【分析】把含p的项合并,只有当p的系数为0时,不管p取何值抛物线都通过定点,可求x、y的对应值,确定定点坐标.解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共9个小题,满分66分)19.(5分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.【分析】(1)做BO⊥CD于点O,并延长到B′,使B′O=BO,连接AB即可;(2)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合.解:所作图形如下所示:20.(5分)为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)抽取的学生数为300名;(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有1060名;(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的15%.【分析】(1)男女生所有人数之和;(2)求出抽取的样本中收听品三国的学生所占的比例,乘3000即可求解;(3)听红楼梦的女生人数除以总人数.解:(1)20+10+30+15+30+38+64+42+6+45=300人;(2)×3000=1060人;(3)样本中校女学生喜欢收听刘心武评《红楼梦》的约占样本容量的百分比为45÷300=15%,故该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的15%.故答案为:300;1060;15.21.(6分)解不等式组:,并把解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.解:由①得x≥4,由②得x<1,∴原不等式组无解,22.(6分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.23.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.【分析】首先由题意可得BE=,AE=,又由AE﹣BE=AB=m米,即可得﹣=m,继而可求得CE的长,又由测角仪的高度是n米,即可求得该建筑物的高度.解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.24.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系?(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?【分析】(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由l1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得t=120时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.25.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O 于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.【分析】(1)连接OD,只要证明OD⊥EF即可.(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.(1)证明:连接OD;∵AB是直径,∴∠ACB=90°;∵EF∥BC,∴∠AFE=∠ACB=90°,∵OA=OD,∴∠OAD=∠ODA;又∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AF,∴∠ODE=∠AFD=90°,即OD⊥EF;又∵EF过点D,∴EF是⊙O的切线.(2)解:连接BD,CD;∵AB是直径,∴∠ADB=90°,∴∠ADB=∠AFD;∵AD平分∠BAC,∴∠OAD=∠DAC,∴BD=CD;设BD=CD=a;又∵EF是⊙O的切线,∴∠CDF=∠DAC,∴∠CDF=∠OAD=∠DAC,∴△CDF∽△ABD∽△ADF,∴;∵sin∠ABC==,∴设AC=4x,AB=5x,∴a2=5x,∴在Rt△CDF中DF2=CD2﹣CF2=5x﹣1;又∵,∴5x﹣1=1×(1+4x),∴x=2,∴AB=5x=10,AC=4x=8;∵EF∥BC,∴△ABC∽△AEF,∴,,,∴在Rt△AEF中,.26.(10分)如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC 于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.【分析】(1)利用交点式求二次函数的解析式,并配方求对称轴;(2)先求直线AC的解析式,根据各自的解析式设出M(x,﹣x2++2),H (x,﹣x+2),由图得△CMH为等腰三角形时,①CM=CH,②当HC=HM时,③当CM=HM时,列式计算求出M的坐标,把M的坐标代入平移后的解析式可并得出m的值.解:(1)当x=0时,y=ax2+bx+2=2,∴抛物线经过(0,2),∵抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,设抛物线的解析式为:y=a(x﹣4)(x+1),把(0,2)代入得:2=a(0﹣4)(0+1),a=﹣,∴y=﹣(x﹣4)(x+1)=﹣x2++2=﹣(x﹣)2+,∴抛物线的解析式为:y=﹣x2++2,对称轴是:直线x=;(2)设直线AC的解析式为:y=kx+b,把A(4,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=﹣x+2,设M(x,﹣x2++2),H(x,﹣x+2),∵△CMH为等腰三角形,分三种情况:①当CM=CH时,∴C是MH垂直平分线上的点,∴GH+GM=4,则﹣x2++2+(﹣x+2)=4,解得:x1=0(舍),x2=2,∴M(2,3),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(2,3)代入得:m=1.②当HC=HM时,HM=﹣x2++2﹣(﹣x+2)=﹣x2+2x,CH2=,CH=,∴=﹣x2+2x,x1=0(舍),x2=4﹣,∴M(4﹣,﹣),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(4﹣,﹣),代入得:m1=0(舍),m2=5﹣2;③当CM=HM时,HM=﹣x2+2x,CM2=,则=,x=,∴M(,),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(,),代入得:m=0(舍);综上所述,当m=1时,M(2,3);当m=5﹣2时,M(4﹣,﹣).27.(12分)如图甲,在△ABC中.∠ACB=90°.AC=4.BC=3.如果点P由点B出发沿BA方向向点A匀速运动.同时点Q由点A出发沿AC方向向点C匀速运动.它们的速度均为每秒钟1个单位长度.连接PQ,设运动时间为t秒钟(0<t<4).2·1·c·n·j·y(1)设△APQ的面积为S,当实数t为何值时,S取得最大值?S的最大值是多少?(2)在(1)的前提下.当S取得最大值时.把此时的△APQ沿射线AC以每秒钟1个单位长度的速度平移,当点A平移至与点C重合时停止,写出平移过程中,△APQ与△ABC的重叠部分面积y与平移时间x的函数解析式,并写出对应的x的取值范围;(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求实数t的值.【分析】(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t (3﹣t),最后进行整理即可得出答案;(2)需要分类讨论,当PQ在BC的左边时,△APQ与△ABC的重叠部分面积y=S△APQ,当PQ在BC的右边时,△APQ与△ABC的重叠部分面积y=S△A′P′C;(3)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可.解:(1)如答图1,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)①当0≤x<时,y=;②如答图2,当≤x≤4时,△A′P′C∽△A′PQ,则=,即=,解得P′C=(4﹣x),则y=(4﹣x)×(4﹣x)=(4﹣x)2,综上所述,y=;(3)如答图3,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s.21世纪教育网–中小学教育资源及组卷应用平台版权所有@21世纪教育网。

【2020年】贵州省中考数学模拟试卷(含解析)

【2020年】贵州省中考数学模拟试卷(含解析)

2020年贵州省中考数学模拟试卷含答案一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.162.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×1063.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.56.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.58.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.4010.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:.12.在函数y=中,自变量x的取值范围是.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.15.不等式组的解集是.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.18.先化简﹣÷,再求代数式的值,其中a=﹣3.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.参考答案与试题解析一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将105000000用科学记数法表示为1.05×108.故选C3.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=【考点】二次根式的加减法;同底数幂的除法;分式的加减法.【分析】直接利用合并同类项法则以及二次根式加减运算法则和同底数幂的除法运算法则、分式加减运算法则分别化简求出答案.【解答】解:A、5ab﹣ab=4ab,故此选项错误,不合题意;B、3﹣=2,故此选项错误,不合题意;C、a6÷a3=a3,正确,符合题意;D、+=+=,故此选项错误,不合题意;故选:C.4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:B.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【考点】三角形中位线定理;平行四边形的性质.【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.6.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.8.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.40【考点】三角形的外接圆与外心.【分析】根据圆周角定理计算即可.【解答】解:由圆周角定理得,∠A=∠BOC=40°,故选:D.10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3【考点】反比例函数系数k的几何意义.【分析】设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),由此即可得出BD=3m、BE=n,再利用分割图形求面积法结合反比例函数系数k的几何意义即可得出S△ODE=k=9,解之即可得出k值.【解答】解:设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),∴BD=AB﹣AD=3m,BE=BC﹣CE=n.∵点D在反比例函数y=的图象上,∴k=mn,∴S△ODE=S矩形OABC﹣S△OAD﹣S△OCE﹣S△BDE=4k﹣k﹣k﹣k=k=9,∴k=.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:2(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式分解.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案是:2(x+2)(x﹣2).12.在函数y=中,自变量x的取值范围是x≠﹣2 .【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为10% .【考点】一元二次方程的应用.【分析】等量关系为:原售价×(1﹣降低率)2=降低后的售价,依此列出方程求解即可.【解答】解:设平均每月降价的百分率为x,依题意得:1000(1﹣x)2=810,化简得:(1﹣x)2=0.81,解得x1=0.1,x2=﹣1.9(舍).所以平均每月降价的百分率为10%.故答案为10%.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1 .【考点】根的判别式.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.【解答】解:∵关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.15.不等式组的解集是<x<2 .【考点】解一元一次不等式组.【分析】分别解两个不等式得到x>和x<2,然后根据大小小大中间找确定不等式组的解集.【解答】解:,解①得x>,解②得x<2,所以不等式组的解集为<x<2.故答案为<x<2.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.【考点】翻折变换(折叠问题).【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.【解答】解:设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=.故答案为:.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣+1+2×+1=2﹣+1++1=4.18.先化简﹣÷,再求代数式的值,其中a=﹣3.【考点】分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷===,当a=﹣3时,原式=.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【考点】作图﹣旋转变换;作图﹣轴对称变换.【分析】(1)根据网格特点,找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为: =π.故点B旋转到点B2所经过的路径长是π.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC中,利用三角函数即可求解.【解答】解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设B树苗的单价为x元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.【解答】解:设B树苗的单价为x元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.【考点】圆的综合题.【分析】(1)作AD的垂直平分线交AC于O,以AO为半径画圆O分别交AB、AC于点E、F,则⊙O即为所求;(2)连结OD,得到OD=OA,根据等腰三角形的性质得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,根据平行线的判定定理得到OD∥AC,根据平行线的性质即可得到结论;(3)连接DE,根据圆周角定理得到∠ADE=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到AE==4,根据弧长个公式即可得到结论.【解答】(1)解:如图所示,(2)证明:连结OD,则OD=OA,∴∠OAD=∠ODA,∵∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,即BC⊥OD,∴BC与⊙O相切;(3)解:连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠ODA=30°,∴∠AOD=120°,在Rt△ADE中,AE===4,∴⊙O的半径=2,∴劣弧AD的长==π.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时, =,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时, =,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).。

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。

2024年广东省广州七中中考数学模拟试卷+答案解析

2024年广东省广州七中中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.3的相反数是()A. B. C.3 D.2.从2023年4月3日国新办举行第六届数字中国建设峰会新闻发布会获悉,我国数字经济规模稳居世界第二.数字经济已成为推动我国经济增长的主要引擎之一,截至2022年底,累计建设开通5G基站2310000个,干兆光网具备覆盖超过5亿户家庭的能力.数据2310000可用科学记数法表示为()A. B. C. D.3.下列运算中,正确的是()A. B.C. D.4.如图,在中,CD是的直径,于点E,若,,则的半径为()A. B. C.3 D.55.在数轴上,点A所表示的实数为3,点B所表示的实数为a,的半径为下列说法中不正确...的是() A.当时,点B在内 B.当时,点B在内C.当时,点B在外D.当时,点B在外6.如图,在中,,将绕点A顺时针旋转后得到的点B的对应点是点,点C的对应点是点,连接若,则的大小是()A. B. C. D.7.关于反比例函数,在下列说法中,错误的是()A.图象位于第一、三象限B.y的值随x值的增大而减小C.点在函数图象上D.函数图象与y轴没有交点8.AB、CD为的两条不重合的直径,则四边形ACBD一定是()A.等腰梯形B.矩形C.菱形D.正方形9.定义新运算“”:对于任意实数a,b,都有,其中等式右边是通常的加法、减法和乘法运算,如若为实数是关于x的方程,且是这个方程的一个根,则k的值是()A.4B.或4C.0或4D.1或410.如图,在中,,,将BC绕点C顺时针旋转得到CD,则线段AD的长度的最小值是()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。

11.因式分解______.12.如图,在平面直角坐标系xOy中,以原点为位似中心,线段CD与线段AB是位似图形,若,,,则B的坐标为__________.13.如图,内接于,,弦AB是圆内接正多边形的一边,则该正多边形的边数是______.14.如图,已知,,以OA、AB为边作▱OABC,若一个反比例函数的图象经过C点,则这个函数的解析式为__________.15.假设飞机着陆后滑行的距离单位:关于滑行时间单位:满足函数关系式,则经过______后,飞机停止滑行.16.二次函数的部分图象如图所示,图象过点,对称轴为直线下列结论:①;②;③;④当时,y随x的增大而增大.其中正确的结论有______填序号三、解答题:本题共9小题,共72分。

2020年中考数学模拟试卷(含答案解析) (2)

中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。

人教版中考模拟检测《数学卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.2的相反数是()A. 2B.22C. 2D. -22.中国领空面积约为1260000平方公里,将1260000用科学记数法表示为( )A. 0.126×107B. 1.26×106C. 126×105D. 126×1043.下列运算正确是()A. (m3)2=m5B. m3 m 2=m6C. m2-1=(m+1)(m-1)D. (m+1)2=m2+14.图中几何体的主视图是()A. B. C. D.5.如图,把一个直角三角尺的直角顶点放在直尺的一边上,则∠1与∠2之间关系一定成立的是()A. ∠1=2∠2B. ∠1+∠2=180°C. ∠1=∠2D. ∠1+∠2=90°6.某中学12个班级参加春季植树,其中2个班各植60棵,3个班各植100棵,4个班各植120棵,另外三个班分别植70棵、80棵、90棵,下列叙述正确的是()A. 中位数是100,众数是100B. 中位数是100,众数是120C. 中位数90,众数是120D. 中位数是120,众数是1007.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是()A. 是中心对称图形,但不是轴对称图形B. 是轴对称图形,但不是中心对称图形C. 既是中心对称图形,又是轴对称图形D. 既不是中心对称图形,又不是轴对称图形8.我国古代数学著作《九章算术》卷七有下列问题:”今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为( )A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.3487x x+-= D.3487y y-+=9.矩形ABCD的边BC上有一动点E,连接AE、DE,以AE、DE为边作▱AEDF.在点E从点B移动到点C 的过程中,▱AEDF的面积()A. 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变10.抛物线24(0)y ax x c a经过点(x0,y0),且x0满足关于x的方程20ax+=,则下列选项正确的是( )A. 对于任意实数x都有y≥ y0B. 对于任意实数x都有y≤y0C. 对于任意实数x都有y>y0D. 对于任意实数x都有y<y0二、填空题:本大题共6小题11.分解因式:ab a-=______.12.如图,等边三角形ABC的边长为2,DE是它的中位线则DE的长为________.13.我市某校开展”我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图在抽查的学生中,喜欢足球运动的人数为________.14.一个扇形圆心角为 120°,半径为 2,则这个扇形的弧长为____.15.小艾在母亲节给妈妈送了一束鲜花,出差在外爸爸问小艾送了些什么花.小艾调皮地说:”考考你,花束是由象征爱的康乃馨、玫瑰和百合组成.康乃馨的支数比玫瑰多,但比百合的两倍少,玫瑰的支数比百合多.”请帮小艾爸爸算一算,这束花的总支数至少为________.16.如图,在平面直角坐标系中,平行四边形OABC 的对角线交于点D ,双曲线y=k x (x >0)经过C 、D 两点,双曲线y=8x(x >0)经过点B ,则平行四边形OABC 的面积为________.三、解答题:本大题共9小题,解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.计算: 2312sin 30(1)--+-___________.18.先化简,再求值:(x +21x x +)÷(x+1),其中x=3. 19.如图,ABC ADE ,均是顶角为42°的等腰三角形,BC 、DE 分别是底边.图中ACE △可以看成由哪个三角形通过怎样的旋转得到的?证明这两个三角形全等.20.已知边长为a 的正方形ABCD 和∠O=45°.(1)以∠O 为一个内角作菱形OPMN ,使OP=a (要求:尺规作图,不写作法,保留作图痕迹)(2)设正方形ABCD 的面积为S 1,菱形OPMN 的面积为S 2,求12S S 的值. 21.如图,AB 是⊙O 的直径,D 是BC 的中点,弦DH ⊥AB 于点E ,交弦BC 于点F ,AD 交BC 于点G ,连接BD ,求证:F 是BG 的中点.22.实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如下图(图象由线段OA 与部分双曲线AB 组成) .国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于”酒后驾驶”,不能驾车上路.(1)求部分双曲线AB 的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班请说明理由.23. “五月杨梅已满林,初疑一颗值千金 “,莆田杨梅核小,果味酸甜适中,既可直接食用,又可加工成杨梅干、酱、蜜饯等,还可酿酒,止渴、生津、助消化等功能,深受当地老百姓喜爱.杨梅采摘当天食用口感最好,隔天食用口感较差,某水果超市计划六月份订购莆田杨梅,每天进货量相同,进货成本每斤4元,售价每斤6元,未售出的杨梅降价转卖给蜜饯加工厂,以每斤2元的价格当天全部处理完,根据往年销售经验,每天需求量与当天平均气温有关,为了确定六月份的订购计划,统计了前三年六月份日平均气温数据,如下表所示:日平均气温(°C) t<25 25≤t<30 t≥30天数(天) 18 36 36杨梅每天需求量(斤) 200 300 500(1)以前三年六月份日平均气温为样本,估计今年六月份日平均气温不低于25℃的概率;(2)该超市六月份莆田杨梅每天的进货量为x斤(300≤x≤500,试以”平均每天销售利润y元”为决策依据,说明当x为何值时,y取得最大值.24.如图,在四边形ABCD中,AC⊥AD,∠ABC=∠ADC.在BC延长线上取点E,使得DC=DE.(1)如图1,当AD∥BC时,求证:①∠ABC=∠DEC;②CE=2BC;(2)如图2,若tan∠ABC=43,BE=10,设AB=x,BC=y,求y与x的函数表达式.25.已知抛物线F1:y=x2-4与抛物线F2:y=ax2-4a(a≠1).(1)直接写出抛物线F1与抛物线F2有关图象的两条相同性质;(2)抛物线F1与x轴交于A、B两点(点B在点A的右边),直线BC交抛物线F1于点C(点C与点B不重合),点D是抛物线F2的顶点.①若点C为抛物线F1的顶点,且点C为ABD△的外心,求a的值;②设直线BC的解析式为y=kx+b,若k+2a=4,则直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.答案与解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的.的相反数是( )A. 2B.C.D.【答案】D【解析】【分析】根据一个数的相反数就是在这个数前面添上”-”号,即可解答.的相反数是,故选:D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上”-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.中国的领空面积约为1260000平方公里,将1260000用科学记数法表示为( )A. 0.126×107 B. 1.26×106 C. 126×105 D. 126×104 【答案】B【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0的数字后面即可,确定n 的值时,n 比这个数的整数位数小1.【详解】易知 1.26a =,1260000整数位数是7位,所以6n =∴1260000=61.2610⨯ .故选:B .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.下列运算正确的是( )A. (m 3)2=m 5B. m 3⋅ m 2=m 6C. m 2-1=(m+1)(m -1)D. (m+1)2=m 2+1 【答案】C【解析】【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,运用平方差公式因式分解以及完全平方公式逐一判断即可.【详解】】解:A.(m3)2=m6,故本选项不合题意;B.m3⋅m2=m5,故本选项不合题意;C.m2-1=(m+1)(m-1),故本选项符合题意;D.(m+1)2=m2+2m+1,故本选项不合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法、幂的乘方以及运用公式法因式分解,熟记幂的运算法则和乘法公式是解答本题的关键4.图中几何体的主视图是()A. B. C. D.【答案】A【解析】【分析】根据从正面看到的图是主视图求解即可.【详解】解:A.是主视图,符合题意;B.不是该几何体的三视图,故不符合题意;C.是左视图,故不符合题意;D.俯视图,故不符合题意;故选A.【点睛】本题考查了三视图的知识,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.5.如图,把一个直角三角尺的直角顶点放在直尺的一边上,则∠1与∠2之间关系一定成立的是()A. ∠1=2∠2B. ∠1+∠2=180°C. ∠1=∠2D. ∠1+∠2=90°【分析】如图,根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°计算即可得解.【详解】∵直尺对边互相平行,∴∠3=∠1,∵∠3+∠2=180°-90°=90°,∴∠1+∠2=90°.故选:D.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.6.某中学12个班级参加春季植树,其中2个班各植60棵,3个班各植100棵,4个班各植120棵,另外三个班分别植70棵、80棵、90棵,下列叙述正确的是()A. 中位数是100,众数是100B. 中位数是100,众数是120C. 中位数是90,众数是120D. 中位数是120,众数是100【答案】B【解析】【分析】将数据按从小到大的顺序排列,再根据众数和中位数的概念即可得到结果.【详解】解:根据题意,将这组数据重新排列为60、60、70、80、90、100、100、100、120、120、120、120,最中间位置的数据为第6个和第7个数据,都为100,因此中位数为1001001002+=,120出现了4次,出现次数最多,所以这组数据的众数为120,故选:B.【点睛】本题主要考查了找一组数据中的众数和中位数,解题的关键是掌握众数和中位数的概念.7.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是()A. 是中心对称图形,但不是轴对称图形B. 是轴对称图形,但不是中心对称图形C. 既是中心对称图形,又是轴对称图形D. 既不是中心对称图形,又不是轴对称图形【分析】先根据已知条件OA=OB=OC=OD,可知四边形ABCD的对角线相等且互相平分,得出四边形ABCD是矩形,然后根据矩形的对称性,得出结果.【详解】解:如图所示:∵四边形ABCD的对角线相交于点O且OA=OB=OC=OD,∴OA=OC,OB=OD;AC=BD,∴四边形ABCD是矩形,∴四边形ABCD既是轴对称图形,又是中心对称图形.故选:C.【点睛】本题主要考查了矩形的判定及矩形的对称性.对角线相等且互相平分的四边形是矩形,矩形既是轴对称图形,又是中心对称图形.8.我国古代数学著作《九章算术》卷七有下列问题:”今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为( )A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.3487x x+-= D.3487y y-+=【答案】A【解析】【分析】设有x人,物品的价格为y元,根据所花总钱数不变列出方程即可.【详解】设有x人,物品的价格为y元,根据题意,可列方程:8374x yx y-=⎧⎨+=⎩,故选A.【点睛】本题考查了由实际问题抽象出二元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.矩形ABCD 的边BC 上有一动点E ,连接AE 、DE ,以AE 、DE 为边作▱AEDF .在点E 从点B 移动到点C 的过程中,▱AEDF 的面积( )A 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变【答案】D【解析】【分析】 过点E 作EG ⊥AD 于G ,证四边形ABEG 是矩形,得出EG=AB ,平行四边形AEDF 的面积=2△ADE 的面积=2×12AD×EG=AD×AB=矩形ABCD 的面积,即可得出结论. 【详解】解:过点E 作EG ⊥AD 于G ,如图所示:则∠AGE=90°,∵四边形ABCD 是矩形,∴∠ABC=∠BAD=90°, ∴四边形ABEG 是矩形,∴EG=AB ,∵四边形AEDF 是平行四边形,∴平行四边形AEDF 的面积=2△ADE 的面积=2×12AD×EG=AD×AB=矩形ABCD 的面积, 即▱AEDF 的面积保持不变;故选:D .【点睛】本题考查了矩形的性质与判定、平行四边形的性质以及三角形面积等知识;熟练掌握矩形的性质,证出▱AEDF 的面积=矩形ABCD 的面积是解题的关键.10.抛物线24(0)y ax x c a 经过点(x 0,y 0),且x 0满足关于x 的方程20ax +=,则下列选项正确的是( )A. 对于任意实数x 都有y≥ y 0B. 对于任意实数x 都有y≤y 0C. 对于任意实数x 都有y > y 0D. 对于任意实数x 都有y <y 0【答案】A 【解析】 【分析】由0x 满足关于的方程20ax +=,可得出点0(x ,0)y 是二次函数24y ax x c =++的顶点坐标,再由0a >利用二次函数的性质即可得出对于任意实数都有0y y ,此题得解. 【详解】解:0x 满足关于的方程20ax +=,2x a, 点0(x ,0)y 是二次函数24y ax x c =++的顶点坐标.0a >,对于任意实数都有0y y . 故选:.【点睛】本题考查了二次函数的性质,牢记”当0a >时,顶点是抛物线的最低点”是解题的关键.二、填空题:本大题共6小题11.分解因式:ab a -=______. 【答案】()1a b - 【解析】 【分析】确定多项式每项的公因式为a ,直接提取即可. 【详解】解:1(1)ab a a b a a b -=⋅-⋅=- 故答案为()1a b -【点睛】本题考查提公因式法因式分解,确定公因式是解答此题的关键,确定公因式的方法为公因式的系数是多项式各项系数的最大公约数;字母取各项都含有的相同字母,相同字母的指数取次数最低的. 12.如图,等边三角形ABC 边长为2,DE 是它的中位线则DE 的长为________.【答案】1【解析】【分析】根据三角形中位线定理解答.【详解】解:∵DE是△ABC的中位线,∴112DE BC==,故答案为:1.【点睛】本题考查是中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13.我市某校开展”我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图在抽查的学生中,喜欢足球运动的人数为________.【答案】30【解析】【分析】根据排球的人数以及百分比,即可得到被调查的人数;再由总人数×20%即可;【详解】解:总人数=21150 14%人,喜欢足球的人数=150×20%=30(人)故答案为30.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百14.一个扇形的圆心角为120°,半径为2,则这个扇形的弧长为____.【答案】4 3π【解析】【分析】根据弧长公式可得.【详解】根据题意,扇形的弧长为12024 1803ππ⋅⋅=.故答案为43π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.小艾在母亲节给妈妈送了一束鲜花,出差在外的爸爸问小艾送了些什么花.小艾调皮地说:”考考你,花束是由象征爱的康乃馨、玫瑰和百合组成.康乃馨的支数比玫瑰多,但比百合的两倍少,玫瑰的支数比百合多.”请帮小艾爸爸算一算,这束花的总支数至少为________.【答案】12【解析】【分析】设康乃馨有x支,百合有y支,玫瑰有m支,根据题意得到不等式组,确定百合的最少支数即可解答.【详解】解:设康乃馨有x支,百合有y支,玫瑰有m支,根据题意可得:2y m x y ,且x,y,m为正整数,所以y的最小值为3,则m=4,x=5,所以总支数至少为3+4+5=12(支),故答案为:12.【点睛】本题考查了不等式的应用,解题的关键是找出不等关系,确定百合的最少支数.16.如图,在平面直角坐标系中,平行四边形OABC的对角线交于点D,双曲线y=kx(x>0)经过C、D两点,双曲线y=8x(x>0)经过点B,则平行四边形OABC的面积为________.【解析】 【分析】根据平行四边形的性质得到OD BD =,设的坐标是4(2,)m m ,得到的坐标是2(,)m m ,的纵坐标是4m求得22kmm,把4y m =代入2y x =得到的横坐标是2m,根据平行四边形的面积公式即可得到结论. 【详解】解:平行四边形OABC 的对角线交于点,OD BD ∴=,设的坐标是4(2,)m m,D ∴的坐标是2(,)m m,的纵坐标是4m22kmm,把4y m =代入2y x =得:2m x =,即的横坐标是:2m, BCOA ,平行四边形OABC 的面积BC 点的纵坐标4(2)62m mm,故答案为:6.【点睛】本题考查了平形四边形的性质,反比例函数系数的几何意义,根据点的坐标表示出BC 的长度是解题的关键.三、解答题:本大题共9小题,解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.计算:212sin 30(1)-+-___________.1 【解析】 【分析】先根据取绝对值、特殊角的三角函数以及乘方的知识进行化简,再进行计算即可.212sin 30(1)-+-1-2×12+11-1+1=31-故答案为31-.【点睛】本题考查了取绝对值、特殊角的三角函数以及乘方等知识,灵活运用相关基础知识是解答本题的关键.18.先化简,再求值:(x +21x x+)÷(x+1),其中x=3. 【答案】14,3x x + 【解析】 【分析】直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:原式22111x x x x2(1)11x x x1x x+=, 当3x =时,原式3+1433. 【点睛】本题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.如图,ABC ADE ,均是顶角为42°的等腰三角形,BC 、DE 分别是底边.图中ACE △可以看成由哪个三角形通过怎样的旋转得到的?证明这两个三角形全等.【答案】图中的△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的,证明见解析 【解析】 【分析】先根据图形得出△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的,再根据SAS 判定△ACE ≌△ABD 即可.【详解】解:图中的△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的, 证明:∵△ABC 和△ADE 都是顶角为42°的等腰三角形,∴AB =AC ,∠BAC =∠DAE =42°,AD =AE , ∴∠BAD =∠CAE , 在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD (SAS ).【点睛】本题主要考查了旋转的性质以及全等三角形的判定,解题的关键是熟练掌握旋转的性质. 20.已知边长为a 的正方形ABCD 和∠O=45°.(1)以∠O 为一个内角作菱形OPMN ,使OP=a (要求:尺规作图,不写作法,保留作图痕迹) (2)设正方形ABCD 的面积为S 1,菱形OPMN 的面积为S 2,求12S S 的值. 【答案】(1)见解析;(2)2 【解析】 【分析】(1)根据四边相等的四边形是菱形画出图形即可. (2)分别求出正方形,菱形的面积即可解决问题. 【详解】解:(1)如图,菱形ONMP 即为所求.(2)如图,过点N 作NH ⊥OP 于H .∵AB=ON=OP=a ,∴正方形ABCD 的面积S 1=a 2, 在Rt △ONH 中, ∵∠NOH=45°,ON=a ,2sin 452NH ON a ∴=⋅︒=, ∴菱形ONMP 的面积2222S a =, 2122222S a S a ∴==. 【点睛】本题考查作图-复杂作图,菱形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.如图,AB 是⊙O 的直径,D 是BC 的中点,弦DH ⊥AB 于点E ,交弦BC 于点F ,AD 交BC 于点G ,连接BD ,求证:F 是BG 的中点.【答案】见解析 【解析】 【分析】根据圆周角定理证明∠CBD=∠HDB ,推出FB=FD ,再根据余角的性质证明∠FDG=∠FGD ,推出FD=FG 即可解决问题.【详解】证明:∵AB 是直径,AB ⊥DH ,∴BH DB=,∵D是BC的中点,∴BH DB CD==,∴∠CBD=∠HDB,∴FB=FD,∵AB是直径,∴∠ADB=90°,∴∠FDG+∠FDB=90°,∠FGD+∠FBD=90°,∴∠FDG=∠FGD,∴FD=FG,∴FG=FB,即点F是BG的中点.【点睛】本题考查圆周角定理,垂径定理,以及余角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如下图(图象由线段OA与部分双曲线AB组成) .国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于”酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班?请说明理由.【答案】(1)18032y xx≥;(2)不能,见解析【解析】【分析】(1)首先求得线段OA所在直线的解析式,然后求得点的坐标,代入反比例函数的解析式即可求解;(2)把.20x .代入反比例函数解析式可求得时间,结合规定可进行判断.【详解】解:(1)依题意,直线OA 过1(4,20),则直线OA 的解析式为80y x =,当32x =时,120y =,即3(2A ,120),设双曲线的解析式为k y x=,将点3(2A ,120)代入得:180k =,1803()2y x x ∴=; 由180y x=得当20y =时,9x =, 从晚上22:30到第二天早上7:00时间间距为8.5小时,8.59<,第二天早上7:00不能驾车去上班.【点睛】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点,熟练相关性质是解题的关键. 23. “五月杨梅已满林,初疑一颗值千金 “,莆田杨梅核小,果味酸甜适中,既可直接食用,又可加工成杨梅干、酱、蜜饯等,还可酿酒, 止渴、生津、助消化等功能,深受当地老百姓喜爱.杨梅采摘当天食用口感最好,隔天食用口感较差,某水果超市计划六月份订购莆田杨梅,每天进货量相同,进货成本每斤4元,售价每斤6元,未售出的杨梅降价转卖给蜜饯加工厂,以每斤2元的价格当天全部处理完,根据往年销售经验,每天需求量与当天平均气温有关,为了确定六月份的订购计划,统计了前三年六月份日平均气温数据,如下表所示:(1)以前三年六月份日平均气温为样本,估计今年六月份日平均气温不低于25℃的概率;(2)该超市六月份莆田杨梅每天的进货量为x 斤(300≤x≤500,试以”平均每天销售利润y 元”为决策依据,说明当x 为何值时,y 取得最大值. 【答案】(1)45;(2)每天的进货量300斤,利润最大值为520元 【解析】 【分析】1)用前三年六月份日平均气温不低于25C ︒的天数除以前三年六月份的总天数即可; (2)当300500x 时,分25t <;2530t;30t 三种情况,分别表示出每天的利润,再根据加权平均数的定义求出平均每天销售利润与之间的函数解析式,然后根据一次函数的性质求解即可. 【详解】解:(1)估计今年六月份日平均气温不低于25C ︒的概率为:36364905; (2)由题意,300500x ,若25t <,则利润为62002(200)48002x x x ; 若2530t,则利润为63002(300)412002x xx ;若30t ,则利润为642x x x ;(8002)18(12002)363620.464090x x xyx,0.40-<,y ∴随的增大而减小,当300x =时,有最大值,此时0.4300640520y.答:每天的进货量为300斤,平均每天销售的利润取得最大值为520元.【点睛】本题考查了概率,一次函数的应用,频数分布表,加权平均数,分类讨论的思想等知识点,求出与之间的函数解析式是本题的难点.24.如图,在四边形ABCD 中,AC ⊥AD ,∠ABC=∠ADC .在BC 延长线上取点E ,使得DC=DE . (1)如图1,当AD ∥BC 时,求证:①∠ABC=∠DEC ;②CE=2BC ; (2)如图2,若tan ∠ABC=43,BE=10,设AB=x ,BC=y ,求y 与x 的函数表达式.【答案】(1)①证明见解析;②证明见解析;(2)12252510563y x x ⎛⎫=-<< ⎪⎝⎭. 【解析】 【分析】(1)①先根据平行线的性质可得DCE ADC ∠=∠,再根据等腰三角形的性质可得DCE DEC ∠=∠,从而可得ADC DEC ∠=∠,然后根据等量代换即可得证;②如图1(见解析),先根据平行线的判定、平行四边形的判定可得四边形ABCD 是平行四边形,再根据平行四边形的性质可得AD BC =,然后根据矩形的判定与性质AD CH =,从而可得CH BC =,最后根据等腰三角形的三线合一即可得证;(2)如图2(见解析),先根据等腰三角形的三线合一可得2CE HE =,再根据矩形的判定与性质可得,90AN MH MAN =∠=︒,然后根据相似三角形的判定与性质可得AM AC AN AD=,又分别在Rt ABM 和Rt ACD △中,利用正切函数值求出433,,555AM x BM x AN x ===,最后利用线段的和差求出BH 、HE 、CE 的长,据此利用BC BE CE =-即可得.【详解】(1)①//AD BCDCE ADC ∴∠=∠DC DE =DCE DEC ∴∠=∠ADC DEC ∴∠=∠ABC ADC ∠=∠ABC DEC ∴∠=∠;②ABC DEC DCE ∠=∠=∠//AB CD ∴//AD BC四边形ABCD 是平行四边形AD BC ∴=如图1,作DH BE ⊥于点HAC AD ⊥四边形ACHD 是矩形AD CH ∴=CH BC ∴=DC DE =且DH BE ⊥22CE CH BC ∴==;(2)如图2,作DH BE ⊥于点H由等腰三角形的三线合一得:2CE HE =作AN DH ⊥于点N ,AM BE ⊥于点M四边形AMHN 是矩形,90AN MH MAN ∴=∠=︒90MAC NAC ∴∠+∠=︒AC AD ⊥90NAD NAC ∴∠+∠=︒MAC NAD ∠=∠在ACM △和ADN △中,90MAC NAD ANC AND ∠=∠⎧⎨∠=∠=︒⎩ ACM ADN ∴~AM AC AN AD∴= 在Rt ABM 中,4tan 3AM ABC BM ∠== 设4=AM a ,则3BM a =5AB a x ∴=== 解得15a x = 43,55AM x BM x ∴== 在Rt ACD △中,4tan tan 3AC ADC ABC AD =∠=∠= 4453x AN ∴= 解得35AN x = 336555BH BM MH BM AN x x x ∴=+=+=+= 10BE =6105HE BE BH x ∴=-=- 122205CE HE x ∴==- 121210(20)1055BC BE CE x x ∴=-=--=- 即12105y x =- 又0BC BE <<,即010BC <<252563x ∴<< 故y 与x 的函数表达式为12252510()563y x x =-<<.【点睛】本题考查了等腰三角形的判定与性质、矩形的判定与性质、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(2),通过作辅助线,构造直角三角形和相似三角形是解题关键.25.已知抛物线F 1:y=x 2-4与抛物线F 2:y=ax 2-4a(a≠1).(1)直接写出抛物线F 1与抛物线F 2有关图象的两条相同性质;(2)抛物线F 1与x 轴交于A 、B 两点(点B 在点A 的右边),直线BC 交抛物线F 1于点C(点C 与点B 不重合),点D 是抛物线F 2的顶点.①若点C 为抛物线F 1的顶点,且点C 为ABD △的外心,求a 的值; ②设直线BC 解析式为y=kx+b ,若k+2a=4,则直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)对称轴为y 轴,顶点的横坐标为0;(2)①252+或252-,②过定点,定点坐标为(-2,0) 【解析】【分析】(1)根据两个抛物线的b 都为0,即可得抛物线的对称轴都是y 轴,顶点横坐标都是0;(2)①根据题意得出C(0,-4),D(0,-4a),根据抛物线F 1与x 轴交于A ,B 两点,求出A(-2,0),B(2,0),从而可得AC=5a>0时和当a<0吋两种情况分析即可;②设C(x 1,y 1),先求出BC 的解析式,然后求出C 的坐标,再求出直线CD 的解析式即可得得出直线CD 恒过定点.【详解】(1)两个抛物线的b 都为0,∴抛物线的对称轴都是y 轴,顶点横坐标都是0;(2)①点C ,D 分别为抛物线F 1,F 2的顶点,故C(0,-4),D(0,-4a),抛物线F1与x轴交于A,B两点,则A(-2,0),B(2,0),故AC=25,当a>0时,如图1,依题意得,CD=AC=25,则OD=OC+CD=4+25,即4a=4+25,解得:a=252+;当a<0吋,如图2,依题意得:CD=AC=25则OD=CD-OC=25,即-4a=5,解得a=252-,故a 的值为:252+或252-; ②设C(x 1,y 1),依题意得,直线BC 的解析式为y=kx+b ,过点B (2,0), 则b=-2k ,故BC 的解析式为y=kx-2k ,由224y kx k y x =-=-⎧⎨⎩, 得x 2-kx+2k-4=0,则x 1=k-2,y=x 2-4=(k-2)2-4=k 2-4k ,即C 的坐标是(k-2,k 2-4k ),直线CD 的解析式为y=mx+n 过点D(0,-4a), 则()2424n a m k n k k =--+=-⎧⎪⎨⎪⎩, 则m(k-2)-4a=k 2-4k ,又k+2a=4,则a=42k -, 解得428m k n k =-=-⎧⎨⎩, 又点C 异于点B ,故k-4≠0,故CD 的解析式为y=(k-4)x+2k-8,即y=(k-4)(x+2),故直线CD 恒过点(-2,0) .【点睛】本题考查了二次函数的性质,求一次函数解析式,结合知识点灵活分析是解题关键.。

2024年四川省成都七中初中学校中考数学一模试卷及参考答案

2024年四川省成都七中初中学校中考数学一模试卷一、选择题(每小题4分,共32分)1.(4分)﹣2024的绝对值是()A.2024B.﹣2024C.D.2.(4分)据报道2023年国庆出游的全国旅客数达到754000000人次,754000000用科学记数法可表示为()A.7.54×109B.7.54×108C.75.4×108D.0.754×109 3.(4分)下列运算正确的是()A.3x2y+2xy=5x3y2B.(﹣2ab2)3=﹣6a3b6C.(2a+b)2=4a2+b2D.(2a+b)(2a﹣b)=4a2﹣b24.(4分)要调查下列两个问题:(1)了解班级同学中哪个月份出生的人数最多;(2)了解全市七年级学生早餐是否有喝牛奶的习惯.这两个问题分别采用什么调查方式更合适()A.全面调查,全面调查B.抽样调查,抽样调查C.抽样调查,全面调查D.全面调查,抽样调查5.(4分)正多边形的一个外角的度数为30°,则这个正多边形的边数为()A.12B.10C.8D.66.(4分)如图,在扇形AOB中,AO⊥OB,∠AOC=∠BOC,若扇形AOB的半径为2,则扇形AOC的面积为()A.2πB.C.πD.7.(4分)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多六客,一房八客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有6人无房可住;如果一间客房住8人,那么就空出一间客房,若设该店有客房x间,可列方程为()A.7x﹣6=8x﹣1B.7x﹣6=8(x﹣1)C.7x+6=8x﹣1D.7x+6=8(x﹣1)8.(4分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1,其中结论正确的为()A.abc<0B.b2﹣4ac=0C.a﹣b+c>0D.4a+2b+c<0二、填空题(每小题4分,共20分)9.(4分)分解因式:xy2+6xy+9x=.10.(4分)若正比例函数y=﹣2x与反比例函数的图象交于(1,﹣2),则另一个交点坐标为.11.(4分)如图,△ABC与△DEF是位似图形,点O是位似中心,OB:BE=1,若S△ABC =.=2,则S△DEF12.(4分)分式方程的解是.13.(4分)如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为.三、解答题(共48分)14.(12分)(1)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.(2)解不等式组:.15.(8分)为全面增强中学生的体质健康,某学校开展“阳光体育活动”,开设了:A.跳绳;B.篮球;C.排球;D.足球,这4门选修课,要求每名学生只能选择其中的一项参加.全校共有100名男同学选择了A项目,为了解选择A项目男同学的情况,从这100名男同学中随机抽取了30人在操场进行测试,并将他们的成绩x(个/分钟)绘制成频数分布直方图.(1)若抽取的同学的测试成绩落在160≤x<165这一组的数据为160,162,162,163,161,164,则该组数据的中位数是,众数是;(2)根据题中信息,估计选择B项目的男生共有人,扇形统计图中D项目所占圆的圆心角为度;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全区的跳绳比赛,请用画树状图法或列表法计算出甲和乙同学同时被选中的概率.16.(8分)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角∠BAD为37°,倾斜屋顶上的E处到水平线的距离DE为1.3米,C、D、E在同一直线上,且CD⊥AD.求安装热水器的铁架水平横管BC的长度(参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈,结果精确到0.1米).17.(10分)如图,AB为⊙O的直径,C、D为圆上两点,∠ABD=2∠BAC,AB与CD交于点M过点C作CE⊥BD交DB延长线于点E.(1)求证:CE是⊙O的切线;(2)若BE=1,BD=7,求CE和cos∠ABD的值.18.(10分)如图,一次函数y=x﹣1的图象与反比例函数y=的图象交于A(a,1),B(﹣2,b)两点,M为反比例函数图象第一象限上的一动点.(1)求反比例函数的表达式;(2)当∠MBA=45°时,求点M的坐标;(3)我们把对角线互相垂直且相等的四边形称为“垂等四边形”.设点N是平面内一点,是否存在这样的N,M两点,使四边形ABNM是“垂等四边形”,且∠ABM=∠MAN?若存在,求出M,N两点的坐标;若不存在,请说明理由.一、填空题(每小题4分,共20分)19.(4分)若2x2+2xy﹣5=0,则代数式的值为.20.(4分)如图是一个正六棱柱的主视图和左视图,则这个六棱柱的一个侧面面积是________m2.(单位:m)21.(4分)如图所示,扇形AOB的圆心角是直角,半径为,C为OA边上一点,将△BOC沿BC边折叠,圆心O恰好落在弧AB上的点D处,则阴影部分的面积为.22.(4分)如图,二次函数y=的图象交x轴于点A,B(点A在点B 的左侧),交y轴于点C.现有一长为3的线段DE在直线y=上移动,且在移动过程中,线段DE上始终存在点P,使得三条线段PA,PB,PC能与某个等腰三角形的三条边对应相等.若线段DE左端点D的横坐标为t,则t的取值范围是.23.(4分)如图,矩形ABCD中,已知AB=3,BC=6,E为AD边上一动点,将△ABE沿BE边翻折到△FBE,点A与点F重合,连接DF、CF.则DF+FC的最小值为.二、解答题(共30分)24.(8分)春节期间,晓东计划和家人自驾来阿掖山游玩,晓东家汽车是某型号油电混合动力汽车,有用油和用电两种驱动方式,两种驱动方式不能同时使用.经过计算,该汽车从晓东家行驶到阿掖山,全程用油驱动需60元油费,全程用电驱动需12元电费,已知每行驶1千米,用油比用电的费用多0.6元.(1)求该汽车用电驱动方式行驶1千米的电费;(2)若驾驶该汽车从晓东家行驶至阿掖山,游玩后再返回家,需要燃油和用电两种驱动方式,往返全程用电和用油的总费用不超过78元,则最多用油行驶多少千米?25.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2,当最大值时,求点D的坐标及的最大值;(3)如图3,P、Q分别为抛物线上第一、四象限两动点,连接AP、AQ,分别交y轴于M、N两点,若在P、Q两点运动过程中,始终有MO与NO的积等于2.试探究直线PQ 是否过某一定点.若是,请求出该定点坐标;若不是,请说明理由.26.(12分)(1)如图1,在直角△ABC中,∠ACB=90°,过C作CD⊥AB交AB于点D,求证:CD2=AD•BD;(2)如图2,在菱形ABCD中,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD边于点F.①若,求的值;②若(n>2),直接写出的值(用含n的式子表示);(3)如图3,在菱形ABCD中,∠A=60°,点E在CD上,EC=2且=a,点F为BC上一点,连接EF,过E作EG⊥EF交AD于点G,EG•EF=a,求AG的值(用含a的式子表示).2024年四川省成都七中初中学校中考数学一模试卷参考答案一、选择题(每小题4分,共32分)1.A;2.B;3.D;4.D;5.A;6.B;7.D;8.D二、填空题(每小题4分,共20分)9.x(y+3)2;10.(﹣1,2);11.8;12.x=﹣2;13.65°三、解答题(共48分)14.(1)2;(2)﹣1≤x<2.;15.162;162;175;108;16.安装热水器的铁架水平横管BC的长度约为0.9米.;17.(1)答案见解答过程(2).;18.(1)y=;(2)点M(,6);(3)存在,点M(,8),点N(﹣6,).;一、填空题(每小题4分,共20分)19.;20.6;21.﹣9;22.﹣≤t≤2;23.;二、解答题(共30分)24.(1)0.15元;(2)90千米.;25.(1)y=﹣x2+2x+3;(2)有最大值为,此时D(,);(3)直线PQ经过点(3,﹣2).;26.(1)见解析;(2)①,②;(3)AG=2+3a﹣或AG=2+3a﹣a.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七中2020年中考数学模拟试卷G卷
一、选择题 (共16题;共32分)
1. (2分)计算(﹣9)﹣(﹣3)的结果是()
A . ﹣12
B . ﹣6
C . +6
D . 12
2. (2分)下列计算正确的是()
A . a2+a2=a4
B . (a2)3=a5
C . a+2=2a
D . (ab)3=a3b3
3. (2分)下列图形中,既是中心对称图形又是轴对称图形的是()
A . 等边三角形
B . 直角三角形
C . 平行四边形
D . 圆
4. (2分)下列运算:sin30°=,=2,π0=π,2﹣2=﹣4,其中运算结果正确的个数为()
A . 4
B . 3
C . 2
D . 1
5. (2分)下列函数中,属于一次函数的是()
A . y=x+200
B . y=
C . y=2
D . y=8
6. (2分)如图,在平行四边形中,点A1 , A2 , A3 , A4和C1 , C2 , C3 , C4分别是ABCD的五等分点,点B1 , B2和D1 , D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为2,则平行四边形ABCD的面积为()
A . 4
B .
C .
D . 30
7. (2分)下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()
A . 8cm,4cm,3cm
B . 3cm,6cm,9cm
C . 9cm,12cm,13cm
D . 13cm,11cm,2cm
8. (2分)下面几何体的主视图为()
A .
B .
C .
D .
9. (2分)下列图形中,能镶嵌成平面图案的是()
A . 正六边形
B . 正七边形
C . 正八边形
D . 正九边形
10. (2分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()
A . 2cm
B . 3cm
C . 4cm
D . 5cm
11. (2分)下列各有理数中,最小的数是()
A . ﹣1
B . 2
C . 0
D . ﹣
12. (2分)为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()
A . +=
B . +=
C . -=
D . +=
13. (2分)小明想做一个直角三角形的木架,以下四组木棒中,哪一组的三条能够刚好做成()
A . 3cm,4cm,7cm
B . 6cm,8cm,12cm
C . 7cm,12cm,15cm
D . 8cm,15cm,17cm
14. (2分)如果关于x的方程x2-2x+k=0有两个相等的实数根,那么k的值等于()
A . 1
B . 2
C . 0
D . -1
15. (2分)若 = ,则的值为()
A . 1
B .
C .
D .
16. (2分)二次函数y=ax2+bx+c的图象如图所示,若点A(﹣1,y1)、B(﹣6,y2)是它图象上的两点,则y1与y2的大小关系是()
A . y1<y2
B . y1=y2
C . y1>y2
D . 不能确定
二、填空题: (共3题;共3分)
17. (1分)计算(π﹣3)0+()﹣1=________.
18. (1分)分解因式:y+y2+xy+xy2=________ .
19. (1分)有一张等腰三角形纸片,AB=AC=5,BC=3,小明将它沿虚线PQ剪开,得到△AQP和四边形BCPQ两张纸片(如图所示),且满足∠BQP=∠B,则下列五个数据,3,,2,中可以作为线段AQ长的有________个.
三、计算题: (共2题;共30分)
20. (10分)计算:
(1)|(﹣7)+(﹣2)|+(﹣3)
(2)42+3×(﹣1)3+(﹣2)÷(﹣)2 .
21. (20分)计算下列各题:
(1)﹣13﹣(﹣22)+(﹣28)
(2)(-+)×(-48)
(3)23+(-4)-(-16)-5
(4)-14-× [3﹣(-3)2]
四、解答题: (共6题;共50分)
22. (5分)如图,已知∠EFD=∠BCA,BC=EF,AF=DC.线段AB和线段DE平行吗?请说明理由.
23. (5分)如图,在Rt△ABC中,∠C=90°,∠DBC=45°,∠ABC=67.5°,BD=24.72m,求AC的长.(最后结果精确到0.1m,参考数据:sin45°≈0.707,sin67.5°≈0.923,cos45°≈0.707,cos67.5°≈0.382,tan67.5°≈2.414)
24. (10分)在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有数字1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同。

(1)从中任意抽取一张卡片,则该卡片上写有数字1的概率是;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率。

(请利用树状图或列表法说明)
25. (10分)已知:y + 2与3x成正比例,且当x = 1时,y的值为4 .
(1)求y与x之间的函数关系式;
(2)若点(m−1,a)、点(m+2,b)(m为常数)是该函数图像上的两点,试比较a、b 的大小,并说明理由.
26. (5分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)
27. (15分)如图,抛物线经过原点O(0,0),点A(1,1),点B(,0).
(1)求抛物线解析式;
(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;
(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M 的坐标;若不存在,说明理由.
参考答案一、选择题 (共16题;共32分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
二、填空题: (共3题;共3分) 17-1、
18-1、
19-1、
三、计算题: (共2题;共30分) 20-1、
20-2、
21-1、
21-2、
21-3、
21-4、
四、解答题: (共6题;共50分)
22-1、
23-1、
24-1、
24-2、
25-1、25-2、
26-1、27-1、
27-2、
27-3、。

相关文档
最新文档