图像融合实验报告

合集下载

遥感图像融合实验报告

遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感技术在现代科学研究和应用中发挥着重要的作用。

遥感图像融合是将多个遥感图像的信息融合为一个综合图像的过程,可以提供更全面、更准确的地理信息。

本实验旨在通过遥感图像融合技术,对不同分辨率的遥感图像进行融合,以获得更高质量的图像。

二、实验方法1. 数据收集我们使用了两个不同分辨率的遥感图像,一个是高分辨率的卫星图像,另一个是低分辨率的无人机图像。

这两个图像分别代表了不同的空间分辨率。

为了保证数据的准确性,我们选择了同一地区的图像进行比较。

2. 图像预处理在进行图像融合之前,需要对图像进行预处理,以提高融合效果。

我们首先对两个图像进行边缘增强处理,以增强图像的边缘信息。

然后,对图像进行直方图均衡化,使图像的灰度分布更均匀。

最后,对图像进行尺度匹配,以确保两个图像的尺度一致。

3. 图像融合算法本实验使用了一种基于小波变换的图像融合算法。

该算法通过将两个图像的低频部分和高频部分进行融合,得到一个综合图像。

具体步骤如下:a. 对两个图像进行小波变换,得到它们的低频部分和高频部分。

b. 对两个图像的低频部分进行加权平均,得到融合后的低频部分。

c. 对两个图像的高频部分进行加权平均,得到融合后的高频部分。

d. 将融合后的低频部分和高频部分进行逆小波变换,得到最终的融合图像。

4. 实验结果分析通过对融合后的图像进行视觉和定量分析,我们可以评估融合效果。

视觉分析可以通过观察图像的细节和边缘来判断融合效果的好坏。

定量分析可以通过计算图像的信息熵、互信息和均方误差等指标来评估融合效果。

三、实验结果与讨论经过实验,我们得到了融合后的图像。

通过对比原始图像和融合图像,我们可以看到融合后的图像在细节和边缘方面有明显的提升。

融合后的图像更清晰、更丰富,能够提供更多有用的地理信息。

在定量分析方面,我们计算了融合图像的信息熵、互信息和均方误差。

结果显示,融合图像的信息熵和互信息较高,均方误差较低,说明融合效果较好。

《遥感原理与应用》实验报告——影像融合

《遥感原理与应用》实验报告——影像融合

《遥感原理与应⽤》实验报告——影像融合实验名称:影像融合⼀、实验内容1. 对TM 影像和SPOT 影像进⾏HSV 数据融合。

2. 查阅相关资料⽤envi 软件实现⼀种数据融合的⽅法,如Brovey 、PCA 等。

3. 利⽤均值、标准差、特征值等参数对上述两种⽅法的融合效果进⾏评价。

⼆、实验所⽤的仪器设备,包括所⽤到的数据电脑⼀台,Window7操作系统,遥感影像处理软件(ENVI4.3)英国伦敦的TM 影像数据lon_tm 和SPOT 影像数据lon_spot 。

三、实验原理1. 定义:图像(影像)融合是指将多余遥感影像按照⼀定的算法,在规定的地理坐标系中,⽣成新的图像的过程。

2. ⽬的:(1) 提⾼图像空间分辨率 (2) 改善分类(3) 多时相图像融合⽤于变化检测 3. 基本原理(1) HSV 变换法:HSV (hue, saturation, and value :⾊调,饱和度,亮度值)。

⾸先将多光谱图像经HSV 变换得到H 、S 、V 三个分量。

然后将⾼分辨率的全⾊图像代替V 分量,保持H 、S 分量不变。

最后再进⾏HSV 变换得到具有⾼空间分辨率的多光谱图像。

(2) Brovey 变换法:对彩⾊图像和⾼分辨率数据进⾏数学合成,从⽽使图像锐化。

彩⾊图像中的每⼀个波段都乘以⾼分辨率数据与彩⾊波段总和的⽐值。

函数⾃动地⽤最近邻、双线性或三次卷积技术将3个彩⾊波段重采样到⾼分辨率像元尺⼨。

输出的RGB 图像的像元将与⾼分辨率数据的像元⼤⼩相同。

4. 评价指标 (1) 均值与标准差∑==ni i x n µ11 (公式1)()212∑=-=ni i µx σ(公式2)上述两个式⼦中,n 表⽰图像总的像素的个数,xi 为第i 像素的灰度值。

(2) 特征值设 A 是n 阶⽅阵,如果存在数m 和⾮零n 维列向量 x ,使得 Ax=mx 成⽴,则称 m是A 的⼀个特征值(characteristic value)或本征值(eigenvalue)。

图像拼接实验报告

图像拼接实验报告

图像拼接一、实验原理及实验结果图像拼接就是将一系列针对同一场景的有重叠部分的图片拼接成整幅图像,使拼接后的图像最大程度地与原始场景接近,图像失真尽可能小。

基于SIFT算法则能够对图像旋转、尺度缩放、亮度变化保持不变性,对视角变化,仿射变换,噪声也能保持一定程度的稳定性。

本次实验运用SIFT匹配算法来提取图像的特征点,采用随机抽样一致性算法求解单应性矩阵并剔除错误的匹配对。

最后用加权平均融合法将两帧图像进行拼接。

具体过程为:首先选取具有重叠区域的两帧图像分别作为参考图像和待拼接图像,然后使用特征提取算法提取特征点,并计算特征点描述子,根据描述子的相似程度确定互相匹配的特征点对。

再根据特征点对计算出待拼接图像相对于参考图像的单应性矩阵,并运用该矩阵对待拼接图像进行变换,最后将两帧图像进行融合,得到拼接后的图像。

1.特征点检测与匹配特征点检测与匹配中的尺度空间理论的主要思想就是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,再对这些序列就行尺度空间的特征提取。

二维的高斯核定义为:G(x,y,σ)=12πσ2e−(x2+y2)2σ2⁄对于二维图像I(x,y),在不同尺度σ下的尺度空间表示I(x,y,σ)可由图像I(x,y)与高斯核的卷积得到:L(x,y,σ)=G(x,y,σ)∗I(x,y)其中,*表示在x 和 y方向上的卷积,L表示尺度空间,(x,y)代表图像I上的点。

为了提高在尺度空间检测稳定特征点的效率,可以利用高斯差值方程同原图像进行卷积来求取尺度空间极值:D(x,y,σ)=(G(x,y,kσ)−G(x,y,σ))∗I(x,y)= L(x,y,kσ)−L(x,y,σ)其中k为常数,一般取k=√2。

SIFT算法将图像金字塔引入了尺度空间,首先采用不同尺度因子的高斯核对图像进行卷积以得到图像的不同尺度空间,将这一组图像作为金字塔图像的第一阶。

接着对其中的2倍尺度图像(相对于该阶第一幅图像的2倍尺度)以2倍像素距离进行下采样来得到金字塔图像第二阶的第一幅图像,对该图像采用不同尺度因子的高斯核进行卷积,以获得金字塔图像第二阶的一组图像。

图像融合

图像融合

图像融合实验一、 实验目的1、通过实验进一步加深对遥感图像融合原理的理解;2、提高Matlab 编程能力。

二、 实验原理(一)基于IHS 空间的图像融合1、RGB 空间模型: (1)、用红、绿、蓝三原色的混合比例定义不同的色彩 (2)、人眼不能够直接感觉色彩中红、绿、蓝三色的比例 (3)、只能够通过感知颜色的亮度、色调以及饱和度来区分2、IHS 空间模型 (1)、明(亮)度I 、色度H 、饱和度S (2)、明度是人眼对光源或物体明亮程度的感觉 (3)、色度反映了彩色的类别 (4)、饱和度反映彩色深浅(纯洁)的程度 (5)、IHS 三分量具有相对独立性,可分别对它们进行控制3、基于IHS 空间的图像融合基于IHS 空间的图像融合原理如下图所示:其中IHS 变化过程如下:121113330I R V G V B ⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎥⎥⎦其中RGB 变化过程如下:1121113330R I G V B V -⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎥⎥⎦(二)融合效果评价1、主观评价 (1)、通过目视效果进行分析 (2)、光谱、纹理、清晰度、对比度2、客观评价 (1)、利用图像的统计参数进行判定 (2)、反映亮度信息,如均值 (3)、反映空间细节信息,如方差、信息熵、平均梯度 (4)、反映光谱信息,如扭曲程度、偏差指数、相关系数三、 实验内容(一) 基于IHS 空间的图像融合在进行I 分量融合时,我们采用加权融合的方法,即()1fusion quan zhen I I I αα=+-。

我们在此设置=1α,进行图像融合。

(二) PCA 图像融合 (三) 融合效果评价在这里,我们采用平均梯度和偏差指数两个指标来评价融合效果。

平均梯度可用来评价图像的模糊程度,平均梯度越大,图像越清晰。

平均梯度公式如下:11=M Nx y g M N ==∆⋅偏差指数用来评价图像与原始多光谱图像的光谱偏离度,偏差指数越大,光谱失真越大。

图像拼接实验报告

图像拼接实验报告

图像拼接一、实验原理及实验结果图像拼接就是将一系列针对同一场景的有重叠部分的图片拼接成整幅图像,使拼接后的图像最大程度地与原始场景接近,图像失真尽可能小。

基于SIFT算法则能够对图像旋转、尺度缩放、亮度变化保持不变性,对视角变化,仿射变换,噪声也能保持一定程度的稳定性。

本次实验运用SIFT匹配算法来提取图像的特征点,采用随机抽样一致性算法求解单应性矩阵并剔除错误的匹配对。

最后用加权平均融合法将两帧图像进行拼接。

具体过程为:首先选取具有重叠区域的两帧图像分别作为参考图像和待拼接图像,然后使用特征提取算法提取特征点,并计算特征点描述子,根据描述子的相似程度确定互相匹配的特征点对。

再根据特征点对计算出待拼接图像相对于参考图像的单应性矩阵,并运用该矩阵对待拼接图像进行变换,最后将两帧图像进行融合,得到拼接后的图像。

1.特征点检测与匹配特征点检测与匹配中的尺度空间理论的主要思想就是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,再对这些序列就行尺度空间的特征提取。

二维的高斯核定义为:G(x,y,σ)=12πσ2e−(x2+y2)2σ2⁄对于二维图像I(x,y),在不同尺度σ下的尺度空间表示I(x,y,σ)可由图像I(x,y)与高斯核的卷积得到:L(x,y,σ)=G(x,y,σ)∗I(x,y)其中,*表示在x 和 y方向上的卷积,L表示尺度空间,(x,y)代表图像I上的点。

为了提高在尺度空间检测稳定特征点的效率,可以利用高斯差值方程同原图像进行卷积来求取尺度空间极值:D(x,y,σ)=(G(x,y,kσ)−G(x,y,σ))∗I(x,y)= L(x,y,kσ)−L(x,y,σ)其中k为常数,一般取k=√2。

SIFT算法将图像金字塔引入了尺度空间,首先采用不同尺度因子的高斯核对图像进行卷积以得到图像的不同尺度空间,将这一组图像作为金字塔图像的第一阶。

接着对其中的2倍尺度图像(相对于该阶第一幅图像的2倍尺度)以2倍像素距离进行下采样来得到金字塔图像第二阶的第一幅图像,对该图像采用不同尺度因子的高斯核进行卷积,以获得金字塔图像第二阶的一组图像。

影像融合的实验报告(3篇)

影像融合的实验报告(3篇)

第1篇一、实验目的1. 了解影像融合的基本原理和意义。

2. 掌握影像融合的基本方法,如Brovey变换、PCA变换等。

3. 学会使用ENVI软件进行影像融合操作。

4. 分析不同融合方法对影像质量的影响。

二、实验原理影像融合是将不同来源、不同时相、不同光谱分辨率或不同波段的遥感影像进行综合处理,以获得更全面、准确、可靠的区域信息。

影像融合的方法主要分为像素级融合、特征级融合和决策级融合。

像素级融合是指对原始影像的像素值进行融合,常用的方法有Brovey变换、PCA变换、Gram-Schmidt变换等。

特征级融合是指对预处理和特征提取后获得的景物信息进行融合,常用的方法有边缘融合、纹理融合等。

决策级融合是指对融合后的影像进行决策,如分类、识别等。

三、实验方法1. 选择实验数据:选择两幅具有相同覆盖区域的遥感影像,一幅为多光谱影像,另一幅为全色影像。

2. 图像预处理:对两幅影像进行预处理,包括几何校正、辐射校正、大气校正等。

3. 影像融合:使用ENVI软件进行影像融合操作,选择不同的融合方法进行实验。

(1)Brovey变换融合:将多光谱影像的三个波段分别与全色影像进行线性组合,得到融合后的影像。

(2)PCA变换融合:对多光谱影像进行主成分分析,将特征向量与全色影像进行线性组合,得到融合后的影像。

4. 结果分析:比较不同融合方法得到的融合影像,分析其质量、视觉效果和实用性。

四、实验结果与分析1. Brovey变换融合结果:Brovey变换融合后的影像具有较高的空间分辨率和光谱信息,视觉效果较好。

但融合后的影像存在光谱失真现象,部分地物信息丢失。

2. PCA变换融合结果:PCA变换融合后的影像保留了原始影像的大部分信息,但融合后的影像分辨率较低,视觉效果较差。

3. 结果比较:Brovey变换融合方法在保持空间分辨率的同时,较好地保留了光谱信息,视觉效果较好。

PCA变换融合方法在保留大部分信息的同时,降低了影像分辨率,视觉效果较差。

实验报告遥感影像融合(3篇)

实验报告遥感影像融合(3篇)

第1篇一、实验背景随着遥感技术的发展,遥感影像在资源调查、环境监测、城市规划等领域发挥着越来越重要的作用。

然而,由于遥感传感器类型、观测时间、观测角度等因素的限制,同一地区获取的遥感影像往往存在光谱、空间分辨率不一致等问题。

为了充分利用这些多源遥感影像数据,提高遥感信息提取的准确性和可靠性,遥感影像融合技术应运而生。

遥感影像融合是将不同传感器、不同时间、不同分辨率的多源遥感影像进行综合处理,以获得对该区域更为准确、全面、可靠的影像描述。

本文通过实验验证了遥感影像融合技术在提高遥感信息提取准确性和可靠性方面的作用。

二、实验目的1. 了解遥感影像融合的基本原理和方法;2. 掌握常用遥感影像融合算法;3. 通过实验验证遥感影像融合技术在提高遥感信息提取准确性和可靠性方面的作用。

三、实验原理遥感影像融合的基本原理是将多源遥感影像数据进行配准、转换和融合,以获得具有更高空间分辨率、更丰富光谱信息的融合影像。

具体步骤如下:1. 影像配准:将不同源遥感影像进行空间配准,使其在同一坐标系下;2. 影像转换:将不同传感器、不同时间、不同分辨率的遥感影像转换为同一分辨率、同一波段的影像;3. 影像融合:采用一定的融合算法,将转换后的多源遥感影像数据进行融合,生成具有更高空间分辨率、更丰富光谱信息的融合影像。

四、实验方法1. 实验数据:选取我国某地区的高分辨率多光谱遥感影像和全色遥感影像作为实验数据;2. 融合算法:选用Brovey变换、主成分分析(PCA)和归一化植被指数(NDVI)三种常用遥感影像融合算法进行实验;3. 融合效果评价:采用对比分析、相关系数、信息熵等指标对融合效果进行评价。

五、实验步骤1. 数据预处理:对实验数据进行辐射校正、大气校正等预处理;2. 影像配准:采用双线性插值法对多光谱影像和全色影像进行配准;3. 影像转换:对多光谱影像进行波段合成,得到与全色影像相同分辨率的影像;4. 影像融合:分别采用Brovey变换、PCA和NDVI三种算法对转换后的多源遥感影像数据进行融合;5. 融合效果评价:对比分析三种融合算法的融合效果,并采用相关系数、信息熵等指标进行定量评价。

图像融合的实验报告

图像融合的实验报告

图像融合的实验报告实验报告:图像融合一、实验目的本实验的目的是研究和实践图像融合的方法,探究图像融合在多种应用中的作用和效果。

二、实验原理图像融合是将两幅或多幅图像以某种方式进行合成,生成一幅新的图像,使之具有源图像的一些特征和信息。

在图像融合中,常使用的方法包括像素级融合和特征级融合。

像素级融合是将不同图像中的像素点通过某种算法进行融合,产生新的像素值;特征级融合则是将不同图像中的特征提取出来,然后进行融合得到新的特征。

三、实验步骤1. 收集源图像:从不同角度和距离拍摄相同目标的不同图像,作为源图像;2. 图像预处理:对源图像进行预处理,包括灰度化、图像增强、去噪等操作,以便提取和融合图像的特征;3. 特征提取:使用特征提取算法,如边缘检测、角点检测等,从源图像中提取出不同的特征;4. 图像融合:根据所选的融合方法,将不同图像的像素点或特征进行融合;5. 融合结果评估:对融合结果进行评估,包括图像质量评估、信息保留度评估等。

四、实验结果与分析经过以上步骤,我们将图像进行了融合,并得到了融合后的图像。

对融合后的图像进行质量评估发现,融合后的图像与原图相比,整体上有明显的信息保留,且清晰度较高,细节丰富。

这说明我们所选择的特征融合方法在一定程度上是有效的。

五、实验应用图像融合在多个领域有着广泛的应用。

在军事领域,图像融合可以用于红外图像和可见光图像的融合,以提高目标探测和识别的准确率。

在医学领域,图像融合可以将不同类型的医学图像进行融合,帮助医生更准确地进行诊断和治疗。

在遥感领域,图像融合可以将多源的遥感图像融合,提高地物的分类精度和信息提取能力。

六、实验总结本实验通过对图像融合的研究和实践,了解了图像融合的原理和方法,并在实验中得到了一定的实际经验。

图像融合在多个领域都有重要的应用,可以提高图像质量、增强图像信息特征、准确识别目标等。

未来,我们可以进一步研究更多的图像融合方法,优化融合结果,并在更多领域中应用图像融合技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像融合
一、实验目的:掌握图像融合的方法与步骤
二、实验内容:将SPOT全色波数据与ETM多光波数据进行融合并比较各种方法融合的效果。

三、实验数据:
四、实验步骤:
1、先将实验二结果中校正后的ETM和SPOT数据加载进来,然后对其裁剪,步骤如下:(1)、打开ENVI4.7,出现如下工具条
点击File选择Open Vector File选择“襄樊部分地区矢量边界_.evf”
出现点击File选择Export Layers to ROI

击OK出现点击OK (2)、点击Basci Tools选择Subset Data via ROIs出现
选OK将NO改为YES选择存储路径将其保存。

(3)、与上边(1)、(2)步骤相同将ETM图像进行裁剪。

(4)、保存裁剪后的ETM:
2、如图
(1)、HSV融合:选择HSV弹出(本实验的彩色裁剪后的ETM图位于Display#2中)——>OK
选择裁剪完
的SPOT数据——>OK点击Choose选择存储路径。

(2)、PC融合:选择出现
(选择ETM裁剪)——>OK
(选择SPOT裁剪)—
—>Choose(选择存储路径)——>OK
(3)、手动HSV融合:<1>重采样:打开
(选择ETM裁剪彩色)在Display#2中展出。

出现
——>OK
Choose(选择存储路径)——>OK <2>、彩色变换(正变换):
出现
——>OK——>Choose(选择存储路径)—
—>OK
匹配:打开灰度图在Display#3中展示,在Display#1中打开SPOT裁剪的图像在主图框上点击Enhance——>
——>OK
在Display#1的主图框中点击File
拉伸:
逆变换:
H、S均为SPOT裁剪,V为SPOT匹配拉伸后的。

相关文档
最新文档