残余应力的产生
钢轨残余应力产生的原因

钢轨残余应力产生的原因
钢轨残余应力产生的主要原因有以下几个:
1. 制造过程中的温度差异:钢轨制造过程中,由于热处理、冷却以及不同部位的温度变化等因素,会导致钢轨的各个部位产生不同的温度差异。
这种温度差异会导致钢轨产生热应力和冷应力,进而形成残余应力。
2. 轨道车辆荷载作用:钢轨在运行中承受列车的荷载作用,包括轮轴荷载、车辆重力、侧向力等。
这些荷载会导致钢轨产生弯曲、挠度和剪切等变形,进而产生残余应力。
3. 轨道轴重的变化:轨道上不同位置的列车轴重不一致,且随着列车运行状态的变化,轴重也会发生变化。
不同的轴重会导致钢轨所受到的应力分布不均,产生残余应力。
4. 轨道维修和调整:轨道维修、更换和调整等工作过程中,可能会对钢轨施加一定的力量,从而引起钢轨的变形和残余应力。
综上所述,钢轨残余应力产生的原因包括制造过程中的温度差异、轨道车辆荷载作用、轨道轴重的变化以及轨道维修和调整等。
这些因素共同作用导致钢轨产生残余应力。
钢结构焊接残余应力产生的原因

钢结构焊接残余应力产生的原因1. 概述钢结构焊接残余应力是指焊接过程中产生的应力,其主要原因有以下几个方面。
2. 材料本身的性质钢材具有较高的热导率和热膨胀系数,当焊接时,焊缝附近会受到高温热源的加热,导致局部区域温度升高。
由于热膨胀系数的差异,焊接区域与周围区域的线膨胀不一致,产生残余应力。
3. 焊接过程中的温度变化焊接过程中,焊缝区域会经历高温、中温和低温阶段的温度变化。
在高温阶段,焊缝区域受到热源的加热,温度升高,材料发生热膨胀。
在冷却过程中,焊缝区域受到快速冷却的影响,温度迅速下降,材料发生收缩。
这种温度变化导致焊接区域产生应力。
4. 焊接变形引起的应力焊接过程中,焊缝区域会发生热胀冷缩变形,导致焊接件产生塑性变形。
塑性变形会引起应力集中,从而产生残余应力。
5. 焊接过程中的约束焊接过程中,焊接件通常由多个部件组成,这些部件之间会存在约束。
约束会限制焊接件的自由变形,导致焊缝区域产生应力。
6. 焊接工艺参数的选择焊接工艺参数的选择直接影响焊接过程中的温度变化和应力分布。
不合理的焊接工艺参数选择会导致焊接残余应力的产生。
7. 焊接残余应力的影响焊接残余应力对钢结构的性能和使用寿命有着重要的影响。
它可能导致焊接件的变形、开裂和疲劳破坏等问题。
7.1 变形焊接残余应力会引起焊接件的变形,导致尺寸偏差和形状不规则,影响钢结构的装配和使用。
7.2 开裂焊接残余应力会使焊接区域的应力超过材料的承受能力,导致开裂的产生。
开裂会降低钢结构的强度和耐久性。
7.3 疲劳破坏焊接残余应力会使焊接区域的应力集中,从而导致疲劳破坏的产生。
疲劳破坏是由于应力循环加载引起的,会减少钢结构的使用寿命。
8. 焊接残余应力的控制与消除为了减少焊接残余应力的影响,可以采取以下措施:8.1 合理选择焊接工艺参数合理选择焊接工艺参数,控制焊接过程中的温度变化和应力分布,减少焊接残余应力的产生。
8.2 采用预加热和后热处理通过预加热和后热处理,可以改变焊接区域的温度分布,减小焊接残余应力的大小。
残余应力测试方法

残余应力测试方法残余应力是指材料或结构在受力作用后,未完全消除的应力。
残余应力的存在可能会对材料的性能和结构的稳定性产生影响,因此对残余应力进行测试和评估是非常重要的。
一、残余应力的形成原因1. 加工过程中的应力:在材料加工过程中,由于变形、切削或焊接等操作,会引入应力,这些应力可能会在材料中残留下来。
2. 热应力:材料在加热和冷却过程中,由于热胀冷缩不均匀,会产生热应力,这些应力也可能会残留下来。
3. 外部载荷:材料受到外部力的作用,如压力、拉力或弯曲力等,会导致材料产生应力,这些应力也可能会残留下来。
二、残余应力的测试方法1. X射线衍射法:通过测量材料中晶格的畸变程度来间接推测残余应力的大小和方向。
2. 中子衍射法:利用中子的衍射特性来分析材料中晶体的结构和应力状态。
3. 应变测量法:通过测量材料中的应变来推断残余应力的大小和分布。
4. 晶格畸变法:通过分析材料中晶格的畸变情况来评估残余应力。
5. 超声波法:利用超声波在材料中传播的速度和衰减情况来测量材料中的应力。
6. 磁性法:利用材料磁性的变化来分析残余应力的分布和大小。
7. 光学法:通过光学显微镜或偏光显微镜观察材料中的应力畸变情况。
8. 拉伸法:将材料进行拉伸测试,通过测量材料的应变和应力来计算残余应力。
三、残余应力测试的应用领域1. 金属材料:在金属材料的制备和加工过程中,残余应力会对材料的强度、韧性和疲劳寿命等性能产生影响,因此对金属材料中的残余应力进行测试是非常重要的。
2. 焊接结构:焊接过程中产生的残余应力可能会导致焊接接头的变形或裂纹,因此对焊接结构中的残余应力进行测试可以评估焊接接头的质量和可靠性。
3. 玻璃材料:玻璃材料在制备和加工过程中可能会产生残余应力,这些应力可能会导致玻璃材料的破裂或变形,因此对玻璃材料中的残余应力进行测试可以评估其稳定性和可靠性。
4. 复合材料:在复合材料的制备和加工过程中,残余应力可能会导致复合材料的层间剥离或破坏,因此对复合材料中的残余应力进行测试可以评估其性能和可靠性。
残余应力的产生和对策 书籍

残余应力的产生和对策书籍全文共四篇示例,供读者参考第一篇示例:残余应力是指物体在受力后解除外部载荷的情况下所保留的应力状态,这种应力状态往往会影响物体的性能和稳定性。
残余应力的产生是由于材料在受力或变形的过程中内部的分子结构发生变化,使得材料的原始形态无法完全恢复。
残余应力的存在会导致材料的变形、开裂、变形等问题,严重影响材料的使用寿命和性能。
残余应力的产生是一个普遍存在的问题,在实际生产和应用中必须引起足够的重视。
焊接是一个常见的工艺过程,焊接过程中会引入残余应力,如果没有有效的对策控制,会导致焊接件的变形和破裂。
热处理、塑性加工、注塑成型等工艺也会引入残余应力,在工程设计和生产制造过程中必须认真考虑残余应力的问题。
对于残余应力的产生,我们可以通过以下几种对策进行控制和解决:1. 合理设计和选择材料:在工程设计中,可以根据材料的性能和应用要求合理选择材料,减少残余应力的产生。
合理设计结构,在加工和焊接过程中减少应力的集中和不均匀分布。
2. 控制加工过程:在加工过程中,可以采取一些措施来减少残余应力的产生,例如采用合适的工艺参数和工艺控制,控制加工温度和变形,减少残余应力的积累。
3. 热处理和调质处理:对于产生残余应力的材料,可以通过热处理和调质处理的方法来消除或减少残余应力的产生。
在焊接后进行热处理,使材料重新回复力学性能,消除残余应力。
4. 采用残余应力监测和控制技术:在工程领域中,可以采用残余应力监测和控制技术,对残余应力进行实时监测和控制,及时发现问题并采取相应措施进行处理。
残余应力的产生是一个普遍存在的问题,需要引起工程设计和生产制造等各个领域的重视。
通过合理设计和选择材料、控制加工过程、热处理和调质处理、采用残余应力监测和控制技术等对策,可以有效减少或消除残余应力的影响,提高材料的性能和稳定性。
希望相关领域的从业者和学者能够重视残余应力问题,不断探索和完善相关对策,为实现材料的高性能和高稳定性做出贡献。
残余应力的产生与消除

残余应力的产生与消除残余应力的产生、释放与测量一、残余应力的产生产生残余应力的原因归结为三类:一是不均匀的塑性变形;二是不均匀的温度变化;三是不均匀的相变。
根据产生残余应力机理的不同,可将其分为热应力和组织应力,车轴热处理后的残余应力是热应力与组织应力的综合作用结果。
由于构件内、外部温度不均,引起材料的收缩与膨胀而产生的应力称为“热应力”。
热应力是由于快速冷却时工件截面温差造成的,淬火冷却速度与工件截面尺寸共同决定了热应力的大小。
在相同冷却介质的情况下,淬火加热温度越高、截面尺寸越大、钢材热导率和线膨胀系数越大,均能导致淬火件内外温差增大,热应力越大。
而加工过程中,由工件内外组织转变的时刻不同多引起的内应力成为“组织应力”。
淬火时,表层材料先于内部开始马氏体的相变,并引起体积膨胀,由于表层的体积膨胀受到未转变的心部的牵制,于是在试样表层产生压应力,心部产生拉应力。
随着冷却的进行,心部体积膨胀有收到表层的阻碍。
随着心部马氏体相变的体积效应逐渐增大,在某个瞬间组织应力状态暂时为零后,式样的组织应力发生反向,最终形成表层为拉应力而心部为压应力的应力状态。
组织应力大小与钢的含碳量、淬火件尺寸、在马氏体转变温度范围内的冷却速度、钢的导热性及淬透性、加热温度、保温时间等因素有关。
二、残余应力的释放针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。
通常调整残余应力的方法有:①自然时效把工件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。
一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。
但由于时效时间过长,一般不采用。
②热时效热时效是传统的时效方法,利用热处理中的退火技术,将工件加热到500~650℃进行较长时间的保温后再缓慢冷却至室温。
焊接残余应力产生的原因

焊接残余应力产生的原因
有关焊接残余应力产生的原因,一般有以下几个方面:
一、材料特性
1、被焊接材料性质不同及材料表面厚度不均匀:(1)金属材料的性质不同对应用力反应不相同,会产生不同的残余应力。
(2)焊接材料表面厚度不均匀,材料厚度增加,内应力随之增大,这就会在焊接处产生残余应力。
二、焊接参数
1、焊接电流过小:焊接电流偏小,温度过低,焊接温度无法达到焊接所需温度,焊接过程中未能将应力完全消除,热处理发生在焊接部位,可能会形成残留应力。
2、焊接工艺不当:焊接电流过大,会产生较大的残余应力;相反,焊接电流过小,过热区域也会产生残余应力,同样会形成残余应力。
三、焊接结构
1、焊接结构不当:焊接结构不合理,或大的部件复杂的焊接结构,将无法确保获得足够的冷却,可能会形成残余应力。
2、焊接接头固定不当:焊接接头没有足够的固定力,将会存在部分焊接接头浮动,从而使热应力释放无法得到满足,将会形成残余应力。
- 1 -。
残余应力的产生和对策 书籍

残余应力的产生和对策书籍《残余应力的产生和对策》第一章什么是残余应力残余应力是指在物体内部或表面存在的一种剩余应力,它是由于物体经历了外部力的作用或热应变引起的。
这种应力可能会对物体的性能和稳定性产生重要影响。
第二章残余应力的产生机制2.1 材料加工过程中的残余应力在材料的加工过程中,如锻造、轧制、淬火等,由于外部力的作用,会在材料内部产生残余应力。
这些应力可能会导致材料的变形、裂纹甚至破坏。
2.2 热应变引起的残余应力材料在冷却过程中,由于温度变化引起的热应变会导致残余应力的产生。
这种应力可能会导致材料的变形和破坏。
第三章残余应力对物体的影响3.1 对材料性能的影响残余应力会改变材料的力学性能,如强度、韧性等。
这些应力可能会导致材料的脆化、疲劳寿命的降低等问题。
3.2 对结构的影响残余应力可能会导致结构的变形和破坏,从而影响结构的稳定性和安全性。
第四章残余应力的对策4.1 应力退火通过加热材料并保持一段时间,使其内部的残余应力逐渐释放。
这种方法可以有效地减少残余应力,提高材料的稳定性和性能。
4.2 加工控制在材料的加工过程中,合理控制外部力的大小和方向,可以减少残余应力的产生。
例如,在锻造过程中使用适当的温度和应力控制方法,可以降低残余应力的产生。
4.3 热处理通过对材料进行热处理,可以改变其晶体结构,从而减少残余应力的产生。
这种方法可以提高材料的稳定性和机械性能。
第五章结语残余应力是材料工程中一个重要的问题,它对材料的性能和结构的稳定性有着重要影响。
通过了解残余应力的产生机制和对策,我们可以采取有效的方法来减少残余应力的影响,提高材料的性能和结构的稳定性。
在今后的工程实践中,我们应该重视残余应力的问题,并采取相应的措施来解决。
只有这样,我们才能更好地保障工程的质量和安全性。
焊接残余应力产生的原因

焊接残余应力产生的原因
焊接残余应力是指在焊接过程中,由于局部区域受到不均匀的热膨胀和冷却收缩的影响,导致材料内部产生残余应力。
这些残余应力可能会对焊接件的性能和稳定性产生负面影响,因此需要及时进行处理和控制。
焊接残余应力的产生原因主要包括以下几个方面:
1. 热膨胀和冷却收缩不均匀:焊接过程中,焊接件局部区域受到高温热输入,导致局部区域膨胀,而在冷却过程中又会收缩。
如果热膨胀和冷却收缩不均匀,就会导致残余应力的产生。
2. 焊接过程中的变形:焊接过程中,由于焊接件受到热输入,可能会发生变形,导致残余应力的产生。
3. 材料性能差异:焊接时使用的母材、焊材和焊接工艺可能存在一定的差异,这也会导致残余应力的产生。
4. 焊接残留缺陷:如果焊接过程中存在气孔、夹杂等缺陷,也会导致残余应力的产生。
对于焊接残余应力的产生原因,我们可以通过以下几种方法进行控制和处理:
1. 合理选择焊接工艺和参数:在焊接过程中,应根据焊接件的材料和形状,合理选择焊接工艺和参数,以减少残余应力的产生。
2. 采取预热和后热处理措施:在焊接过程中,可以采取预热和后热处理的方式,以减少焊接残余应力的产生。
3. 控制焊接变形:在焊接过程中,应控制焊接变形,避免过大的变形导致残余应力的产生。
4. 检测和修复焊接残留缺陷:在焊接后,应对焊接件进行检测,及时发现并修复焊接残留缺陷,以减少残余应力的产生。
焊接残余应力的产生原因是多方面的,需要在焊接过程中加以控制和处理,以确保焊接件的性能和稳定性。
通过合理选择焊接工艺和参数、采取预热和后热处理措施、控制焊接变形和修复焊接残留缺陷,可以有效减少焊接残余应力的产生,从而提高焊接件的质量和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
残余应力的产生、影响及防控措施崔曙东摘要:对钢结构而言,残余应力的存在,是影响结构脆断、疲劳破损和结构稳定性降低的重要因素。
本文试图对残余应力的产生、对结构的影响和如何有效降低残余应力及影响作简单分析。
关键词:残余应力脆断疲劳破损刚度稳定性1引言钢结构自问世以来,由于其具备的强度高、自重轻、抗震性能好、、施工速度快、地基基础费用省、结构占用面积少、工业化程度高等一系列优点,钢结构在建筑领域被广泛应用。
但是,也不能否认,钢结构还存在着许多缺陷和隐患,例如稳定性从一开始就一直是钢结构中无法回避的问题,还有随着钢结构建筑的深入发展,脆断和疲劳破损等问题也越来越突出。
而上述的诸多问题,无一不与构件内部的残余应力存在密切联系,本文试图从实际出发,探讨残余应力的产生过程、对结构或构件的影响以及如何有效降低残余应力及影响。
2残余应力的成因残余应力是构件还未承受荷载而早已存在构件截面上的初应力,产生的原因很多,其中,焊接残余应力是很重要的一种,另外在钢材的加工过程中也会产生参与应力。
2.1焊接残余应力焊接过程是一个对焊件局部加热继而逐渐冷却的过程,不均匀的温度场将使焊件各部分产生不均匀的变形,从而产生各种焊接残余应力。
焊接构件由焊接而产生的内应力称之为焊接应力,按作用时间可分为焊接瞬时应力和焊接残余应力。
焊接过程中某一瞬时的焊接应力称之为焊接瞬时应力,它随着时间而变化。
焊后残留在焊件内的焊接应力称之为焊接残余应力。
对于钢结构而言,焊接残余应力和变形是影响结构断裂强度、疲劳强度和结构稳定性的重要因素。
焊接残余应力大大降低了焊接部位材料的有效比例极限,是结构发生脆断的重要原因之一。
焊接结构中残余拉应力还会降低结构抗疲劳和耐腐蚀的能力;残余压应力会降低受压构件的刚度,从而使稳定承载力。
焊接残余应力是焊件产生变形和开裂等工艺缺陷的重要原因,由于其影响因素众多,计算残余应力又极为复杂,因此给残余应力的研究带来了许多困难,对焊接结构的残余应力研究就显得尤为重要。
[1]2.1.1沿焊缝轴线方向的纵向焊接残余应力施焊时,焊缝附近温度最高,在焊缝区以外,温度则急剧下降。
焊缝区受热而纵向膨胀,但这种膨胀因变形的平截面规律(变形前的平截面,变形后仍保持平面)而受到其相邻较低温度区的约束,使焊缝区产生纵向压应力。
由于钢材在高温时呈塑性状态(称为热塑状态),因而高温区这种压应力使焊缝区的钢材产生塑性压缩变形,这种塑性变形当温度下降、压应力消失时是不能恢复的。
在焊后的冷却过程中,如假设焊缝区金属能自由变形,冷却后钢材因已有塑性变形而不能恢复其原来长度。
事实上由于焊缝区与其邻近钢材是连续的,焊缝区因冷却产生的收缩变形又因平截面变形的平截面规律受到邻近低温区的钢材的约束,使焊缝区产生拉应力。
这个拉应力当焊件完全冷却后仍残留在焊缝区的钢材内,故名焊接残余应力,对于低合金钢材焊接后的残余应力常可达到其屈服点。
又因截面上残余应力必须自相平衡,焊缝区以外的钢材截面内必然有残余压应力。
2.1.2垂直于焊缝轴线的横向焊接残余应力两钢板以对接焊缝连接时,除产生上述焊接残余应力外,还会产生横向残余应力。
横向残余应力的产生由两部分组成:其一是由焊缝区的纵向收缩引起的,其二是焊缝的横向收缩引起的,最后的横向焊接残余应力应当为两者叠加。
焊缝中由焊缝横向收缩产生的横向残余应力将随施焊的程序而异。
2.1.3厚板中沿厚板方向的焊接残余应力由于厚板常需多层施焊(即焊缝不是一次形成),在厚度方向上将产生焊接残余应力,同时板面与板中间温度分布不均匀,也会引起残余应力,其分布规律与焊接工艺密切相关。
此外,在厚板中的前述纵向和横向焊接残余应力沿板的厚度方向大小也是变化的。
2.1.4约束状态下施焊时的焊接残余应力前述各种焊接残余应力都是焊件能自由变形下施焊时产生的。
当焊件在变形收到约束状态时施焊,其焊接残余应力分布就截然不同。
如在两块相互垂直板的一侧夹角焊上角焊缝,则侧缝的收缩促使夹角减小。
如果这种减小收到约束而不能实现,则焊缝的纵向内将出现反作用残余拉应力,这种应力有可能使焊缝出项裂纹。
2.2残余应力产生的其他途径除构件焊接能产生残余应力外,热轧后的不均匀冷却、各种冷加工(冷弯、矫正)、火焰切割等也会造成残余应力。
它们对残余应力的产生也不可忽视。
3残余应力对结构或构件的影响残余应力是构件还未承受荷载而早已存在构件截面上的初应力,在构件服役过程中,和其他所受荷载引起的工作应力相互叠加,使其产生二次变形和残余应力的重新分布,不但会降低结构的刚度和稳定性而且在温度和介质的共同作用下,还会严重影响结构的疲劳强度、抗脆断能力、抵抗应力腐蚀开裂和高温蠕变开裂的能力。
3.1对结构刚度的影响当外载产生的应力δ与结构中某区域的残余应力叠加之和达到屈服点fy时,这一区:域的材料就会产生局部塑性变形,丧失了进一步承受外载的能力,造成结构的有效截而积减小,结构的刚度也随之降低。
结构上有纵向和横向焊缝时(例如工字梁上的肋板焊缝),或经过火焰校正,都可能在较大的截面上产生残余拉伸应力,虽然在构件长度上的分布范围并不太大,但是它们对刚度仍然能有较大的影响。
特别是采用大量火焰校正后的焊接梁,在加载时刚度和卸载时的回弹量可能有较明显的下降,对于尺寸精确度和稳定性要求较高的结构是不容忽视的。
3.2对杆件稳定性的影响当外载引起的压应力与残余应力中的压应力叠加之和达到fy这部分截而就丧失进一步承受外载的能力,继续承载的杆件的有效截而积减少,杆件刚度降低,稳定承载力降低。
残余应力对受压杆件稳定承载力的影响大小,与残余应力的分布位置有关。
[2] 残余应力是一个不稳定的应力状态,当构件受到外力、温度等其它因素作用时,由于这些作用应力与残余应力的相互作用,使构件某些局部呈现塑性变形,截而内残余应力重新分布,当外在因素去除时整个构件都要发牛变形。
构件在使用过程中,残余应力将发生松弛,所以残余应力影响着构件稳定性。
这也是工程部门最关心的问题之一。
残余应力对构件变形的影响包括两个方面:一方而是构件抗静、动载荷的变形能力;另一方而是载荷卸载后变形恢复的能力。
残余应力在这两个方而对构件的影响是很大的,因此人们一直在研究消除这此影响的有效方法。
3.3对静载强度的影响如果材料是脆性材料,由于材料不能进行塑性变形,随着外力的增加,构件中不可能应力均匀化。
应力峰值将不断增加,直至达到材料的屈服极限,发生局部破坏,最后导致整个构件断裂。
脆性材料残余应力的存在,会使承载能力下降,导致断裂。
对于塑性材料,在低温环境下存在三向拉伸残余应力的作用,会阻碍塑性变形的产生,从而也会大大降低构件的承载能力。
对于焊接构件,只要构件和焊道本身具有较好的塑性变形能力(没有低温、动荷载等使钢材变脆的不利因素),残余应力不会降低构件的静力强度。
因为有残余应力的构件承受逐渐增大的轴心拉力时,外荷载引起的拉应力将叠加截面的残余应力。
在加载过程中,应力不断增加,当叠加总应力达到材料的屈服极限fy,构件中存在残余拉应力的截而提前进入塑性区,后增长的外荷载仅由截而的弹性区承担,随荷载的增大,弹性区减少,塑性区增大,内部应力不断叠加,应力发生重新分布,直至整个截面上的应力达到材料的屈服极限时为止。
由于截面残余应力为自相平衡应力分布,故静力荷载相等,即残余应力不会降低构件的静力强度。
但是塑性材料在一定条件下会失去塑性,变成脆性或者构件材料塑性较低,残余应力将会影响构件的静力强度。
因为构件无足够的塑性变形产生,在加载过程中,应力峰值不断增加,直至达到材料强度极限后发生破坏。
因而残余应力对其有影响。
3.4对疲劳强度的影响钢材在循环应力多次反复作下裂缝生成、扩展以致断裂破坏的现象称为钢材的疲劳。
残余应力的存在使变荷载产生的应力与残余应力叠加后,应力幅值产生变化,将对结构抗疲劳强度产生影响。
因此,如应力集中处存的着残余拉应力较大,疲劳强度就降低。
应力集中系数越高,残余应力的影响也就越显著,因此,提高疲劳强度,不仅应从调节和消除残余应力着手,而且应从上艺和设计上来降低结构的应力集中系数,从而降低残余应力对疲劳强度的不利影响。
3.5对构件脆性的影响脆性破坏是指构件在几乎不存在塑性变形情况下突然开裂,并快速在整个截面内传播直至破坏。
它在低温或者变形速率增加情况下最容易发生。
焊接结构中残余应力的存在(残余应力较高时可达fy) 时,在外荷载的作用下,有效比例极限降低,部分截而提前进入屈服。
这部分截而在塑性变形后,材料的塑性变形能力降低,呈脆性。
因此,残余应力的存在,使部分截面出现脆性性能,加剧了构件脆性破坏的可能性。
裂纹扩大时结构脆断的重要原因。
焊缝冷却时的收缩收缩作用受到约束,有可能出现裂纹,在板厚较大的焊接结构中尤其明显。
例如在两块厚板T形连接时,当两块板间未留缝隙而不能相对移动时,焊缝因收缩受到约束因产生拉应力有可能促使开裂,如果在两块板之间垫上软钢丝留出缝隙,焊缝收缩有余地,裂纹就不会出现。
[3]4残余应力的控制措施完全消除残余应力是不现实的,但可以通过一系列措施来降低残余应力峰值。
控制残余应力的目标是消除残余应力集中和叠加现象,降低应力的峰值并使其均匀分布,从而提高结构的整体承载力、增强结构的安全性。
其措施有以下几种:4.1早期应力循环焊接残余应力经常能达到材料的屈服点fy,此时在承受拉应力δ卸载后,其残余应力的峰值由下降为(fy-δ)。
如果所加拉应力高达fy,则残余应力完全消失。
因此如果构件在早期经受少量的拉应力,则能有效降低残余应力峰值。
但是在工程设计中,要想利用这种消除或减小残余应力的好处并不容易。
在交付前有意识地通过高应力幅循环荷载消除残余应力,目前只在某些机械行业有所应用,办法是用激振器在工作中产生循环应力是残余应力峰值下降。
长期实践证明,在科学地选择有效振型,对构件关键部位施加适当应力后,振动时效能有效降低和均化残余应力值,能极好地稳定焊接件特别是异种钢焊接后的尺寸稳定性,在对环状钢结构中,稳定构件形位尺寸更是效果明显。
另外,振动时效法具有周期短、效率高、无污染的特点,且不受上件尺寸、形状、重量等限制,已经过大量的上程实践证明,对消除构件焊接残余应力是有明显效果的。
4.2采取合理的焊接顺序对大型结构,应从中间向四周进行施焊,使焊缝可以由中间向外依次进行收缩。
对于平面上的交叉焊缝,应特别注意交叉处的焊接质量。
如果接近纵向焊缝的横向焊缝处有缺陷(如未焊透),则这此缺陷正好位于纵焊缝的拉伸应力场中,会造成三向应力状态。
所以要采取保证交叉点部位不易产生缺陷而又能自由收缩的顺序,先焊错开的短焊缝,后焊直通的长焊缝。
应先焊收缩量最大的焊缝。
如果在结构上既有对接焊缝又有角焊缝,就应先焊对接缝,后焊角焊缝。
应先焊在上作时受力较大的焊缝,使内应力合理分布。