向量及其向量加减法
向量的加减法运算法则

向量的加减法运算法则
在向量的加减法运算中,可以用向量的模量和方向来进行计算,并且有四种基本计算规则,分别是:
1、向量的加法:将两个向量在平面上以具有相同方向性的标准坐标系下把向量放在一起,然后把它们合并在一起,将每一个坐标轴上的分量所对应的向量分量累加在一起即可得到两个向量之和。
2、向量的减法:将两个向量以相反方向放在一起,然后把它们合并在一起,将每一个坐标轴上的分量所对应的向量分量累减在一起即可得到两个向量之差。
3、向量的乘法:将两个向量的模量乘在一起,然后乘以向量夹角的余弦值,即可得到两个向量之积。
4、向量的除法:将一个向量的模量除以另一个向量的模量,然后乘以向量夹角的余弦值,即可得到两个向量的商。
向量的加减法是数学中一个基本的操作,但是要掌握它就必须正确理解向量的含义,以及向量的模量和方向性。
如果运算错误,得到的结果可能是不正确的,因此一定要仔细检查计算的准确性,以保证求得的结果是正确的。
第1讲 平面向量的概念及加减运算(教师版)

第1讲 平面向量的概念及加减运算一、考点梳理考点1 基本概念既有大小,又有方向的量叫做向量.以A 为起点、B 为终点的有向线段记作AB →.|AB →|叫AB →的模或AB →的绝对值,表示向量AB →的长度.(1)零向量:长度为0的向量叫做零向量,记作0. (2)单位向量:长度等于1个单位的向量,叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于向量b ,记作a∥b . ①规定:零向量与任一向量平行. 例1.(1)下列物理量中不是向量的有( )①质量;①速度;①力;①加速度;①路程;①密度;①功;①电流强度. A .5个 B .4个 C .3个 D .2个解析:(1)看一个量是否为向量,就要看它是否具备向量的两个要素:大小和方向,特别是方向的要求,对各量从物理本身的意义作出判断,①①①既有大小也有方向,是向量,①①①①①只有大小没有方向,不是向量.(2)一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,①在四边形ABCD 中,AB ∥CD .①四边形ABCD 为平行四边形. ①AD →=BC →,①|AD →|=|BC →|=200 km.(3)判断下列命题是否正确,并说明理由.(1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)由于0方向不确定,故0不能与任意向量平行; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反; (5)起点不同,但方向相同且模相等的向量是相等向量.解析:(1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.(2)不正确.由|a |=|b |只能判断两向量长度相等,不能确定它们方向的关系. (3)不正确.依据规定:0与任意向量平行.(4)不正确.因为向量a 与向量b 若有一个是零向量,则其方向不定. (5)正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.【变式训练1】.在下列命题中,真命题为( )A .两个有共同起点的单位向量,其终点必相同B .向量AB →与向量BA →的长度相等 C .向量就是有向线段 D .零向量是没有方向的解析:由于单位向量的方向不一定相同,故其终点不一定相同,故A 错误;任何向量都有方向,零向量的方向是任意的,并非没有方向,故D 错误;有向线段是向量的形象表示,但并非说向量就是有向线段,故C 错误,故选B.【变式训练2】.在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2) 在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么? 解析:(1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(图略). 【变式训练3】.如图所示,①ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.解析:(1)因为E 、F 分别是AC 、AB 的中点, 所以EF =12BC .又因为D 是BC 的中点,所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →与CD →.考点2 向量的加法 三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和(或和向量),记作a +b ,即a +b =AB →+BC →=AC →.上述求两个向量和的作图法则,叫做向量加法的三角形法则. 对于零向量与任一向量a 的和有a +0=0+a =a .平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以OA ,OB 为邻边作平行四边形,则以O 为起点的对角线上的向量OC →=a +b ,这个法则叫做两个向量加法的平行四边形法则.向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ).例2.(1)如图,已知向量a 、b ,求作向量a +b .解析:在平面内任取一点O (如下图),作OA →=a ,OB →=b ,以OA 、OB 为邻边做①OACB ,连接OC ,则OC →=OA →+OB →=a +b .2(2)如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________. 解析: (1)AC → (2)AO → (3)AD →(4)0(1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解析:(1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0. 【变式训练1】.(1)如图①所示,求作向量和a +b .(2)如图①所示,求作向量和a +b +c .解析:(1)首先作向量OA →=a ,然后作向量AB →=b ,则向量OB →=a +b .如图①所示.(2)方法一(三角形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →=(a +b )+c =a +b +c 即为所求.方法二(平行四边形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,OB →=b ,OC →=c ,以OA ,OB 为邻边作▭OADB ,连接OD ,则OD →=OA →+OB →=a +b ,再以OD ,OC 为邻边作①ODEC ,连接OE ,则OE →=OD →+OC →=a +b +c 即为所求.【变式训练2】.(1)化简:①BC →+AB →;①AB →+DF →+CD →+BC →+F A →.(2)如图,已知O 为正六边形ABCDEF 的中心,求下列向量: ①OA →+OE →; ①AO →+AB →; ①AE →+AB →.解析:根据加法的交换律使各向量首尾相接,再运用向量的结合律,调整向量顺序相加.(1)①BC →+AB →=AB →+BC →=AC →;①AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AF →+F A →=0.(2)①由题图知,OAFE 为平行四边形,①OA →+OE →=OF →; ①由题图知,OABC 为平行四边形,①AO →+AB →=AC →; ①由题图知,AEDB 为平行四边形,①AE →+AB →=AD →.【变式训练3】.化简:(1)AB →+CD →+BC →. (2)(MA →+BN →)+(AC →+CB →). (3)AB →+(BD →+CA →)+DC →. 解析:(1)AB →+CD →+BC →=AB →+BC →+CD →=AD →.(2)(MA →+BN →)+(AC →+CB →)=(MA →+AC →)+(CB →+BN →)=MC →+CN →=MN →.(3)AB →+(BD →+CA →)+DC →=AB →+BD →+DC →+CA →=0.考点3 向量的减法 相反向量(1)我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a . (2)-(-a )=a ,a +(-a )=(-a )+a =0. (3)零向量的相反向量仍是零向量,即0=-0. 向量减法的定义求两个向量差的运算叫做向量的减法.我们定义,a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.向量减法的几何意义 (1)三角形法则如图,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.(2)平行四边形法则如图①,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义, 知AE →=a +(-b )=a -b .又b +BC →=a ,所以BC →=a -b .如图①,理解向量加、减法的平行四边形法则:在①ABCD 中,AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b .例3.(1)在①ABC 中,D ,E ,F 分别为AB ,BC ,CA 的中点,则AF →-DB →等于( )A .FD →B .FC → C .FE →D .BE →解析:由题意可知AF →-DB →=DE →-DB →=BE →.答案:D(2)化简AC →-BD →+CD →-AB →得( )A .AB →B .AD →C .BC →D .0解析:答案:D解法一:AC →-BD →+CD →-AB →=AC →-BD →+CD →+BA →=(AC →+CD →)+(BA →-BD →)=AD →+DA →=0. 解法二:AC →-BD →+CD →-AB →=AC →+DB →+CD →+BA →=(AC →+CD →)+(DB →+BA →)=AD →+DA →=0.【变式训练1】.如图,设O 为四边形ABCD 的对角线AC 与BD 的交点,若AB →=a ,AD →=b ,OD →=c ,则OB →=解析:由于OB =DB -DO →,而DB →=AB →-AD →=a -b ,DO →=-OD →=-c , 所以OB →=a -b +c .【变式训练2】.化简:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →. 解析:解答本题可先去括号,再利用相反向量及加法交换律、结合律化简.(1)解法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.解法二:原式=AB →+MB →-OB →-MO →=AB →+(MB →-MO →)-OB →=AB →+(OB →-OB →)=AB →+0=AB →. (2)解法一:原式=DB →-DC →=CB →.解法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.二、课堂检测1.下列物理量:①质量;①速度;①位移;①力;①加速度;①路程.其中是向量的有( ) A .2个 B .3个 C .4个 D .5个 答案 C 解析 ①①①①是向量. 2.下列说法中正确的个数是( )①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等. A .0 B .1 C .2 D .3 答案 D3. 下列说法正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小答案 D 解析 A 中不管向量的方向如何,它们都不能比较大小,所以A 不正确;由A 的过程分析可知方向相同的向量也不能比较大小,所以B 不正确;C 中向量的大小即向量的模,指的是有向线段的长度,与方向无关,所以C 不正确;D 中向量的模是一个数量,可以比较大小,所以D 正确. 4. 设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量 B .平行的向量 C .有相同起点的向量 D .模相等的向量 5. 下列等式不成立的是( )A .0+a =aB .a +b =b +a C.AB →+BA →=2BA → D.AB →+BC →=AC →答案C 解析:对于C ,①AB →与BA →方向相反,①AB →+BA →=0.6. 如图,在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → 答案 C7. a ,b 为非零向量,且|a +b |=|a |+|b |,则( )A .a∥b ,且a 与b 方向相同B .a ,b 是共线向量且方向相反C .a =bD .a ,b 无论什么关系均可 答案 A8.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( ) A.BD → B.DB → C.BC → D.CB → 答案 C 解析 BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →. 9. 在①ABC 中,BC →=a ,CA →=b ,则AB →等于( )A .a +bB .-a +(-b )C .a -bD .b -a 答案B ①BA →=BC →+CA →=a +b ,①AB →=-BA →=-a -b . 10. (多选)若a ,b 为非零向量,则下列命题正确的是( )A .若|a |+|b |=|a +b |,则a 与b 方向相同B .若|a |+|b |=|a -b |,则a 与b 方向相反C .若|a |+|b |=|a -b |,则|a |=|b |D .若||a |-|b ||=|a -b |,则a 与b 方向相同答案ABD 当a ,b 方向相同时,有|a |+|b |=|a +b |,||a |-|b ||=|a -b |;当a ,b 方向相反时,有|a |+|b |=|a -b |,||a |-|b ||=|a +b |,故A ,B ,D 均正确.10. 在平行四边形ABCD 中,BC →+DC →+BA →+DA →=________. 答案 0解析 注意DC →+BA →=0,BC →+DA →=0.12. 如图,在①ABC 中,若D 是边BC 的中点,E 是边AB 上一点,则BE →-DC →+ED →=________.11 答案0 因为D 是边BC 的中点,所以BE →-DC →+ED →=BE →+ED →-DC →=BD →-DC →=0.13. 设|a |=8,|b |=12,则|a +b |的最大值与最小值分别为________.答案 20,4 解析 当a 与b 共线同向时,|a +b |max =20;当a 与b 共线反向时,|a +b |min =4. 14. 已知向量|a |=2,|b |=4,且a ,b 不是方向相反的向量,则|a -b |的取值范围是________. 答案 [2,6) 根据题意得||a |-|b ||≤|a -b |<|a |+|b |,即2≤|a -b |<6.15. 如图所示,P ,Q 是①ABC 的边BC 上两点,且BP =QC . 求证:AB →+AC →=AP →+AQ →.证明 ①AP →=AB →+BP →,AQ →=AC →+CQ →,①AP →+AQ →=AB →+AC →+BP →+CQ →.又①BP =QC 且BP →与CQ →方向相反,①BP →+CQ →=0,①AP →+AQ →=AB →+AC →,即AB →+AC →=AP →+AQ →.。
空间向量及其运算

空间向量及其运算引言空间向量是三维空间中的一种重要的数学概念,用于描述具有大小和方向的物理量。
本文将介绍空间向量的基本概念、表示方法和运算规则。
基本概念空间向量是由三个实数组成的有序三元组,分别表示向量在三个坐标轴上的分量。
通常用箭头在字母上方表示向量,如向量A表示为$\vec{A}$。
表示方法空间向量可以用坐标表示或者用一个点表示。
坐标表示法将向量的三个分量写成一个有序三元组$(x。
y。
z)$,表示向量在$x$轴上的分量为$x$,在$y$轴上的分量为$y$,在$z$轴上的分量为$z$。
点表示法将向量的起点放在坐标原点,然后将向量的终点绘制在空间中,用一条箭头连接起来。
运算规则空间向量的运算包括加法、减法和数量乘法。
加法:两个向量相加,就是将它们的对应分量相加得到一个新的向量。
例如,$\vec{A} = (x_1.y_1.z_1)$,$\vec{B} =(x_2.y_2.z_2)$,则$\vec{A} + \vec{B} = (x_1 + x_2.y_1 + y_2.z_1 + z_2)$。
减法:两个向量相减,就是将它们的对应分量相减得到一个新的向量。
例如,$\vec{A} = (x_1.y_1.z_1)$,$\vec{B} =(x_2.y_2.z_2)$,则$\vec{A} - \vec{B} = (x_1 - x_2.y_1 - y_2.z_1 - z_2)$。
数量乘法:一个向量与一个实数相乘,就是将向量的每个分量都乘以这个实数。
例如,$\vec{A} = (x。
y。
z)$,$k$为实数,则$k\vec{A} = (kx。
ky。
kz)$。
总结空间向量是三维空间中描述大小和方向的数学概念。
它可以用坐标表示法或者点表示法来表示。
空间向量的运算包括加法、减法和数量乘法。
以上是关于空间向量及其运算的简要介绍,希望能对您有所帮助。
高考向量题型和解题方法

高考向量题型和解题方法高考向量题型主要涉及向量的基本运算、向量的数量积和向量的叉乘。
以下是几种经典的向量题型及其解题方法:1. 向量加减法题型对于向量$\vec{a}=(a_1,a_2,a_3)$ 和$\vec{b}=(b_1,b_2,b_3)$,求 $\vec{a}+\vec{b}$ 和 $\vec{a}-\vec{b}$。
解题思路:直接将向量的对应元素相加或相减即可,即:$$\vec{a}+\vec{b}=(a_1+b_1,a_2+b_2,a_3+b_3)$$$$\vec{a}-\vec{b}=(a_1-b_1,a_2-b_2,a_3-b_3)$$2. 向量数量积题型对于向量$\vec{a}=(a_1,a_2,a_3)$ 和$\vec{b}=(b_1,b_2,b_3)$,求它们的数量积 $\vec{a}\cdot\vec{b}$。
解题思路:数量积的公式为$\vec{a}\cdot\vec{b}=a_1b_1+a_2b_2+a_3b_3$,将向量的对应元素相乘后相加即可。
3. 向量叉乘题型对于向量$\vec{a}=(a_1,a_2,a_3)$ 和$\vec{b}=(b_1,b_2,b_3)$,求它们的叉乘 $\vec{a}\times\vec{b}$。
解题思路:叉乘的公式为:$$\vec{a}\times\vec{b}=\begin{vmatrix}\vec{i} & \vec{j} & \vec{k}\\a_1 & a_2 & a_3\\b_1 & b_2 & b_3\end{vmatrix}$$其中 $\vec{i}$,$\vec{j}$,$\vec{k}$ 分别为 $x$ 轴、$y$ 轴和 $z$ 轴的单位向量。
求解时将行列式按第一行展开即可。
4. 空间向量共面题型给定空间向量 $\vec{a}$,$\vec{b}$ 和 $\vec{c}$,若它们共面,求 $\vec{c}$ 在 $\vec{a}$ 和 $\vec{b}$ 所在平面上的投影向量。
向量的计算方法

向量的计算方法向量是数学中一个非常重要的概念,它不仅在数学上有着广泛的应用,同时也在物理、工程等领域中起着重要的作用。
本文将介绍向量的计算方法,包括向量的加法、减法、数量积和向量积等内容。
首先,我们来看向量的加法。
对于两个向量a和b,它们的加法运算可以表示为a+b。
具体而言,如果a=(a1, a2)和b=(b1, b2),那么a+b=(a1+b1, a2+b2)。
这意味着,向量的加法就是将两个向量的对应分量相加得到一个新的向量。
接下来,我们来讨论向量的减法。
对于两个向量a和b,它们的减法运算可以表示为a-b。
具体而言,如果a=(a1, a2)和b=(b1, b2),那么a-b=(a1-b1, a2-b2)。
同样地,向量的减法就是将两个向量的对应分量相减得到一个新的向量。
除了加法和减法,我们还需要了解向量的数量积。
向量的数量积也称为点积,它的计算方法是将两个向量的对应分量相乘并相加。
具体而言,对于两个向量a和b,它们的数量积可以表示为a·b=a1b1+a2b2。
数量积的结果是一个标量,它表示了两个向量之间的夹角和长度关系。
最后,我们来讨论向量的向量积。
向量的向量积也称为叉积,它的计算方法是利用行列式来计算。
具体而言,对于两个向量a和b,它们的向量积可以表示为a×b=(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)。
向量积的结果是一个新的向量,它垂直于原来的两个向量,并且长度由两个向量的夹角和长度决定。
综上所述,本文介绍了向量的计算方法,包括向量的加法、减法、数量积和向量积。
通过学习这些内容,我们可以更好地理解和运用向量,为解决实际问题提供更多的数学工具和方法。
希望本文对您有所帮助,谢谢阅读!。
向量的概念及其加减法运算

当a与b反向时, 若|a|>|b|,则a+b的方向与a相同,且|a+b|=|a|-|b|; 若|a|<|b|,则a+b的方向与b相同,且|a+b|=|b|-|a|.
向量的运算律
⑴交换律 : a b b a
a
D
a a a a a a a a a a a+b
a
bb
b
A
b
b
B
首首相连
作法: (1)在平面内取一点A
⑵以点A为起点以向量a、b为邻边作平行四 边形 ABCD.
(3)则以点A为起点的对角线 AC=a+b
3、向量求和的多边形法则
已知n个向量,依次把这n个向量首尾相连,异 第一个向量的始点为始点,第n个向量的终点为 终点的向量叫做这n个向量的和向量。
向量减法的定义:
向量a加上b相反向量,叫做a与b的差. 即:a b = a + (b) 求两个向量差的运算叫做向量的减法
已知a,b,根据减法的定义,如何作出a b呢?
a
b
B
b
ab
b O a
A
C
D
方法:平移向量a, b, 使它们起点相同,那么
b的终点指向a的终点的向量就是a b. 即:OAOB=BA
C
证明:作AB=a,AD = b
b
b
以AB,AD为邻边做 平行四边形ABCD
A
aB
则,BC=b,DC=a
因为 AC=AB+BC=a + b, AC=AD+DC=b + a
向量及其加减法,向量与数的乘法

M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
以M1为起点,M2 为终点的有向线段.
向量的模: 向量的大小.| a| 或 | M1M2 |
单位向量:模长为1的向量. a0
或
M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
证 AM MC BM MD
D b
A
a
C
M
B
AD AM MD MC BM BC
AD 与 BC 平行且相等, 结论得证.
四、小结
向量的概念(注意与标量的区别) 向量的加减法(平行四边形法则) 向量与数的乘法(注意数乘后的方向)
思考题
已知平行四边形ABCD的对角线
AC a,
BD b
10、把平行于某一直线的一切单位向量归结到共同的
11、始 要使点,a则b终点a构 b成成__立__,__向__量_a__,_b_应__满__足_____;_____
12、_要__使__a___b___a____b_成_;立,向量a,
b 应满足_______
___________ .
二、用向量方法证明:对角线互相平分的四边形是平 行四边形 .
a
b
负向量:大小相等但方向相反的向量. a
a
a
向径: 空间直角坐标系中任一点 M与原点 构成的向量.OM
二、向量的加减法
[1]
加法:a
b
c
(平行四边形法则)
b
c
a
(平行四边形法则有时也称为三角形法则)
特殊地:若 a‖
a b
向量加法、减法运算及其几何意义

(2)作 OA = a , AB = b
(3)作OB = a + b
B
位移的合成可以看 这种作法叫做向量 作向量加法三角形 加法的三角形法则 法则的物理模型
还有没有其他的做法?
尝试练习一:
(1)根据图示填空:
E
D
AC AB BC _____
BC CD _____ BD
C
A
AD AB BC CD _____ AE AB BC CD DE _____
(2)化简OA OC BO CO
解 : 原式 (OA BO) (OC CO) (OA OB) 0 BA
若a , b不共线,则 | a b || a | | b |
任意向量a, b,有|| a | | b ||| a b || a | | b |
任意向量a, b,有|| a | | b ||| a b || a | | b |
任意向量a, b,有|| a | | b ||| a b || a | | b |
a b。
b
a
A
b a
O
B
ab
三角形法则
例题讲解:
例1.如图,已知向量 a, b ,求作向量
作法2:在平面内任取一点O, OB b , 作 OA a , 以 OA、OB为邻边作 OACB
a b。
b
a,
连结OC,则 OC OA OB a b.
A
a
O
ab
C
平行四边形法则
起点相同连对角
向量加法的平行四边形法则:
B C
b
O
ab
A
起 点 相 同
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目的:1.理解向量、零向量、单位向量、向量的模的意义;2.理解向量的几何表示,会用字母表示向量;3.了解平行向量、共线向量和相等向量的意义,并会判断向量间平行(共线)、相等的关系;4.通过对向量的学习,使学生对现实生活的向量和数量有一个清楚的认识,培养学生的唯物辩证思想和分析辨别能力.5.掌握向量的加法的定义,会用向量加法的三角形法则和平行四边形法则作两个向量的和向量;6.掌握向量加法的交换律和结合律,并会用它们进行向量计算;7.明确相反向量的意义,掌握向量的减法,会作两个向量的差向量;8.在正确掌握向量加法减法运算法则的基础上能结合图形进行向量的计算,将数和形有机结合,并能利用向量运算完成简单的几何证明;9.通过阐述向量的减法运算可以转化为向量加法运算及多个向量的加法运算可以转化成两个向量的加法运算,可以渗透化归的数学思想,使学生理解事物之间相互转化,相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学学科与物理学科之间的联系,提高学生的应用意识.学习内容:向量这部分知识是新内容,但我们已经接触过了.同学们在物理的课程学习过矢量的概念,它与我们要学的向量是一致的(知识是相通的),即使在数学中,前一段我们学习三角函数线时讲过有向线段,实际上向量就是用有向线段表示的.学习难点:向量的加法运算一、向量的概念向量:既有大小又有方向的量.通常用有向线段表示,其中A为起点,B为终点,显然表示不同的向量;有向线段的长度表示向量的大小,用| |表示,显然,既有向线段的起、终点决定向量的方向,有向线段的长度决定向量的大小.注意:向量的长度| |又称为向量的模;长度为0的向量叫做零向量,长度为1的向量叫做单位向量.方向相同或相反的非零向量叫做平行向量,规定零向量与任一向量平行.平行向量可通过平移到同一条直线上,因此平行向量也叫共线向量.长度相等且方向相同的向量叫做相等向量.零向量与零向量相等,任意两个相等的非零向量可经过平移的过程重合在一起,既可用一个有向线段表示,而与起点无关.二、向量的加法1.向量加法的平行四边形法则平行四边形ABCD中,向量的和为.记作: .2.向量加法的三角形法则根据向量相等的定义有: ,既在ΔADC中,,首尾相连的两个向量的和是以第一个向量的起点指向第二个向量的终点.规定:零向量与向量的和等于.三、向量的减法向量与向量叫做相反向量.记作: .则,既用加法法则来解决减法问题.例题选讲第一阶梯[例1]判断下列命题的真假:①直角坐标系中坐标轴的非负轴都是向量;②两个向量平行是两个向量相等的必要条件;③向量与是共线向量,则、、、必在同一直线上;④向量与向量平行,则与的方向相同或相反;⑤四边形是平行四边形的充要条件是.分析:判断上述五个命题的真假性,需细心辨别才能识其真面目.解:①直角坐标系中坐标轴的非负半轴,虽有方向之别,但无大小之分,故命题是错误的.②由于两个向量相等,必知这两个向量的方向与长度均一致,故这两个向量一定平行,所以,此命题正确;③不正确.∵与共线,可以有与平行;④不正确.如果其中有一个是零向量,则其方向就不确定;⑤正确.此命题相当于平面几何中的命题:四边形是平行四边形的充要条件是有一组对边平行且相等.[例2]下列各量中是向量的有_______________.A、动能B、重量C、质量D、长度E、作用力与反作用力F、温度分析:用向量的两个基本要素作为判断的依据注意对物理量实际意义的认识.解:A,C,D,F只有大小,没有方向,而B和F既有大小又有方向,故为向量.[例3]命题“若,,则.”()A.总成立B.当时成立C.当时成立D.当时成立分析:这里要作出正确选择,就是要探求题中命题成立的条件.∵零向量与其他任何非零向量都平行,∴当两非零向量、不平行而时,有,,但这时命题不成立,故不能选择A,也不能选择B与D,故只能选择C.答案:C第二阶梯[例1]如图1所示,已知向量,试求作和向量.分析:求作三个向量的和的问题,首先求作其中任两个向量的和,因为这两个向量的和仍为一个向量,然后再求这个向量与另一个向量的和.即先作,再作.解:如图2所示,首先在平面内任取一点,作向量,再作向量,则得向量,然后作向量,则向量即为所求.[例2]化简下列各式(1); (2).分析:化简含有向量的关系式一般有两种方法①是利用几何方法通过作图实现化简;②是利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序,有时也需将一个向量拆分成两个或多个向量.解:(1)原式=(2)原式=.[例3]用向量方法证明:对角线互相平分的四边形是平行四边形.分析:要证明四边形是平行四边形只要证明某一组对边平行且相等.由相等向量的意义可知,只需证明其一组对边对应的向量是相等向量.(需首先将命题改造为数学符号语言)已知:如图3,ABCD是四边形,对角线AC与BD交于O,且AO=OC,DO=OB.求证:四边形ABCD是平行四边形.证明:由已知得,,且A,D,B,C不在同一直线上,故四边形ABCD是平行四边形.第三阶梯例1.下列命题:(1)单位向量都相等;(2)若,则;(3)若ABCD为平行四边形,则;(4)若,则.其中真命题的个数是()A、0B、1C、2D、3解:(1)不正确.单位向量的长度相等,但方向不一定相同;(2)不正确. 可能在同一条直线上;(3)不正确.平行四边形ABCD中,;(4)正确.满足等量的传递性.选B.例2.若O为正三角形ABC的中心,则向量是().A、有相同起点的向量B、平行向量C、模相等的向量D、相等的向量解:的起点不同,不平行也不相等.由正三角形的性质: .选C.例3.某人向东走3km,又向北走3km,求此人所走路程和位移.解:此人所走路程:|AB|+|BC|=6km.此人的位移:例4.求证对角线互相平分的平面四边形是平行四边形.已知: ,求证:ABCD为平行四边形.证明:由加法法则: ,∵,∴,即线段AB与DC平行且相等,∴ ABCD为平行四边形.例5.非零向量中,试比较的大小.解:(1)共线时,①时,②时,.(2)不共线时,,,∵即,综上:∴课外练习:1.若两个向量不相等,则这两个向量().A、不共线B、长度不相等C、不可能均为单位向量D、不可能均为零向量2.四边形RSPQ为菱形,则下列可用一条有向线段表示的两个向量是().A、B、C、D、3.“两个向量共线”是“这两个向量相等”的().A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.O是四边形ABCD对角线的交点,若,则四边形ABCD是().A、等腰梯形B、平行四边形C、菱形D、矩形5.若O是ΔABC内一点,,则O是ΔABC的().A、内心B、外心C、垂心D、重心6.ΔABC中,=().A、B、C、D、7.平行四边形ABCD中,E、F为AB,CD中点,图中7个向量中,与相等的向量是________;与相等的向量是______;与平行的向量是_______;与平行的向量是_____.8.已知:首尾相接的四个向量.求证: .S参考答案:1.D2.B3.B4.B5.D6.B7.8. 证明:∵,,∴.测试选择题1.已知向量 a=(3,m)的长度是5,则m的值为().A、4B、-4C、±4D、162.下面有四个命题:(1)向量的长度与向量的长度相等.(2)任何一个非零向量都可以平行移动.(3)所有的单位向量都相等.(4)两个有共同起点的相等向量,其终点必相同.其中真命题的个数是().A、4B、3C、2D、13.在下列命题中,正确的是().A、若| |>| |,则>B、| |=| |,则=C、若= ,则与共线D、若≠,则一定不与共线4.下列说法中错误的是().A、零向量是没有方向的B、零向量的长度为0C、零向量与任一向量平行D、零向量的方向是任意的5.如图,设O是正六边形ABCDEF的中心,则和相等的向量的个数是().A、1个B、2个C、3个D、4个答案与解析答案:1、C 2、B 3、C 4、A 5、B解析:1.答案:C. 因为|a| 所以2.答案:B. (1)对.因为与是指同一条线段,因此长度相等.(2)对.这是由相等向量推导出的结论.(3)错.因为单位向量只要求模长等于1,方向不作要求,因此不一定相等.(4)对.因为相等向量可以经过平移至完全重合.解决本题的关键是熟练掌握有关基础知识.3.答案:C. A错.因为向量有大小和方向两个要素.无法比较大小.B错.相等向量不仅要模长相等,方向也要相同.C对.相等向量方向一定相同,因此共线.D错.因为向量不相等,可能仅由于模长不等,方向仍可能是相同的,所以与有共线的可能.4.答案:A. 零向量是规定了模长为0的向量.零向量的方向没有规定,是任意的,可以看作和任一向量共线.零向量绝不是没有方向.5.答案:B. 根据向量相等的条件.向量重点难点了解向量可以根据需要自由平移的特点是今后运用向量方法解决问题的前提条件之一,也因此,平行向量也叫共线向量.要根据向量的有关概念从图形中找出相等的向量和共线的向量.因此,要加强训练观察一些常见图形.以下三个问题上常出现错误:一是用表示向量的有向线段的起点和终点的字母表示向量时,一定注意搞清字母顺序,起点在前,终点在后,例如与是大小相同,方向相反的两个向量,二是零向量的方向是任意的,而不是没有方向,因此有关零向量的方向问题一般要注意规定,例如命题:与共线,与共线,与共线,是错误的,因为零向量的方向是任意的,故与的方向没有任何关系,因此也无法判断是否共线,三是注意区别平行向量与平面几何中直线平行的概念,前者相当于两直线位置关系中的平行和重合两种情况,例如错误地认为平行向量不可能是共线向量,其实这两个概念是同一个概念.典型题目例1下列说法中正确的是().A.向量与向量共线,向量与向量共线,则向量与向量共线B、任意两个相等的非零向量的始点与终点是一平行四边形的四个顶点C、向量与不共线,则与所在直线的夹角为锐角D、始点相同的两个非零向量不平行答案:A点评:向量共线即方向相同或相反,故非零向量间的共线关系是可以传递的.共线向量等同于平行向量,既可平行也可在同一直线上.而相等向量是共线的,故B中四点可能在同一直线上,向量不共线,仅指其所在直线不平行或不重合,夹角可能是直角,而选项D中向量是否共线与始点位置无关.例2 “两个向量共线”是“这两个向量方向相反”的( )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要答案:B点评:向量共线即向量方向相同或相反,故后者推出前者,而反之不成立.例3下面有四个命题:(1)向量的模是一个正实数.(2)两个向量平行是两个向量相等的必要条件.(3)若两个单位向量互相平行,则这两个单位向量相等.(4)温度含有零上温度和零下温度,所以温度是向量,其中真命题的个数为( ).A.0 B.1 C.2 D.3答案:B点评:只有(2)是正确的,因为两个向量平行只是指这两个向量在方向上是相同或相反的.方向相反则不可能是相等向量.即使方向相同,对于大小也没有要求,依然无法判定两个向量是否相等.而两个相等向量的方向一定相同,必是平行向量.(1)错在向量的模是表示向量的有向线段的长度,零向量的模为零.因此向量的模是一个非负实数.(3)错在两个单位向量互相平行,方向可能相同也可能相反,因此这两个向量不一定相等.(4)错在温度的零上零下也只是表示数量.向量既要有大小又要有方向.常见的向量有力、速度、位移、加速度等.正确解答本题的关键是把握住向量的两个要素,并从这两个要素人手区分其它有关概念.例4 一辆汽车从A点出发向西行驶了100公里到达B点,然后又改变方向向西偏北50°走了200公里到达C点,最后又改变方向,向东行驶了100公里到达D点.(1)作出向量、(2) 求| |.答案:(1)见图.(2)由题意,易知方向相反,故与共线,又,∴在四边形ABCD中,AB CD,四边形ABCD为平行四边形,∴,∴=200公里.点评:准确画出向量的方法是先确定向量的起点,再确定向量的方向,最后根据向量的大小确定向量的终点.例5 一个人从A点出发沿东北方向走了100米到达B点.后改变方向沿南偏东15°又走了100米到达C点,求此人从C点走回A点的位移.解:如图,根据题意知ΔABC为等边三角形,故∠a=15°,| |=100,∴此人从C点走回A点的位移,大小为100米,方向为西偏北15°.检测题1.在下列各命题中,为真命题的有()(1)物理学中的作用力与反作用力是一对共线向量(2)温度有零上温度和零下温度.因此温度也是向量(3)方向为南偏西60°的向量与方向为北偏东60°的向量是共线向量(4)坐标平面上的x轴和y轴都是向量A.1个 B.2个 C.3个 D.4个2.已知a、b、c是三个非零向量,则|a+b+c|=|a|+|b|+|c|的充要条件是()A.a、b同方向 B.b、c同方向 C.a、c同方向 D.a、b、c同方向3.下列命题中,正确的是()A. B.C. D.4.下列各命题中假命题的个数为()①向量的长度与向量的长度相等.②向量与向量平行,则与的方向相同或相反.③两个有共同起点而且相等的向量,其终点必相同.④两个有共同终点的向量,一定是共线向量.⑤向量与向量是共线向量,则点、、、必在同一条直线上.⑥有向线段就是向量,向量就是有向线段A.2 B.3 C.4D.55.在下列各结论中,正确的结论为()①两向量共线且模相等是这两个向量相等的必要不充分条件;②两向量平行且模相等是这两个向量相等的既不充分也不必要条件;③两向量方向相同且模相等是这两个向量相等的充分条件;④两向量方向相反且模不相等是这两个向量不相等的充分不必要条件.A.①、③ B.②、④ C.③、④ D.①、③、④6.判断下列命题真假(1)平行向量一定方向相同.(2)共线向量一定相等.(3)起点不同,但方向相同且模相等的几个向量是相等的向量.(4)不相等的向量,则一定不平行.(5)非零向量的单位向量是.7.若三个向量a、b、c恰能首尾相接构成一个三角形,则=。