中考总复习:投影与视图--知识讲解
初三数学投影、三视图通用版知识精讲

初三数学投影、三视图通用版【本讲主要内容】投影、三视图包括投影、平行投影、中心投影、正投影、视图、主视图、俯视图、左视图。
【知识掌握】【知识点精析】1. 用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2. 由平行光线形成的投影叫做平行投影。
3. 由同一点(点光源)发出的光线形成的投影叫做中心投影。
4. 投影线垂直于投影面产生的投影叫做正投影。
5. 当我们从某一角度观察一个物体时,所看到的图象叫做物体的一个视图。
6. 一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图叫做左视图。
7. 画三视图时,使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等。
【解题方法指导】例1. 说出下面图1、图2中画出的正方体的立体图,各是什么投影。
图1 图2分析:图1是美术中画出的正方体的立体图,它应用了透视原理,与中心投影有密切的关系,体现出近大远小的视觉效果;而图2是斜二侧投影,它与平行投影有密切的关系。
解:图1中与正面垂直的直线相交于一点,图2中与正面垂直的直线互相平行,图1中的面近大远小,图2中相对的面一样大。
例2. (2006年某某)某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是()A B C D体的左视图是()DA B C正面分析:从立体图给出了正面的方向,于是左视图是从左面看,应是一个圆,又由于有一根细棒,因此应有一个点,故应选B。
解:B评析:B、C的区别就在于中间有无一个点,这微小的差别体现了全面思考问题的情节。
例2. (2006年某某市)下列物体中,主视图为图1的是()A B C D图1分析:图A的主视图是梯形,应排除;图C的主视图为梯形,应排除;图D的主视图为等腰三角形,应排除,故应选B。
解:B评析:采用排除法是解决这类问题的一种基本方法。
中考总复习:投影与视图--知识讲解

中考总复习:投影与视图—知识解说【考大纲求】1.经过实例认识平行投影和中心投影的含义及简单应用;2.会画基本几何体 ( 直棱柱、圆柱、圆锥、球 ) 的三视图 ( 主视图,左视图、俯视图 ) ,能依据三视图描绘基本几何体或实物的原型.【知识网络】【考点梳理】考点一、生活中的几何体1.常有的几何体的分类在丰富多彩的图形世界中,我们常有的几何体有长方体、正方体、棱柱体、棱锥体、圆柱体、圆锥体、球体、台体等.2.点、线、面、体的关系(1)点动成线,线动成面,面动成体;(2)面面订交成线,线线订交成点.重点解说:体体订交可成点,不必定成线.3.基本几何体的睁开图(1)正方体的睁开图是六个正方形;(2)棱柱的睁开图是两个多边形和一个长方形;(3)圆锥的睁开图是一个圆和一个扇形;(4)圆柱的睁开图是两个圆和一个长方形.考点二、投影1.投影用光芒照耀物体,在某个平面上获得的影子叫做物体的投影,照耀光芒叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光芒形成的投影是平行投影;由同一点( 点光源 ) 发出的光芒形成的投影叫做中心投影.3.正投影投影线垂直投影面产生的投影叫做正投影.重点解说:正投影是平行投影的一种.考点三、物体的三视图1.物体的视图当我们从某一角度察看一个物体时,所看到的图象叫做物体的视图.我们用三个相互垂直的平面作为投影面,此中正对我们的叫做正面,正面下方的叫做水平面,右侧的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内获得的由前向后察看物体的视图,叫做主视图;在水平面内获得的由上向下察看物体的视图,叫做俯视图;在侧面内获得的由左向右察看物体的视图,叫做左视图.重点解说:三视图就是我们从三个方向看物体所获得的 3 个图象.2.画三视图的要求(1)地点的规定:主视图下方是俯视图,主视图右侧是左视图.(2)长度的规定:长对正,高平齐,宽相等.重点解说:主视图反应物体的长和高,俯视图反应物体的长和宽,左视图反应物体的高和宽.【典型例题】种类一、三视图及睁开图1.用大小和形状完整相同的小正方体木块搭成一个几何体,使得它的主视图和俯视图以下图,()则搭成这样的一个几何体起码需要小正方体木块的个数为A .22 B.19C.16D.13【思路点拨】视图、俯视图是分别从物体正面、上边看,所获得的图形.【答案】 D;【分析】综合主视图和俯视图,这个几何体的基层最罕有3+3+1=7 个小正方体,第二层最罕有 3 个,第三层最罕有 2 个,第四层最罕有 1 个,所以搭成这样的一个几何体起码需要小正方体木块的个数为: 7+3+2+1=13 个.故答案为: 13.【总结升华】由三视图判断构成原几何体的小正方体的个数与由相同的小正方体构成的几何体画三视图正好相反.贯通融会:【变式 1】如图是由棱长为 1 的正方体搭成的积木三视图,则图中棱长为 1 的正方体的个数是________.【答案】 6.【高清讲堂:《空间与图形》专题:投影与视图例6】【变式2】以下图是由几个相同的小正方体搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是()个.A. 5B. 6C. 7D. 8左面看正面看上边看【答案】 B.2.美术课上,老师要求同学们将以下图的白纸只沿虚线剪开,用裁开的纸片和白纸上的暗影部份围成一个立体模型,而后放在桌面上,下边四个表示图中,只有一个切合上述要求,那么这个表示图是()A.B.C.D.【思路点拨】着手操作看获得小正方体的暗影部分的详细部位即可.【答案】 B【分析】着手操作折叠成正方体的形状搁置到白纸的暗影部分上,所得正方体中的暗影部分应紧靠白纸,应选 B.【总结升华】用到的知识与正方体睁开图相关,观察学生空间想象能力.建议学生在平常的教课过程中应联合实质模型将睁开图的若干种状况剖析清楚.贯通融会:【变式】以下图的是以一个由一些相同的小正方体构成的简单几何体的主视图和俯视图.设构成这个几何体的小正方体的个数为 n,请写出 n 的全部可能的值.【答案】 n 为 8, 9, 10,11.3.以下图形中经过折叠能围成一个棱柱的是()A.B.C.D.【思路点拨】利用四棱柱及其表面睁开图的特色解题.【答案】 D;【分析】A、侧面少一个长方形,故不可以;B、侧面多一个长方形,折叠后不可以围成棱柱,故不可以;C、折叠后少一个底面,不可以围成棱柱;只有 D 能围成四棱柱.应选 D.【总结升华】四棱柱的侧面睁开图为四个长方形构成的大长方形.贯通融会:【高清讲堂:《空间与图形》专题:投影与视图讲堂练习【变式】如图,在正方体 ABCD-A1B1C1D1中, E、 F、 G分别是3】AB、 BB1、 BC的中点,沿EG、 EF、 FG将这个正方体切去一个角后,获得的几何体的俯视图是()A. B . C . D .【答案】找到从上边看所获得的图形即可,注意全部的看到的棱都应表此刻俯视图中.从上边看易得1个正方形,但上边少了一个角,在俯视图中,右下角有一条线段.应选B.种类二、投影相关问题4.如图,在斜坡的顶部有一铁塔AB, B 是 CD的中点, CD是水平的,在阳光的照耀下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是 1.6m ,同一时辰,小明站在点 E 处,影子在坡面上,小华站在平川上,影子也在平川上,两人的影长分别为2m 和 1m,求塔高AB的长 .【思路点拨】过点D结构矩形,把塔高的影长分解为平川上的BD,斜坡上的DE.而后依据影长的比分别求得 AG, GB长,把它们相加即可.【答案与分析】【分析 1】解:如图1,过 D 作 DF⊥CD,交 AE于点 F,过 F 作 FG⊥ AB,垂足为 G.可得矩形BDFG.由题意得:.∴D F=DE×1.6 ÷2=14.4 ( m).∴GF=BD= CD=6m.又∵.∴A G=1.6×6=9.6 ( m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.图1图2【分析 2】如图 2,作 DG∥AE,交 AB于点 G, BG的影长为BD, AG 的影长为DE,由题意得:AG=1.6.DE2∴ AG=18×1.6 ÷2=14.4 (m).又∵BG=1.6 .BD1∴ BG=1.6×6=9.6 ( m).∴ AB=14.4+9.6=24 ( m).答:铁塔的高度为24m.【总结升华】运用所学的解直角三角形的知识解决实质生活中的问题,要求我们要具备数学建模能力(即将实质问题转变为数学识题).种类三、投影视图综合问题5.用小立方体搭成一个几何体,使它的主视图和俯视图以下图,搭建这样的几何体最多要小立方体.【思路点拨】从正视图和侧视图观察几何体的形状,从俯视图看出几何体的小立方块最多的数量.【答案】 17.【分析】解:由主视图可知,它自下而上共有 3 列,第一列 3 块,第二列 2 块,第三列 1 块.由俯视图可知,它自左而右共有 3 列,第二列各 3 块,第三列 1 块,从空中俯视的块数只需最低层有一块即可.所以,综合两图可知这个几何体的形状不可以确立;如图,最多时有3×5+2×1=17 块小立方体.故答案为17.【总结升华】此题观察简单空间图形的三视图,观察空间想象能力,是基础题,但很简单犯错.6.太阳光芒与水平线的夹角在新疆地域的变化较大,夏至时夹角最大,冬至时夹角最小,最小夹角约为 28 度.现有两幢居民住所楼高为15 米,两楼相距20 米,以下图.(1)在冬至时,甲楼的影子在乙楼上有多高?(2)若在本小区内持续兴建相同高的住所楼,楼距起码应当多少米,才不影响楼房的采光?(前一幢楼房的影子不可以落在后一幢楼房上)(计算结果精准到 0.1 米)【思路点拨】(1)如图,结构直角三角形 ADE,则∠ ADE=28°, DE=BC=20,在这个三角形中已知一边和一个锐角,满足解直角三角形的条件,可求出AE的长进而求得 CD的长.( 2)在△ ABC中,由角 C 的值和 AB的高,知足解直角三角形的条件,可求出BC的长.【答案与分析】解:( 1)以下图,作 DE⊥ AB,垂足为E,由题意可知∠ ADE=28°,DE=BC=20,在 Rt△ ADE中, tan∠ ADE=AE,DEAE=DE?tan∠DAE=20?tan28°≈ 10.6 ,则 DC=EB=AB-AE=15-10.6=4.4.即冬至时甲楼的影子在乙楼上约4.4 米高.( 2)若要不影响要房间的采光,以下图在Rt △ ABC中, AB=15,∠ C=28°,AB15BC=28.2.tan C tan28答:楼距起码28.2 米,才不影响楼房的采光.【总结升华】此题是解直角三角形在生活中的实质应用,做到学数学,用数学,才是学习数学的意义.7.如图,不透明圆锥体DEC放在直线 BP 所在的水平面上,且BP 过底面圆的圆心,其高 2 3 m,底面半径为 2m.某光源位于点 A 处,照耀圆锥体在水平面上留下的影长BE=4m.(1)求∠ B 的度数;(2)若∠ ACP=2∠ B,求光源 A 距平面的高度.【思路点拨】( 1)以以下图所示,过点 D 作 DF垂直 BC于点 F.由题意,得 DF=23 ,EF=2,BE=4,在Rt△DFB中,tan ∠ B= DF,由此能够求出∠B;BF(2)过点 A 作 AH垂直 BP于点 H.由于∠ ACP=2∠B=60°所以∠ BAC=30°, AC=BC=8.在 Rt△ ACH中,AH=AC?Sin∠ ACP,所以能够求出 AH了,即求出了光源 A 距平面的高度.【答案与分析】解:( 1)过点 D 作 DF 垂直 BC于点 F.由题意,得 DF=2 3 ,EF=2,BE=4.在 Rt△ DFB中, tan ∠ B= DF=2 3= 3 ,BF 2+43所以∠ B=30°;( 2)过点 A 作 AH垂直 BP于点 H.∵∠ ACP=2∠B=60°,∴∠ BAC=30°,∴ AC=BC=8,在 Rt△ ACH中, AH=AC?Sin∠ ACP=38=4 3,2即光源 A 距平面的高度为4 3 m.【总结升华】此题观察了学生运用三角函数知识解决实质问题的能力,又让学生感觉到生活到处有数学,数学在生产生活中有着宽泛的作用.。
九年级数学上册第四章视图与投影

九年级数学上册第四章视图与投影『一』.知识归纳:●知识点1 三视图:主视图、俯视图和左视图三视图之间要保持长对正,高平齐,宽相等。
一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象.俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象.注:①视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
②在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
③在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。
●知识点2 投影太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。
探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。
——区分平行投影和中心投影:①观察光源;②观察影子。
从正面、上面、侧面看到的图形就是常见的正投影,也就是视图,是当光线与投影垂直时的投影。
①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:1.线段垂直于投影面时,投影为一点;2.线段平行于投影面时,投影长度等于线段的实际长度;3.线段倾斜于投影面时,投影长度小于线段的实际长度。
③平面图形在某一平面上的投影可分为三种情况:1.平面图形和投影面平行的情况下,其投影为实际形状;2.平面图形和投影面垂直的情况下,其投影为一线段;3.平面图形和投影面倾斜的情况下,其投影小于实际的形状。
『二』典型例题解析【视图类】★例题解析1 如图所示的几何体的俯视图是( B ).A B C D★例题解析2 上图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( D )★例题解析 3 下图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是 BA.5 B.6 C.7 D.8★例题解析 4 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为.★例题解析 5 在如图所示的正方体的三个面上,分别画了填充不同的圆,下面的4个图中,是这个正方体展开图的有( A ).★例题解析6 如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( C ).A. 4B. 6C. 7D.8【投影类】★例题解析7 比例求高“投影”类题如图1,小华为了测量所住楼房的高度,他请来同学帮忙,在阳光下测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为____48____米.变化1 如果物体的投影一部分落在平地上,另一部分落在坡面上:如图2,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )(A)24m (B)22m (C)20 m (D)18 m1 42 5 36第7题图图2变化2 如果物体的投影一部分落在平地上,另一部分落在台阶上:兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图3,若此时落在地面上的影长为4.4米,则树高为()(A)11.5米(B)11.75米(C)11.8米(D)12.25米变化3 如果将上题中的DE改为斜坡,再改变部分已知条件:梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图4,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2 m,α=.在同一DE=4m ,BD=20m,DE与地面的夹角30时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(结果保留两个有效数字)★例题解析8 三角函数求高“投影”类题如图5,当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为 1.16m,则玲玲的身高约为m.(精确到0.01m)变化1如果将太阳光改为照明灯,再适当改变已知条件和问题的形式:如图6所示,点P表示广场上的一盏照明灯.若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).★例题解析9 相似三角形求高“投影”类题如图7,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具。
中考数学-投影与视图(解析版)

专题29投影与视图知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2.平行投影:由平行光线形成的投影是平行投影。
3.中心投影:由同一点发出的光线形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。
通过下面知识导图加深对本章内容的了解。
【例题1】一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A B C D【答案】B.【解析】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.根据看等边三角形木框的方向即可得出答案.竖直向下看可得到线段,沿与平面平行的方向看可得到C,延与平面不平行的方向看可得到D,不论如何看都得不到一点.【例题2】(2020广元)如图所示的几何体是由5个相同的小正方体组成,其主视图为()A. B. C. D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是一个小正方形,第二层是三个小正方形,∴主视图为:【点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【例题3】(2020湖南岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A. B.C. D.【答案】A【解析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.观察图形,从左边看得到两个叠在一起的正方形,如下图所示:【点拨】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.【例题4】(2020苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据组合体的俯视图是从上向下看的图形,即可得到答案.组合体从上往下看是横着放的三个正方形.【点拨】本题主要考查组合体的三视图,熟练掌握三视图的概念,是解题的关键.《投影与视图》单元精品检测试卷本套试卷满分120分,答题时间90分钟一、选择题(每小题3分,共30分)1.(2020成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.【答案】D【解析】根据左视图的定义“从主视图的左边往右边看得到的视图就是左视图”进一步分析即可得到答案.【详解】从主视图的左边往右边看得到的视图为:【点拨】本题考查了左视图的识别,熟练掌握相关方法是解题关键.2.(2020山东济宁)已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【答案】B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是5=(cm),∴侧面积=π×3×5=15π(cm2),故选B.3.(2020山东菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A. B. C. D.【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A选项中的图形.【点拨】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.4.(2020哈尔滨)五个大小相同的正方体塔成的几何体如图所示,其左视图是()A. B. C. D.【答案】C【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层有两个小正方形,第二层右边有一个小正方形,【点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(2020河南)如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】分别确定每个几何体的主视图和左视图即可作出判断.A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,【点拨】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.6.(2020甘肃武威)下列几何体中,其俯视图与主视图完全相同的是()A. B. C. D.【答案】C【解析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.【点拨】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.7.(2020福建)如图所示的六角螺母,其俯视图是()A. B. C. D.【答案】B【解析】根据图示确定几何体的三视图即可得到答案.由几何体可知,该几何体的三视图依次为.主视图为:左视图为:俯视图为:【点拨】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.8.(2020新疆兵团)如图所示,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据俯视图是从上边看的到的视图,可得答案.从上边可以看到4列,每列都是一个小正方形,故C符合题意;【点拨】本题考查了简单组合体的三视图,从上边看的到的视图是俯视图.掌握俯视图的含义是解题的关键.9.(2020贵州黔东南)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【答案】D【解析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.【点拨】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.10.(2020贵州黔西南)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C. D.【答案】D【解析】找到从上面看所得到的图形即可.解:从上面看可得四个并排的正方形,如图所示:【点拨】本题考查了三视图的知识,.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.二、填空题(每空3分,共30分)11.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.【答案】4.【解析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm)12.如图所示,一个空间几何体的主视图和左视图都是边长为l的正三角形,俯视图是一个圆及圆心,那么这个几何体的侧面积是.【答案】见解析。
投影与视图九年级知识点

投影与视图九年级知识点一、引言投影与视图是几何学中的基础概念之一,它们帮助我们更好地理解和描述三维空间中的物体。
在九年级几何学课程中,学生将学习如何通过投影和视图来描绘物体的形状和结构。
本文将探讨投影与视图的概念、分析它们的应用以及解决相关问题的方法。
二、投影的概念1. 投影是指一个物体在光线或平面上的阴影或映像。
在几何学中,投影通常用于描述一个物体在平面上的阴影或三维空间中的投射。
2. 平行投影是指从一个平面上的点到另一个平面上的点的映射。
在平行投影中,物体的形状和大小保持不变,只有位置发生变化。
3. 垂直投影是指从一个平面上的点到另一个平面上的点的映射,同时保持垂直于平面的方向。
垂直投影常用于描述物体的正面、侧面和顶面视图。
三、视图的概念1. 视图是物体在不同平面上的投影。
常用的视图有正面视图、侧面视图和顶面视图。
2. 正面视图是指物体在一个垂直于平面的平面上的投影。
它展示了物体的正面形状、尺寸和特征。
3. 侧面视图是指物体在一个与正面视图垂直的平面上的投影。
它展示了物体的侧面形状、尺寸和特征。
4. 顶面视图是指物体在一个平行于底面的平面上的投影。
它展示了物体的顶面形状、尺寸和特征。
四、投影与视图的应用1. 工程和建筑:投影与视图在设计和建造过程中起着重要作用。
工程师和建筑师通过绘制投影和视图来展示他们的设计概念,提供给施工人员一个清晰的指导。
2. 制造业:在制造业中,投影和视图被用来描述产品的形状和结构,以及制造过程中的工艺要求。
这有助于确保产品的质量和符合设计要求。
3. 艺术和设计:投影与视图对于艺术家和设计师来说也是非常重要的。
通过观察投影和视图,他们可以更好地理解和描绘物体的形状、光影效果和透视。
五、解决问题的方法1. 通过观察物体和理解其几何特征,可以确定物体的投影和视图所在的平面。
2. 使用标尺和直角尺来测量物体的尺寸和角度,以确保正确绘制投影和视图。
3. 利用几何理论和原理,根据已知条件和关系绘制正确的投影和视图。
人教版数学中考知识点梳理-视图与投影

第25讲视图与投影原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。
柳宗元一、知识清单梳理知识点一:三视图内容关键点拨1.三视图主视图:从正面看到的图形.俯视图:从上面看到的图形.左视图:从左面看到的图形.例:长方体的主视图与俯视图如图所示,则这个长方体的体积是36 .2.三视图的对应关系(1)长对正:主视图与俯视图的长相等,且相互对正;(2)高平齐:主视图与左视图的高相等,且相互平齐;(3)宽相等:俯视图与左视图的宽相等,且相互平行.3.常见几何体的三视图常见几何体的三视图正方体:正方体的三视图都是正方形.圆柱:圆柱的三视图有两个是矩形,另一个是圆.圆锥:圆锥的三视图中有两个是三角形,另一个是圆.球的三视图都是圆.知识点二:投影4.平行投影由平行光线形成的投影.在平行投影中求影长,一般把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长.例:小明和他的同学在太阳下行走,小明身高1.4米,他的影长为1.75米,他同学的身高为1.6米,则此时他的同学的影长为2米.5.中心投影由同一点(点光源)发出的光线形成的投影.【素材积累】1、成都,是一个微笑的城市,宁静而美丽。
几千年前的三星堆、金沙,是古蜀人智慧的结晶,难以忘怀的文明,静静地诉说着古人们的智慧……刘备,孟昶等,多少为成都制造机会,创造美丽的人啊!武侯祠中诸葛亮摘悄悄的感叹成都的美……杜甫草堂,有多少千古名句,虽然简陋却给了杜甫一个温暖的港湾。
2、早上,晴空万里,云雾满天。
太阳公公把一切都搞得有一层薄薄的金黄色。
一群小鸟,摘老松树的枝头上欢蹦乱跳,叽叽喳喳地唱歌,这些小淘气们一跳上去,那些晶莹的小露珠旧滴一声,跳到了地上,继续进行它们的旅行。
空气摘早上也是非常的清新,你深深地吸一口气,仿佛可以把自己所有的心烦事都忘得一干二净,这旧是我家乡的早晨。
中考数学复习 专题27 投影与视图

投影与视图知识点名师点晴投影1.投影的定义知道什么是物体的投影.2.平行投影知道什么是平行投影.3.中心投影知道什么是平行投影.视图4.物体的三视图知道主视图、俯视图、左视图,并能准确判断三种视图.☞2年中考【2015年题组】1.(2015北海)一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球 D.以上都不正确【答案】A.【解析】试题分析:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.考点:由三视图判断几何体.2.(2015南宁)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.3.(2015柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:根据俯视图的概念可知,几何体的俯视图是A图形,故选A.考点:简单几何体的三视图.4.(2015桂林)下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.【答案】C.【解析】试题分析:几何体的俯视图为,故选C.考点:由三视图判断几何体.5.(2015梧州)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B.C.D.【答案】D.考点:1.几何体的展开图;2.简单几何体的三视图.6.(2015扬州)如图所示的物体的左视图为()A. B. C. D.【答案】A.【解析】试题分析:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.考点:简单组合体的三视图.7.(2015攀枝花)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【答案】C.考点:简单几何体的三视图.8.(2015达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.【答案】D.【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.9.(2015德阳)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A.200πcm3 B.500πcm3 C.1000πcm3 D.2000πcm3【答案】B.考点:由三视图判断几何体.10.(2015南充)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B. C.D.【答案】A.【解析】试题分析:根据主视图的定义,可得它的主视图为:,故选A.考点:简单几何体的三视图.11.(2015襄阳)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【答案】A.考点:由三视图判断几何体.12.(2015齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A.5或6或7 B.6或7 C.6或7或8 D.7或8或9【答案】C.【解析】试题分析:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.故选C.考点:由三视图判断几何体.13.(2015连云港)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.【答案】8π.考点:1.由三视图判断几何体;2.几何体的展开图.14.(2015随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.【答案】24.【解析】试题分析:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为3×2×4=24cm3.故答案为:24.考点:由三视图判断几何体.15.(2015牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.【答案】7.【解析】试题分析:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.考点:由三视图判断几何体.16.(2015西宁)写出一个在三视图中俯视图与主视图完全相同的几何体.【答案】球或正方体(答案不唯一).考点:1.简单几何体的三视图;2.开放型.17.(2015青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.【答案】19,48.【解析】试题分析∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×23=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为:19,48.考点:由三视图判断几何体.三、解答题18.(2015镇江)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m/s.试题解析:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴CE OEAM OM=,EG OEBM OM=,∴CE EGAM BM=,即234 1.213.24x xx x=--,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.考点:1.相似三角形的应用;2.中心投影.19.(2015兰州)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1)平行;(2)7.考点:1.相似三角形的应用;2.平行投影.20.(2015宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.【2014年题组】1.(2014·绍兴)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.2.(2014·吉林)用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是()A.B.C.D.【答案】A【解析】试题分析:从上面看可得到一个有2个小正方形组成的长方形.故选A.考点:三视图3.(2014·衡阳)左图所示的图形是由七个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()【答案】B . 【解析】 试卷分析:针对三视图的概念,把右图的三视图画出来对号入座即可知B 选项不是这个立体图形的三视图.故选B .考点:简单几何体的三视图. 4.(2014·十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .正方体 长方体 球 圆锥 【答案】B .考点:简单几何体的三视图.5.(2014·宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是( )A 210cm πB .2210cm πC .26cm πD .23cm π【答案】A . 【解析】试题分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.因此,∵半径为1cm ,高为3cm ,∴根据勾10cm .∴侧面积=()2112r l 211010cm 22πππ⋅⋅=⨯⨯.故选A .考点:1.由三视图判断几何体;2.圆锥的计算国3.勾股定理. 6.(2014·湖州) 如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是【答案】3.【解析】试题分析:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.考点:简单组合体的三视图。
2024年中考数学一轮复习考点精讲课件—投影与视图

2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:
① 根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;
② 从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;
③ 熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.
考点一 图形的投影
3)立体图形的正投影
物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最
大截面全等.
投影的判断方法:
1)判断投影是否为平行投影的方法是看光线是否是平行的,如果光线是平行的,那么所得到的投影就是平行投影.
2)判断投影是否为中心投影的方法是看光线是否相交于一点,如果光线是相交于一点的,那么所得到的投影就是中
【例2】(2021·安徽淮南·校联考模拟预测)下列现象中,属于中心投影的是(
A.白天旗杆的影子
B.阳光下广告牌的影子
C.灯光下演员的影子
D.中午小明跑步的影子
)
考点一 图形的投影
题型03 正投影
【例3】(2022·浙江温州·温州绣山中学校联考二模)由四个相同小立方体拼成的几何体如图所示,当光线由上向
1 ) 等 高 的 物 体 垂 直 地 面 放 置 时 ( 图 1 ) , 在 太 阳 光 下 , 它 们 的 影 子 一 样 长 .
2)等长的物体平行于地面放置时(图2),它们在太阳光下的影子一样长,且影长等于物体本身的长度.
图1
图2
【小技巧】
1)图1中,两个物体及它们各自的影子及光线构成的两个直角三角形相似,相似三角形对应边成比例.
【变式8-1】(2021·宁夏吴忠·统考模拟预测)一个几何体的三视图如图所示,则该几何体的表面积为 3π+4 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考总复习:投影与视图—知识讲解【考纲要求】1.通过实例了解平行投影和中心投影的含义及简单应用;2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图,左视图、俯视图),能根据三视图描述基本几何体或实物的原型.【知识网络】【考点梳理】考点一、生活中的几何体1.常见的几何体的分类在丰富多彩的图形世界中,我们常见的几何体有长方体、正方体、棱柱体、棱锥体、圆柱体、圆锥体、球体、台体等.2.点、线、面、体的关系(1)点动成线,线动成面,面动成体;(2)面面相交成线,线线相交成点.要点诠释:体体相交可成点,不一定成线.3.基本几何体的展开图(1)正方体的展开图是六个正方形;(2)棱柱的展开图是两个多边形和一个长方形;(3)圆锥的展开图是一个圆和一个扇形;(4)圆柱的展开图是两个圆和一个长方形.考点二、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.考点三、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.【典型例题】类型一、三视图及展开图1.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的主视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22 B.19 C.16 D.13【思路点拨】视图、俯视图是分别从物体正面、上面看,所得到的图形.【答案】D;【解析】综合主视图和俯视图,这个几何体的底层最少有3+3+1=7个小正方体,第二层最少有3个,第三层最少有2个,第四层最少有1个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:7+3+2+1=13个.故答案为:13.【总结升华】由三视图判断组成原几何体的小正方体的个数与由相同的小正方体构成的几何体画三视图正好相反.举一反三:【变式1】(2014秋•莲湖区校级期末)用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个.【答案】7.【解析】∵俯视图中有5个正方形,∴最底层有5个正方体;∵主视图第二层有2个正方形,∴几何体第二层最少有2个正方体,∴最少有几何体5+2=7.【高清课堂:《空间与图形》专题:投影与视图例6】【变式2】下图是由几个相同的小正方体搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是()个.A.5 B.6 C.7 D.8【答案】B.2.美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部份围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A. B.C. D.【思路点拨】动手操作看得到小正方体的阴影部分的具体部位即可.【答案】B左面看正面看上面看【解析】动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选B.【总结升华】用到的知识与正方体展开图有关,考察学生空间想象能力.建议学生在平时的教学过程中应结合实际模型将展开图的若干种情况分析清楚.举一反三:【变式】如图所示的是以一个由一些相同的小正方体组成的简单几何体的主视图和俯视图.设组成这个几何体的小正方体的个数为n,请写出n的所有可能的值.【答案】n为8,9,10,11.3.下列图形中经过折叠能围成一个棱柱的是()A. B. C. D.【思路点拨】利用四棱柱及其表面展开图的特点解题.【答案】D;【解析】A、侧面少一个长方形,故不能;B、侧面多一个长方形,折叠后不能围成棱柱,故不能;C、折叠后少一个底面,不能围成棱柱;只有D能围成四棱柱.故选D.【总结升华】四棱柱的侧面展开图为四个长方形组成的大长方形.举一反三:【高清课堂:《空间与图形》专题:投影与视图课堂练习3】【变式】如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是()A. B. C. D.【答案】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.从上面看易得1个正方形,但上面少了一个角,在俯视图中,右下角有一条线段.故选B.类型二、投影有关问题4.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,求塔高AB的长.【思路点拨】过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE.然后根据影长的比分别求得AG,GB长,把它们相加即可.【答案与解析】【解析1】解:如图1,过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.可得矩形BDFG.由题意得:.∴DF=DE×1.6÷2=14.4(m).∴GF=BD=CD=6m.又∵.∴AG=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.图1 图2【解析2】如图2,作DG∥AE,交AB于点G,BG的影长为BD,AG 的影长为DE,由题意得:AG 1.6=DE2.∴AG=18×1.6÷2=14.4(m).又∵BG 1.6=BD1.∴BG=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.【总结升华】运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).类型三、投影视图综合问题5.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体最多要小立方体.【思路点拨】从正视图和侧视图考查几何体的形状,从俯视图看出几何体的小立方块最多的数目.【答案】17.【解析】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第二列各3块,第三列1块,从空中俯视的块数只要最低层有一块即可.因此,综合两图可知这个几何体的形状不能确定;如图,最多时有3×5+2×1=17块小立方体.故答案为17.【总结升华】本题考查简单空间图形的三视图,考查空间想象能力,是基础题,但很容易出错.6.(2015•永春县校级自主招生)如图是某中学生公寓时的一个示意图(每栋公寓均朝正南方向,且楼高相等,相邻两栋公寓的距离也相等).已知该地区冬季正午的阳光与水平线的夹角为32°,在公寓的采光不受影响(冬季正午最底层受到阳光照射)的情况下,公寓的高为AB,相邻两公寓间的最小距离为BC.(1)若设计公寓高为20米,则相邻两公寓之间的距离至少需要多少米时,采光不受影响?(2)该中学现已建成的公寓为5层,每层高为3米,相邻两公寓的距离24米,问其采光是否符合要求?(参考数据:取sin32°=,cos32°=,tan32°=)【思路点拨】(1)在直角三角形ABC中,已知AB利用锐角三角函数求得BC的长即可;(2)利用楼高求得不受影响时候两楼之间的距离与24米比较即可得到结果;【答案与解析】解:(1)∵在直角三角形ABC中,AB=20米,∠ACB=32°,∴=ta n32°∴BC===32米,∴相邻两公寓之间的距离至少需要32米时,采光不受影响;(2)∵楼高=3×5=15米,∴不受影响时两楼之间的距离为15÷tan32°=24米,∵相邻两公寓的距离恰为24米,∴符合采光要求;【总结升华】本题是将实际问题转化为直角三角形中的数学问题,做到学数学,用数学,才是学习数学的意义.7.如图,不透明圆锥体DEC放在直线BP所在的水平面上,且BP过底面圆的圆心,其高23m,底面半径为2m.某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m.(1)求∠B的度数;(2)若∠ACP=2∠B,求光源A距平面的高度.【思路点拨】(1)如下图所示,过点D作DF垂直BC于点F.由题意,得DF=23,EF=2,BE=4,在Rt△DFB中,tan∠B= DFBF,由此可以求出∠B;(2)过点A作AH垂直BP于点H.因为∠ACP=2∠B=60°所以∠BAC=30°,AC=BC=8.在Rt△ACH中,AH=AC•Sin∠ACP,所以可以求出AH了,即求出了光源A距平面的高度.【答案与解析】解:(1)过点D作DF垂直BC于点F.由题意,得DF=23,EF=2,BE=4.在Rt△DFB中,tan∠B=DF233==BF2+43,所以∠B=30°;(2)过点A作AH垂直BP于点H.∵∠ACP=2∠B=60°,∴∠BAC=30°,∴AC=BC=8,在Rt△ACH中,AH=AC•Sin∠ACP=38=432,即光源A距平面的高度为43m.【总结升华】本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。