5V,2A 反激式电源变压器设计(EFD20)过程整理_20110310

5V,2A 反激式电源变压器设计(EFD20)过程整理_20110310
5V,2A 反激式电源变压器设计(EFD20)过程整理_20110310

5V,2A 反激式電源變壓器設計過程整理

已知:

VinAC

= 85V ~ 265V 50/60Hz Vout

= 5V + 5% Iout

= 2A Vbias

= 22V, 0.1A (偏置線圈電壓取 22V, 100mV) η

= 0.8 fs

= 132KHz

計算過程:

1.設工作模式為 DCM 臨界狀態.

Pout = 5*2 = 10W

Pin = Pout/η= 10/0.8 = 12.5W

V inDCmin = 85*

2-30(直流紋波電壓)= 90V V inDCmax = 265* 2=375V

2.匝數比計算 , 設最大占空比Dmax = 0.45 :

13918.12)

45.01(*)2.05.05(45.0*90)1(*)d out (*n max max min in ≈=-++=-++=D V V V D V L DC 式中:

Vd 為輸出整流二極管導通壓降,取0.5V;

VL 為輸出濾波電感壓降, 取0.2V.

3.初級峰值電流計算:

A D V P I DC 494.045

.0*9010*2*out 2p max min in ===

4.初級電感量計算:

H H I V D L DC u 62110*621494

.0*10*13290*45.0p *fs *p 63min in max ====

5.變壓器磁芯選擇EFD20, 參數如下:

Ae = 28.5mm 2 AL = 1200+30%-20%nH/N 2 Le = 45.49mm Cl = 1.59mm -1 Aw = 50.05mm 2 Ap = 1426.425mm 4

6.初級繞組,次級繞組及偏置繞組匝數計算:

)(5482.53285

.0*2.010*10*621*494.0e *w 10*p *p p 4

64匝≈===-A B L I N )(515.413

54n p s 匝≈===N N 匝2091.192

.05.055*)7.022(s *)(b d out bd b ≈=+++=+++=L V V V N V V N 式中:

Lp 為初級電感量, 單位H;

Ip 為初級峰值電流, 單位A;

Bw 為磁芯工作磁感應強度, 取0.2T,單位為T;

Ae 為磁芯截面面積, 單位為cm 2;

Vb 為偏置繞組電壓Vbias=22V ;

Vbd 為偏置繞組整流二極管壓降,取0.7V.

7.氣隙長度計算:

0.168mm cm 0168.010

*62110*285.0*54*14.3*4.0p 10*e *p 4.0g 68

282====---L A N L π 式中:

Lg 單位為cm;

Lp 單位為H;

Ae 單位為cm 2.

8.重新核算占空比Dmin,Dmax 及最大磁通密度Bmax:

(1).當輸入電壓為最低時:V inDCmin =90V

4515.090

13*)2.05.05(13*)2.05.05(V n *)(n *)(max inDCmin d out d out =+++++=+++++=L L V V V V V V D (2).當輸入電壓為最高時:V inDCmax =375V

1649.0375

13*)2.05.05(13*)2.05.05(V n *)(n *)(min inDCmax d out d out =+++++=+++++=L L V V V V V V D (3).Bmax

uass 3000uass 1993100*285

.0*54494.0*621100*e *p p *p max G G A N I L B <=== 式中:

Lp 單位為uH; Ip 單位為A; Np 單位為N(匝); Ae 單位為cm 2.

9.繞組線徑計算及窗口占有率:

肌膚深度:mm 182.010

*1321.66fs 1.663===d , 2d = 0.364mm 線徑選取需滿足:導線直徑需大於兩倍的肌膚深度時,需采用多股線.

假設電流密度 J=4A/mm 2

(1).初級繞組線徑計算:

Ip=0.494A,

I RMS =Ip*max D =0.494*45.0=0.331A ,22mm 0827.0/mm

4.3310w ==A A A ,查表采用Aw = 0.0962mm 2的導線,其裸銅線徑為0.35mm<0.364mm(肌膚深度), 包括皮膜最大直徑為0.402mm.占有窗口面積為Wa=54*0.4022=8.7266mm 2.

(2).次級繞組線徑計算:

Io=2A, I RMS =Io=2A,Aw=2A/4=0.5mm 2,多股并繞采用Aw=0.1257mm 2的導線, 其裸銅線徑為0.4mm,采用0.5/0.1257=4股并繞, 包括皮膜最大直徑為0.456mm. 占有窗口面積為Wa=5*4*0.4562=4.1587mm 2

.

(3).偏置繞組線徑計算:

Io=0.1A, I RMS =Io=0.1A,Aw=0.1A/4=0.025mm 2,采用Aw=0.0254mm 2的導線,其裸銅線徑為0.18mm<0.364mm(肌膚深度), 包括皮膜最大直徑為0.226mm.占有窗口面積為Wa=20*0.2262=1.0215mm 2.

全部繞組占有窗口面積為=8.7266+4.1587+1.0215=13.9068mm2.占總窗口面積=(E-D)*F=50.05mm2的27.8%.

10.結構設計:

EFD20磁芯的骨架,窗口長度13.5mm,寬度10.5mm.如下圖示:

初級繞組導線最大直徑為0.402mm,每層可繞13.5/0.402=33.5匝,54匝要用2層,每層分別繞30匝,24匝,每層厚度為0.402mm.

次級繞組導線最大直徑為0.456mm,每層可繞13.5/0.456=29.6匝,5匝只要用1層,厚度為0.456mm.

偏置繞組導線最大直徑為0.226mm,每層可繞13.5/0.226=59.7匝,20匝只要用1層,厚度為0.226mm.

使用順序繞法,繞組排列如下:

繞組總厚度=0.6+0.402+0.402+0.226+0.456=2.836mm < 磁芯窗口寬度

=(E-D)/2=(15.4-8.9)/2=3.25mm.

11.估算損耗及溫升:

(1).各繞組之線長:

依照平均匝長=2舌寬+2疊厚+4窗寬,得:

Np1 = 2*(8.9+3.6)+4*(0.6+0.201)=28.204mm

Np2 = 2*(8.9+3.6)+4*(0.6+0.201*2+0.15)=29.608mm

Nb = 2*(8.9+3.6)+4*(0.6+0.201*2+0.15*2+0.113)=30.66mm

Ns = 2*(8.9+3.6)+4*(0.6+0.201*2+0.15*4+0.113+0.228)= 31.572mm 即

Np 線長L Np =30*28.204+24*29.608= 1556.712 mm= 155.6712 cm

Nb 線長L Nb =20*30.66= 613.2mm=61.32cm

Ns 線長L Ns =5* 31.572=157.86mm=15.786cm

查線阻表可知: 0.402mm WIRE R DC =0.00259Ω/cm

@100℃ 0.456mm WIRE R DC =0.00198Ω/cm

@100℃ 0.226mm WIRE R DC =0.01001Ω/cm @100℃

R @100℃=1.4* R @20℃

(2).初級,次級各電流值:

求次級各電流值,已知Io=2A.

次級平均峰值電流:A D Io Is pa 636.345

.012max 1=-=-= 次級直流有效電流:A s I D Is pa rms 69.2636.3*)45.01(*max)1(22=-=-= 次級交流有效電流:A I s I Is rms ac 79.1269.2o 2222=-=-=

求初級各電流值:

因為Np*Ip=Ns*Is

初級平均峰值電流:A n Is Ip pa

pa 279.013

636.3=== 初級直流有效電流:A Ip D Ip pa rm s 125.045.0*279.0max*=== 初級交流有效電流:A p I D Ip pa ac 186.0279.0*45.0*max 2===

(3).求各繞組交,直流電阻:

初級:Rp

DC =(L

Np

*R

DC

)/2=(155.6712*0.00259)/2=0.2015Ω

Rp

ac =1.6* Rp

DC

=0.321Ω

次級:Rs

DC =(L

Ns

*R

DC

)/2=(15.786*0.00198)/2=0.0156Ω

Rs

ac =1.6* Rs

DC

=0.0249Ω

偏置:Rb

DC

=61.32*0.01001=0.6138Ω(4).計算各繞組交直流銅損耗:

初級直流損耗:Pp

DC =I2rms* Rp

DC

=0.125*0.2015=0.02518W

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

5V,2A 反激式电源变压器设计(EFD20)过程整理_20110310

5V,2A 反激式電源變壓器設計過程整理 已知: VinAC = 85V ~ 265V 50/60Hz Vout = 5V + 5% Iout = 2A Vbias = 22V, 0.1A (偏置線圈電壓取 22V, 100mV) η = 0.8 fs = 132KHz 計算過程: 1.設工作模式為 DCM 臨界狀態. Pout = 5*2 = 10W Pin = Pout/η= 10/0.8 = 12.5W V inDCmin = 85* 2-30(直流紋波電壓)= 90V V inDCmax = 265* 2=375V 2.匝數比計算 , 設最大占空比Dmax = 0.45 : 13918.12) 45.01(*)2.05.05(45.0*90)1(*)d out (*n max max min in ≈=-++=-++=D V V V D V L DC 式中: Vd 為輸出整流二極管導通壓降,取0.5V; VL 為輸出濾波電感壓降, 取0.2V. 3.初級峰值電流計算: A D V P I DC 494.045 .0*9010*2*out 2p max min in === 4.初級電感量計算: H H I V D L DC u 62110*621494 .0*10*13290*45.0p *fs *p 63min in max ==== 5.變壓器磁芯選擇EFD20, 參數如下: Ae = 28.5mm 2 AL = 1200+30%-20%nH/N 2 Le = 45.49mm Cl = 1.59mm -1 Aw = 50.05mm 2 Ap = 1426.425mm 4

反激式开关电源设计的思考六-变压器设计实例

反激式开关电源设计的思考六 -变压器设计实例 已知条件: 输入电压:DC:380V~700V 输出电压:1) 5V/0.5A 2) 12V/0.5A 3) 24V/0.3A PWM控制论芯片选用UC2842, 开关频率:50KHz 效率η:80% 取样电压用12V,5V用7-8V电压通过低压差三端稳压块得到; 算得Po=5×0.5+12×0.5+24×0.3=15.7 W 计算步骤: 1、确定变比N N=Np/Ns VoR = N(VO+VD) N=VoR/(VO+VD) VoR取210V N=210/(12+1)=16.1 取16 2.计算最大占空比Dmax 3、选择磁芯 计划选择EE型磁芯,因此ΔB为0.2T,电流密度J取4A/mm2 Ap = AwAe = 6500×P0 / (△B×J×f) =2.51×103 (mm4) 通过查南通华兴磁性材料有限公司EE型磁芯参数知

通过上面计算,考虑到还有反馈绕组,要留有一定余量,最终选择EE25磁芯 EE25磁芯的Ae=42.2mm2=4.22X10-3m2 4、计算初级匝数Np

5、初级峰值电流:Ip 6、初级电感量L

7、次级匝数 1) 、12V取样绕组Ns: Ns=Np/N =250/16 =15.625 取16匝 2)、计算每匝电压数Te: Te=(Uo+Ud)/Ns =(12+1)/16 =0.8125 3)、7.5V匝数: N7.5V=U/Te =(7.5+0.5)/0.8125 =9.84取10匝 4)、24V匝数 N24V=U/Te =(24+1)/0.8125 =30.7取31匝 5)、辅助绕组15V N15V=U/Te =(15+1)/0.8125 =19.7取20匝 8、计算初级线径: 1)、计算电流有效值I

反激式开关电源变压器的设计方法

反激式开关电源变压器的设计方法 1引言 在开关电源各类拓扑结构中,反激式开关电源以其小体积、低成本的优势,广泛应用在高电压、小功率的场合。反激式开关电源设计的关键在于其变压器的设计。由于反激变压器可以工作在断续电流(DCM )和连续电流(CCM )两种模式,因此增加了设计的复杂性。本文考虑到了两种工作模式下的差异,详细介绍了反激变压器的设计方法和步骤。 2基本原理 R 1 V o 图1 反激变换器原理图 反激变压器实际上是一个耦合电感,首先要存储能量,然后再将磁能转化为电能传输出去[1]。如图1所示,当开关管r T 导通时,输入电压i V 加在变压器初级线圈上。由于初级与次级同名端相反,次级二极管1D 截止,能量储存在初级线圈中,初级电流线性上升,变压器作为电感运行。当r T 关断时,励磁电感的电流使初级和次级绕组电压反向,1D 导通,储存在线圈中的能量传递给负载。按照电感线圈中电流的特点,可分为断续电流模式(DCM )和连续电流模式(CCM )。电流波形如图2所示。

初级 次级 初级 次级 I p2I p1I s2 I s1 I p2 I p1 I s2 I s1 DCM CCM 图2 DCM 和CCM 电流波形 DCM 为完全能量转换,在开关管开通时,初级电流从零开始逐渐增加,开关管关断期间,次级电流逐渐下降到零。 CCM 为不完全能量转换,开关管开通时,初级电流有前沿阶梯,开关管关断期间,次级电流为阶梯上叠加的衰减三角波。 3设计步骤 (1)各项参数的确定 反激式开关电源变压器的设计中涉及到很多参数,因此在计算之前必须要明确已知量和未知量。 已知参数一般由电源的设计要求和特点来确定,包括:直流输入电压i V (i min i i max V V V ≤≤),输出电压o V ,输出功率o P ,效率o i P = P η,工作频率1 f=T 。 未知量即所要求的参数包括:磁芯型号,初级线圈匝数p N ,次级线圈匝数s N ,初级导线直径p d ,次级导线直径s d ,气隙长度g l 。 另外,为了能够对未知参数进行求解,我们还必须要指定开关管的耐压值或开关的最大占空比。本文中,以规定满载和最小输入电压条件下最大占空比为 max D 来进行后续的计算。 为简化计算公式,本文中忽略开关管及二极管导通压降。

反激变压器设计实例(二)

反激变压器设计实例(二) 目录 反激变压器设计实例(二) (1) 导论 (1) 一.自跟踪电压抑制 (2) 2. 反激变换器“缓冲”电路 (4) 3. 选择反击变换器功率元件 (5) 3.1 输入整流器和电容器 (5) 3.2 原边开关晶体管 (5) 3.3 副边整流二极管 (5) 3.4 输出电容 (6) 4. 电路搭接和输出结果 (6) 总结 (7) 导论 前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A的输出,通过调节负载和占空比可以达到。由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。

图1.反激电路主拓扑 图2.开关管电压、输出电压、输出电流 首先由输出情况可以看出,变压器的设计还是满足要求的。查看图2中开关管电压曲线可以看出,其开关应力过高,不做处理会导致开关管导通瞬间由于高压而击穿。 在反激变换器中,有两个主要原因会引起高开关应力。这两个原因都与晶体管自带感性负载关断特性有关。最明显的影响是由于变压器漏感的存在,集电极电压在关断边沿会产生过电压。其次,不是很明显的影响是如果没有采用负载线整形技术,开关关断期间会出现很高的二次测击穿应力。 一.自跟踪电压抑制 当警惕管所在电路中带感性或变压器负载,在晶体管关断时,由于有能量存储在电感或变压器漏感的磁场中,在其集电极将会产生高压。 在反激变换器中,储存在变压器中的大部分能量在反激期间将会传递到副边。可是由于漏感的存在,在反激期间开始时,除非采用一定形式的电压抑制,集电极电压会有增加的趋势。在图3中,变压器漏感、输出电容电感和副边电路的回路电感集中为L TL,并折算到变压器原边与原边主电感L p相串联。 考虑在关断后紧接着导通这个动作,在此期间T1原边绕组中已建立电流。当晶体管Q关断

CCM反激变压器设计

连续电流模式反激变压器的设计 Design of Flyback Transformer with Continuing Current Model 作者:深圳市核达中远通电源技术有限公司- 万必明 摘要:本文首先介绍了反激变换器(Flyback Converter)的工作原理,然后重点介绍一种连续电流模式反激变压器的设计方法以及多路输出各次级电流有效值的计算. 关键词:连续电流模式(不完全能量传递方式)、不连续电流模式(完全能量传递方式)、有效值、峰值. Keywords: Continuing Current Model、Discontinuing Current Model、virtual value 、peak value. 一.序言 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.

二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). 图一 图二(a)

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

反激电源设计分析和经验总结

由反激电源引起的一点儿分析 开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正激。半桥、桥式电路都属于正激电路。 正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。 反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI 公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。 反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。 变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。 关于反激电源的占空比,原则上反激电源的最大占空比应该小于0.5,否则环路不容易补偿,有可能不稳定,但有一些例外,如美国PI公司推出的TOP系列芯片是可以工作在占空比大于0.5的条件下。 占空比由变压器原副边匝数比确定,本人对做反激的看法是,先确定反射电压(输出电压通过变压器耦合反映到原边的电压值),在一定电压范围内反射电压提高则工作占空比增大,开关管损耗降低。反射电压降低则工作占空比减小,开关管损耗增大。当然这也是有前提条件,当占空比增大,则意味着输出二极管导通时间缩短,为保持输出稳定,更多的时候将由输出电容放电电流来保证,输出电容将承受更大的高频纹波电流冲刷,而使其发热加剧,这在许多条件下是不允许的。 占空比增大,改变变压器匝数比,会使变压器漏感加大,使其整体性能变,当漏感能量大到一定程度,可充分抵消掉开关管大占空带来的低损耗,时就没有再增大占空比的意义了,

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

反激式变压器的设计

反激式变压器的设计 反激式变压器的工作与正激式变压器不同。正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。这里的主要物理量是电压、时间、能量。 在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。磁心尺寸和磁心材料也要选好。这时,为了变压器能可靠工作,就需要有气隙。 刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。 (24) 把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25) 就可以算出一次最大电感 ——最大占空比(通常为50%或0.5)。 (25) 这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。 在开关管导通的每个周期中,存储在磁心的能量为: (26) 要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式: (27)

所有磁心工作在单象限的场合,都要加气隙。气隙的长度(cm)可以用下式近似(CGS制(美 国)): (28a) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为G(Wb/cm )。 在MKS系统(欧洲)中气隙的长度(m)为 (28b) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为T(Wb/m )。 这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。 磁心制造厂商为气隙长度提供了一个A L的参数。这参数是电感磁心绕上1000 匝后的数据(美 国)。根据设计好的电感值,绕线的匝数可以用式(29)计算确定。 (29) 式中 Lpri——一次电感量,单位为mH。 如果有些特殊的带有气隙的磁心材料没有提供A L。的值,可以使用式(30)。注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。 (30)

反激电源变压器设计解析

反激电源变压器设计解析 3,反激电源变压器参数设计 从今天开始,我们一起来讨论一下反激电源变压器的设计。其实,反激电源的变压器设计方法有很多种。条条大路通罗马,我们究竟要选择哪条路呢?我的想法是,选择自己熟悉的路,选择自己能理解的设计方法。有的设计方法号称是最简单的,有的设计方法号称是最明了的。但我认为,适合你自己的才是最好的。更何况,有些设计方法,直接给个公式出来,没有头没有尾的,莫名其妙,就算按照那种方法计算出来你要的变压器,但你理解了吗?你从中学习到了什么?我想,授人以鱼,不如授人以渔,希望我们能够通过讨论反激变压器的设计过程,让大家不仅学会怎么计算反激变压器,更要能通过设计,配合上面的电路原理,把反激的原理搞透。岳飞不就曾说过:“阵而后战,兵法之常,运用之妙,存乎一心。” 一旦把原理搞清楚了,那么就不存在什么具体算法了。将来的运用之妙,就存乎一心了。可以根据具体的参数细化优化! 其实,要设计一个变压器,就是求一个多元方程组的解。只不过呢,由于未知数的数量比方程数量多,那么只好人为的指定某些参数的数值。对于一个反激电源而言,需要有输入指标,输出指标。这些参数,有的是客户的要求,也是我们需要达到的设计目标,还有些参数是我们人为选择的。一般来说,我们需要这些参数: 输入交流电压范围、输出电压、输出电流、效率、开关频率等参数。 对于反激电源来说,其工作模式有很多种,什么DCM,CCM,CRM,BCM,QR等。这里要作一个说明:CRM和BCM是一种模式,就是磁芯中的能量刚好完全释放,次级整流二极管电流刚好过零的时候,初级侧MOS管开通,开始进行下一个周期。 QR模式,则是磁芯能量释放完毕后,变压器初级电感和MOS结电容进行谐振,MOS结电容放电到最低值时,MOS开通,这样可以实现较低的开通损耗。也就是说,QR模式是的mos开通时间比CRM模式还要晚一点。 CRM/BCM、QR模式都是变频控制,同时,他们都是属于DCM模式范畴内的。 而CCM模式呢,CCM模式的电源其实也包含着DCM模式,当按照CCM模式设计的反激电源工作在轻载或者高输入电压的时候,就会进入DCM模式。 那么就是说,CRM/BCM,QR模式的反激变压器的设计,可以按照某个特定工作点的时候的DCM 模式来计算。那么我们下面的计算就只要考虑DCM与CCM两种情况了。 那么我们究竟是选择DCM还是CCM模式呢?这个其实没有定论,DCM的优点是,反馈容易调,次级整流二极管没有反向恢复问题。缺点是,电流峰值大,RMS值高,线路的铜损和MOS的导通损耗比较大。而CCM的优缺点和DCM刚好反过来。特别是CCM的反馈,因为存在从DCM 进入CCM过程,传递函数会发生突变,容易振荡。另外,CCM模式,如果电感电流斜率不够大,或者占空比太大,容易产生次谐波振荡,这时候需要加斜坡补偿。所以呢,究竟什么时候选择用什么模式,是没有结论的。只能是“运用之妙,存乎一心”了。随着项目经验的增加,对电路理解的深入,慢慢的,你就能有所认识。

反激式变压器设计原理

反激式变压器设计原理 绿色节能PWM控制器CR68XX CR6848低功耗的电流模PWM反激式控制芯片 成都启达科技有限公司联系人:陈金元TEL: 电话/传真:-218 电邮:; MSN: 概述:CR6848是一款高集成度、低功耗的电流模PWM控制芯片,适用于离线式AC-DC反激拓扑的小功率电源模块。 特点:电流模式PWM控制低启动电流低工作电流 极少的外围元件片内自带前沿消隐(300nS) 额定输出功率限制 欠压锁定(12.1V~16.1V) 内建同步斜坡补偿PWM工作频率可调 输出电压钳位(16.5V) 周期电流限制 软驱动2000V的ESD保护过载保护 过压保护(27V)60瓦以下的反激电源SOT23-6L、DIP8封装 应用领域:本芯片适用于:电池充电器、机顶盒电源、DVD 电源、小功率电源适配器等60 瓦以下(包括60 瓦)的反激电源模块。 兼容型号: SG6848/SG5701/SG5848/LD7535/LD7550/OB2262/OB2263。 原生产厂家现货热销!-218,。 CR6842兼容SG6842J/LD7552/OB2268/OB2269。 绿色节能PWM控制器AC-DC 产品型号功能描述封装形式兼容型号 CR6848 低成本小功率绿色SOT-26/DIP-8 SG6848/SG5701/SG5848 节能PWM控制器LD7535/LD7550 OB2262/OB2263 CR6850 新型低成本小功率绿色SG6848/SG5701/SG5848 节能PWM控制器SOT-26/DIP-8 LD7535/LD7550 SOP-8OB2262/OB2263 CR6851 具有频率抖动的低成本SOT-26/DIP-8 SG6848/SG5701/SG5848 绿色节能PWM控制器SOP-8 LD7535/LD755 OB2262/OB2263 CR6842 具有频率抖动的大功能DIP-8 兼容SG6842J/LD7552

反激电源变压器的参数设计

开关电源学习 漏感:变压器初次级耦合过程中漏掉的那一部分磁通! 变压器的漏感应该是线圈所产生的磁力线不能都通过次级线圈,因此产生漏磁的电感称为漏感。 RCD钳位电路的作用:反激式开关电源在开关管断开的瞬间由于漏感不能通过变压器耦合到次级绕组,导致漏感的反激电动势很大,高压很容易导致开关管的损坏,所以用RCD钳位电压到安全的范围,将漏感的能量存储在电容C中,再由电阻R消耗掉。 反激式开关电源:反激电路是由buck-boost拓扑电路演变过来的。 演变的过程 把MOS和二极管D1放到下面,与上图等效。 在A B之间增加一个变压器,由于初级和次级的电感上承受的伏秒积是相等的,所以用这个变压器来等效。

由于电感和变压器的初级电感并联,为了直观把电感合二为一,并且调整变压器的同名端得到下图; 上面的电路图便是最基本的反激式开关电路图了,由于变压器在开关管导通时储存能量,断开时通过次级绕组释放能量,变压器的实质是耦合电感,耦合电感不仅承担输入与输出的电气隔离,而且实现了电压的变换,而不仅仅是通过改变占空比来实现。由于此耦合电感并非理想器件,所以存在漏感,而实际线路中也会存在杂散电感。当MOS关断时,漏感和杂散电感中的能量会在MOS的漏极产生很高的电压尖峰,从而会导致器件的损坏。故而,我们必须对漏感能量进行处理,最常见的就是增加一个RCD吸收电路。用C来暂存漏感能量,用R来耗散之。

二极管的反向恢复电流理想的二极管在承受反向电压时截止,不会有反向电流通过。而实际二极管正向导通时,PN结内的电荷被积累,当二极管承受反向电压时,PN结内积累的电荷将释放并形成一个反向恢复电流,它恢复到零点的时间与结电容等因素有关。反向恢复电流在变压器漏感和其他分布参数的影响下将产生较强烈的高频衰减振荡。因此,输出整流二极管的反向恢复噪声也成为开关电源中一个主要的干扰源。可以通过在二极管两端并联RC缓冲器,以抑制其反向恢复噪声.。碳化硅材料的肖特基二极管,恢复电流极小。 形成原因 二极管在接反向电压的时候,在两边的空穴和电子是不接触的,没有电流流过,但是同时形成了一个等效电容(因为两边带电么,而且这个值又不为零),如果这个时候改变两边的电压方向,自然有一个充电的过程,这个时间就是了。 由输出整流二极管产生的干扰在输出整流二极管截止时,有一个反向电流,它恢复到零点的时间与结电容等因素有关。其中能将反向电流迅速恢复到零点的二级管称为硬恢复特性二极管,这种二极管在变压器漏感和其它分布参数的影响下,将产生较强的高频干扰,其频率可达几十MHz。 反向恢复过程短的二极管称为快恢复二极管(Fast Recovery Diode)。高频化的电力电子电路要求快恢复二极管的反向恢复时间短,反向恢复电荷少,并具有软恢复特性。 所有的PN结二极管,在传导正向电流时,都将以少子的形式储存电荷。少子注入是电导调制的机理,它导致正向压降(VF)的降低,从这个意义上讲,它是有利的。但是当在导通的二极管上加反向电压后,由于导通时在基区存贮有大量少数载流子,故到截止时要把这些少数载流子完全抽出或是中和掉是需要一定时间的,即反向阻断能力的恢复需要 经过一段时间,这个过程就是反向恢复过程,发生这一过程所用的时间定义为反向恢复时间trr 反激电源变压器的参数设计 对于反激电源而言,需要输入指标,输出指标,有些是客户直接给的,有的则要我们认为的选择。参数主要包括:输入交流电压范围,输出电压,输出电流,效率,开关频率等;

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. 输入电压范围Vin=85 —265Vac; 输出电压/ 负载电 流:Vout1=5V/10A,Vout2=12V/1A; 变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取: 工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85* “2-20=100Vdc( 取低频纹波为20V). 根据伏特- 秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输岀电流的过流点为120%;+5v 和+12v整流二极管的正向压降均为 1.0V. +5V 输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V 输岀功率 Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输岀总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A Ip2=0.4*Ip1=1.20A 5. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt, 得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4.5/[3.00-1.20] =250uH 6. 变压器铁芯的选择. 根据式子Aw*Ae=P t*106/[2*ko*kc*fosc*Bm*j*?], 其中: Pt( 变压器的标称输岀功率)= Pout=85W Ko( 窗口的铜填充系数)=0.4 Kc( 磁芯填充系数)=1( 对于铁氧体), 变压器磁通密度Bm=1500 Gs j( 电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]

反击式开关电源变压器设计

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定 了电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47 第二步,确实原边电流波形的参数. 原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以输入电压就是输入电流,这个就是平均值电流。现在下一步就是求那个电流峰值,尖峰值是多少呢,这个我们自己还要设定一个参数,这个参数就是KRP,所谓KRP,就是指最大脉动电流和

反激式变压器的设计实例

反激式变压器的设计实例 尽管在buck变换器的设计中没有用到反激式变压器,但由于反激式变压器介于电感与变压器之间,为了帮助大家进一步搞清楚这个特殊的磁性元件,在此我们给出反激式变压器的设计,并作为设计范例。介绍的内容要比直流电感简单一些,但是很多方面是一致的。说明一下,这里设计的反激式变压器是有隔离的,而非隔离反激式电感的设计除了没有副边以外,其他的几乎相同。我们的设计要求为:直流输入电压为48V(为了简便起见,假设没有线电压波动),功率输出为10W,开关频率是250kHz,允许功率损耗0.2W(根据总的损耗,可以知道变换器的效率要求),因此变换器效率为98%(0.2W/10W=2%)。效率的大小与磁芯的尺寸有关,变压器体积越小,效率越低。 (隔离、断续模式的)反激式变压器原边设计时只需要用到四个参数:输出功率、开关频率、功耗、输入电压(设计非隔离反激式电感也只需这四个参数)。这里,我们还没有提到电感量,电感量由很多参数决定,在下面的内容中我们将会介绍它们之间的关系。 我们用UC3845芯片(8脚、中等价格)提供PWM信号,其最大占空比为45%,占空比的大小是根据变换器是工作在连续状态还是断续状态来确定的,稍后的章节中将介绍如何计算占空比,在这个例子中,我们选用断续模式。 我们再增加一项设计要求:就是变压器体积要尽量小,有一定的高度限制。我们将会看到,变压器的设计与电感的设计不完全相同,变压器通常可以选用多种不同的磁芯来实现相同的电气特性。在这个例子中,还要根据其他一些要求来选择磁芯,包括尺寸、成本等因素。 1 反激式变压器的主要方程 首先,我们做一些基本的准备工作。正如这一章一开始介绍的理论内容中所说的那样,当反激式变换器原边开关器件导通时,变压器原边绕组的作用相当于一个电感。电压加在原边电感上,开关导通期间,电流持续上升: 这里,DC是占空比,f是开关频率,T=1/f是开关周期,这个方程适用于电流断续模式反激式变压器,原边电流波形如图案5-17所示。

反激变压器设计步骤及变压器匝数计算教学内容

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. .输入电压范围Vin=85—265Vac; .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; .变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取:工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V). 根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V. +5V输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V输出功率Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输出总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dm ax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A

TI 反激变压器设计

26.5W AC/DC Isolated Flyback Converter Design

TASK : 26.5W 9-Outputs AC/DC Isolated Flyback Converter Design SPECIFICATION: Technical Specification on Sept 10, 2008 DATE: 15 Sept. 2008

Customer Specification f L 100Hz :=Line frequency fs 100kHz :=Switching frequency Vo 1 5.0V :=Main output voltage Io 1_max 2A :=Main Nominal load current Vo 215.0V :=Io 2_max 30mA :=Vo 315.0V :=Io 3_max 30mA :=Vo 415.0V :=Io 4_max 0.3A :=Vo 524.0V :=Io 5_max 0.1A :=Vo 618.0V :=Io 6_max 0.12A :=Vo 718.0V :=Io 7_max 0.12A :=Vo 818.0V :=Io 8_max 0.12A :=Vo 918.0V :=Io 9_max 0.12A :=+5V Output ripple voltage Vr 100mV :=+5VStep load output ripple voltage ΔVo step 150mV :=ΔIo 5V Io 1_max 80?% :=+5V Step load current amplitude η0.70 :=

单端反激变压器设计简单计算

实例讲解电源高频变压器的设计方法开关电源高频变压器设计高频变压器是电源设计过程中的难点, 下面以反馈式电流不连续电源高频变压器为例, 向大家介绍一种电源高频变压器的设计方法。 设计目标: 电源输入交流电压在180V~260V之间,频率为50Hz, 输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。 设计步骤: 1、计算高频变压器初级峰值电流Ipp 由于是电流不连续性电源,当功率管导通时,电流会达到峰值,此值等于功率管的峰值电流。 由电感的电流和电压关系V=L*di/dt 可知: 输入电压:Vin(min)=Lp*Ipp/Tc 取1/Tc=f/Dmax, 则上式为: Vin(min)=Lp*Ipp*f/Dmax 其中: V in:直流输入电压,V Lp:高频变压器初级电感值,mH Ipp:变压器初级峰值电流,A Dmax:最大工作周期系数 f:电源工作频率,kHz 在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:Pout=1/2*Lp*Ipp2*f 将其与电感电压相除可得: Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2*Lp*Ipp*f) 由此可得:Ipp=Ic=2*Pout/(Vin(min)*Dmax) 其中:Vin(min)=1.4*Vacin(min)-20V(直流涟波及二极管压降)=232V, 取最大工作周期系数Dmax=0.45。则: Ipp=Ic=2*Pout/(Vin(min)*Dmax)=2*70/(232*0.45)=1.34A 当功率管导通时,集极要能承受此电流。 2、求最小工作周期系数Dmin 在反馈式电流不连续电源中, 工作周期系数的大小由输入电压决定。 Dmin=Dmax/[(1-Dmax)*k+Dmax] 其中:k=Vin(max)/Vin(min) Vin(max)=260V*1.4-0V(直流涟波)=364V, 若允许10%误差,Vin(max)=400V。 Vin(min)=232V, 若允许7%误差,Vin(min)=216V。 由此可得: k=Vin(max)/Vin(min)=400/216=1.85 Dmin=Dmax/[(1-Dmax)*k+Dmax]=0.45/[(1-0.45)*1.85+0.45]=0.31 因此,当电源的输入直流电压在216V~400V之间时,

相关文档
最新文档