共点力作用下的动态平衡问题

合集下载

共点力动态平衡专题及详解

共点力动态平衡专题及详解

共点力动态平衡专题及详解1.用绳将重球挂在光滑的墙上,设绳子的拉力为T ,墙对球的弹力为N ,如图所示,如果将绳的长度加长,则A .T 、N 均减小B .T 、N 均增加C .T 增加,N 减小D .T 减小,N 增加【答案】A【解析】试题分析:设绳子和墙面夹角为θ,对小球进行受析:把绳子的拉力T 和墙对球的弹力为N 合成F ,由于物体是处于静止的,所以物体受力平衡,所以物体的重力等于合成F ,即F=G ,根据几何关系得出: cos mg T θ=,N=mgtan θ.先找到其中的定值,就是小球的重力mg ,mg 减小,则cos θ增大,cos mg θ减小;tan θ减小,mgtang θ减小;所以T 减小,N 减小. 故选A考点:共点力动态平衡点评:动态平衡是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问题的一般思路是:用不变化的力表示变化的力.2.2008年1月以来,中国南方大部分地区和西北地区东部出现了建国以来罕见的持续大范围低温、雨雪和冰冻的极端天气。

南方是雨雪交加,不仅雪霜结冰,而且下雨时边刮风边结冰,结果造成输电线路和杆塔上面的冰层越裹越厚,高压电线覆冰后有成人大腿般粗,电力线路很难覆冰,而致使输配电线路被拉断或频频跳闸。

现转化为如下物理模型:长为125m的输电线的两端分别系于竖立在地面上相距为100m的两杆塔的顶端A、B。

导线上悬挂一个光滑的轻质挂钩,其下连着一个重为300N的物体,不计摩擦,平衡时,导线中的张力T1,现使A点缓慢下移一小段,导线中的张力为T2,则下列说法正确的是()A.T1>T2B.T1<T2C.T1=T2D.不能确定【答案】C【解析】选挂钩为研究对象,受力如图所示。

设绳与水平面夹角为α,由平衡条件有2T sinα=G,其中G=300N,若将绳延长,不难得到sinα=3/5,则可得T=250N。

高考物理:求解共点力作用下的动态平衡问题!

高考物理:求解共点力作用下的动态平衡问题!

高考物理:求解共点力作用下的动态平衡问题!共点力作用下的平衡问题是力学中常见的一种题型,解决共点力作用下的平衡问题的基本思路是对物体进行受力分析,根据平衡条件来求解。

而共点力作用下的动态平衡问题是指通过控制某些物理量的变化,使物体的状态发生缓慢变化,“缓慢”指物体的速度很小,可认为速度为零,所以物体在变化过程中处于平衡状态,所以把物体的这种状态称为动态平衡状态,求解共点力作用下的动态平衡问题的常见方法有:例1、如图所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上,现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F、环与杆的摩擦力和环对杆的压力的变化情况是()A. F逐渐增大,F摩保持不变,F N逐渐增大;B. F逐渐增大,F摩逐渐增大,F N保持不变;C. F逐渐减小,F摩逐渐增大,F N逐渐减小;D. F逐渐减小,F摩逐渐减小,F N保持不变。

解析:以环、绳及物体整体为研究对象,受力如图所示,根据平衡条件有:在物体缓慢下降的过程,系统仍然在此四个力的作用下处于平衡状态,仍然有关系式mg=F N,由牛顿第三定律可知:物体缓慢下降过程中环对杆的压力F N保持不变,F与F摩仍满足大小相等,方向相反,所以两个力同时发生改变,关键是判断物体在下降过程中F的变化规律。

方法一:计算法(解析法)以物体为研究对象,受力如图所示,由平衡条件可知:mg与F的合力与绳子的拉力F T等大反向,F大小满足关系式,在物体缓慢下降过程中,物体的受力情况及平衡状态保持不变,所以关系式仍然成立,但θ逐渐减小,所以F也随之减小,F摩也随之减小,D答案正确。

小结:此题为高中阶段最常见的三力平衡问题,而力的合成法(这儿用的是力的合成思想,当然也可用力的正交分解来求解)与正交分解法是进行力的运算时最基本的方法。

高中物理 共点力动态平衡问题常见题型总结

高中物理 共点力动态平衡问题常见题型总结

高中物理共点力动态平衡问题常见题型总结一、共点力平衡的概念所谓共点力平衡,讲的就是在共点力的作用下,物体处于静止或者匀速直线运动的状态,当物体处于静止状态的时候,叫做静态平衡,而当物体处于匀速直线运动状态的时候,叫做动态平衡。

这两种状态都是平衡状态,所以物体受到的合外力都是零。

共点力平衡的题型也可以分为静态平衡和动态平衡两类。

其中静态平衡主要是通过力的合成和分解进行求解,这里不多赘述;而动态平衡问题是学生普遍错的比较多,也比较难以理解的,接下来将主要分析这类问题的题型和解法。

二、共点力动态平衡问题的解法一:解析法解析法是对研究对象进行受力分析,画出受力分析图,并根据物体的平衡条件列出方程,得到力与力之间的函数关系,一般会涉及到一个变化角度的三角函数。

解析法比较适合题目中有明显角度变化的题型,比如:【例1】如图所示,小船用绳牵引靠岸,设水的阻力不变,在小船匀速靠岸的过程中,有()A.绳子的拉力不断减小B.绳子的拉力不断增大C.船受的浮力减小D.船受的浮力不变这个题是比较常见的拉小船的问题,解题的时候可以先对小船进行受力分析,小船受到重力mg,水的浮力Fn,拉力F以及水的阻力f,在这四个力中,重力mg和水的阻力f是不变的,Fn方向不变,大小改变,F大小和方向都在变。

由于小船处于匀速直线运动中,所以受力平衡,设拉力与水平方向的夹角为θ,有:Fcosθ=f ①;Fn+Fsinθ=mg ②;再根据小船在靠岸过程中θ增大,则cosθ减小,sinθ增大,由①得F=f/cosθ,F增大;由②得Fn=mg-Fsinθ,F和sinθ都在增大,所以Fn减小。

最后答案选BC。

三、共点力动态平衡问题的解法二:图解法图解法是对研究对象进行受力分析,再根据平行四边形法则或是三角形定则画出不同情况下的矢量图,然后根据有向线段的长度与方向变化,判断各个力的大小和方向的变化。

图解法比较常用,尤其适合受到三个力作用处于平衡状态的题型。

高中物理 一轮复习微专题 三个共点力作用下的动态平衡

高中物理 一轮复习微专题 三个共点力作用下的动态平衡

三个共点力作用下的动态平衡问题一.要点精讲1.共点力作用于物体的同一点或作用线相交于一点的几个力。

2.平衡状态物体保持静止或匀速直线运动的状态。

3.共点力的平衡条件(1)F 合=0或者⎩⎪⎨⎪⎧F x =0,F y =0。

(2)平衡条件的推论①二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,方向相反。

②三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任何一个力与其余两个力的合力大小相等,方向相反;并且这三个力的矢量可以形成一个封闭的矢量三角形。

③多力平衡:如果物体在多个共点力的作用下处于平衡状态,其中任何一个力与其余几个力的合力大小相等,方向相反。

4.静态平衡与动态平衡:(1)静态平衡模型物体保持静止或匀速直线运动的状态,物体受到的各个力不变。

(2)动态平衡模型①物体受到的力在发生动态变化,但物体保持静止或匀速直线运动的状态②物体“缓慢”运动时,可把物体看作平衡状态处理,物体所受合力为0. 动态平衡问题较难!二.解决动态平衡问题的思路与法:1.解决问题切入思路 (1)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化。

(2)图解法不需要列式计算,通过画图分析求解。

对于三个力作用下的平衡问题,通常①一个力大小、方向均不变,另一个力方向不变,通常画闭合三角形。

②一个力是恒力,另两个力方向的夹角保持不变的情况,可构造圆,来解决。

恒力对应的圆心角不变。

③当一个力是恒力,另一个力大小不变时,也可画圆来分析处理。

三.精选例题题型1:一恒两向变(一力不变,两力方向都变)——相似三角形把一光滑圆环固定在竖直平面内,在光滑圆环的最高点有一个光滑的小孔,如图所示。

质量为m的小球套在圆环上,一根细线的下端系着小球,上端穿过小孔用手拉住。

现拉动细线,使小球沿圆环缓慢下移。

专题11 共点力作用下的动平衡问题(解析版)

专题11 共点力作用下的动平衡问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题11 共点力作用下的动态平衡问题特训目标特训内容目标1 解析法处理动态平衡问题(1T—4T)目标2 图解法处理动态平衡问题(5T—8T)目标3 三角形相似法处理动态平衡问题(9T—12T)目标4 拉密定理(正弦定理)法处理动态平衡问题(13T—16T)一、解析法处理动态平衡问题1.如图所示,四根等长的细绳一端分别系于水桶上关于桶面圆心对称的两点,另一端被两人用同样大小的力1F、2F提起,使桶在空中处于静止状态,其中1F、2F与细绳之间的夹角均为θ,相邻两细绳之间的夹角均为α,不计绳的质量,下列说法正确的是()A.保持θ角不变,逐渐缓慢增大α角,则桶所受合力逐渐增大B.保持θ角不变,逐渐缓慢增大α角,则细绳上的拉力逐渐增大C.若仅使细绳长变长,则细绳上的拉力变大D.若仅使细绳长变长,则1F变大【答案】B【详解】AB.保持θ角不变,逐渐增大α角,由于桶的重力不变,则1F、2F会变大,由F1=2T cosθ可知,绳上的拉力变大,但桶处于平衡状态,合力为零,选项A错误、B正确;CD.保持α角不变,则1F、2F大小不变,若仅使绳长变长,则θ角变小,由F1=2T cosθ可知,绳上的拉力变小,选项C、D错误。

故选B。

2.如图所示,甲、乙两建筑工人用简单机械装置将工件从地面提升并运送到楼顶。

当重物提升到一定高度后,两工人保持位置不动,甲通过缓慢释放手中的绳子,使乙能够用一始终水平的轻绳将工件缓慢向左拉动,最后工件运送至乙所在位置,完成工件的运送。

若两绳端始终在同一水平面上,绳的重力及滑轮的摩擦不计,滑轮大小忽略不计,则在工件向左移动过程中()A.甲手中绳子上的拉力不断变小B.楼顶对甲的支持力不断增大C.楼顶对甲的摩擦力等于对乙的摩擦力D.乙手中绳子上的拉力不断增大【答案】D【详解】AD.开始时甲手中绳子上的拉力大小等于工件的重力,当工件向左移动时,甲手中绳子的拉力等于工件的重力和乙手中绳子上的拉力的合力大小,如图所示,可知甲、乙手中的绳子拉力均不断增大,A错误,D正确;B .设θ为甲手中的绳子与竖直方向的夹角,对甲受力分析有T f sin F F θ=甲;T N cos F F m g θ+=甲 工件向左运动时,F T 增大,工人甲位置不变,即θ不变,楼顶对甲的支持力不断减小,B 错误;C .对乙受力分析楼顶对乙的摩擦力大小等于乙手中的绳子的拉力,设工件和滑轮之间的绳子与竖直方向的夹角为ϕ,则T T sin F F ϕ=乙即T sin F F ϕ=f乙由于ϕθ<则f f F F <乙甲,C 错误。

高中物理动态问题分类解析

高中物理动态问题分类解析
做加速度减小的变加速运动,当 时速度到达最大,因此 到达 时应有: ------〔4〕 解得
总结:〔1〕电磁感应中的动态分析,是处理电磁感应问题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。〔2〕在分析运动导体的受力时,常画出平面示意图和物体受力图。
6、理想变压器中的动态问题
理想变压器中各物理量的制约关系为:
电压制约:当变压器原、副线圈的匝数比 一定时,输出电压 由输入电压 决定,即 ,可简述为“原制约副〞。
电流制约:当变压器原、副线圈的匝数比 一定时,且输入电压 确定时,原线圈中的电流 由副线圈中的输出电流 决定,即 ,可简述为“副制约原〞。
负载制约: 变压器副线圈中的功率 由用户负载决定, 变压器副线圈中的电流 由用户负载及电压 决定,即 ; 总功率
恒定功率的加速。由公式 和 知〔其中 为阻力〕,由于 恒定,随着 的增大, 必将减小, 也必将减小,汽车做加速度不断减小的加速运动,直到 ,这时 到达最大值 。可见恒定功率的加速一定不是匀加速。因为 为变力,这种加速过程发电机做的功只能用 计算,不能用 计算。
恒定牵引力的加速。由公式 和 知,由于 恒定,所以 恒定,汽车做匀加速运动,而随着 的增大, 也将不断增大,直到P到达额定功率 ,功率不能再增大了。这时匀加速运动完毕,其最大速度为 ,此后汽车要想继续加速就只能做恒定功率的变加速运动了。可见恒定牵引力的加速时功率一定不恒定。因为功率P是变化的,这种加速过程发电机做的功只能 用计算,不能 用计算。
动态问题分析的思路程序可表示为:
例6.图9为一理想变压器,S为单刀双掷开关,P为滑动变阻器的滑动触头, 为加在原线圈两端的电压, 为原线圈中的电流强度,那么保持 及P的位置不变,S由a合到b时, 将增大。保持 及P的位置不变,S由b合到a时,R消耗的功率减小。保持 不变,S合在a处,使P上滑, 将增大。保持P的位置不变,S合在a处,假设 增大, 将增大。

共点力动态平衡应用及详解

共点力动态平衡应用及详解

共点力动态平衡应用及详解
介绍
共点力动态平衡是物体在力的作用下保持平衡的一种力学原理。

本文将对共点力动态平衡的应用进行详细解释。

基本原理
共点力动态平衡基于牛顿第二定律和牛顿第三定律。

根据牛顿
第二定律,物体在受到合力时将发生加速度。

牛顿第三定律指出,
存在作用力和反作用力,两者大小相等、方向相反。

应用场景
共点力动态平衡广泛应用于各个领域。

以下是一些例子:
1. 秧板天平:在医院、食品行业等地,秧板天平被用于测量物
体的重量。

平衡时,物体的重力和支持物的力平衡。

2. 电梯:电梯的升降过程中,通过调节电梯的重力和支撑力来
实现平衡,以确保乘客的安全和顺畅运行。

3. 飞机:在空中飞行时,飞机通过调整翼和尾翼上的升力和阻
力的平衡来保持稳定飞行。

4. 汽车:汽车通过悬架系统调节车身各部分的力平衡,以确保车辆在行驶过程中的稳定性和操控性。

实际应用案例
以下案例进一步说明共点力动态平衡的应用:
1. 平衡木竞技:平衡木竞技是体操项目中的一项,参赛者需要在狭窄的平衡木上进行各种动作。

他们通过调整身体的重心、腿部和手臂的力的平衡,以保持稳定。

2. 秤重物体:当我们使用秤重物体时,物体的重力与秤的支持力平衡,我们可以通过读数知道物体的重量。

总结
共点力动态平衡是物体在受到力的作用下保持平衡的原理。

它在各个领域有广泛应用,包括秧板天平、电梯、飞机和汽车等。

通过实际应用案例,我们可以更好地理解共点力动态平衡的原理和应用。

6 共点力作用下的动态平衡问题

6  共点力作用下的动态平衡问题

共点力作用下的动态平衡问题【核心要点提示】动态平衡问题:所谓动态平衡是指在预设情景中对物体受力大小和方向、空间位置等发生一系列缓慢变化,由于在变化过程“缓慢”,可以认为在变化过程中物体仍然受力平衡。

【核心方法点拨】处理共点力作用下平衡的方法:(1)涉及三个力的动态平衡问题解决方法:动态图解法、相似三角形法,极个别情况需要运用数学正弦定理解决问题。

(2)涉及四个及四个以上力的动态平衡问题一般采用解析法,通过寻找变化力的函数解析式,运用数学函数知识判断力的变化情况【微专题训练】【经典例题选讲】类型一:图解法解决动态平衡【例题1】(2016·全国卷Ⅱ,14)质量为m的物体用轻绳AB悬挂于天花板上。

用水平向左的力F缓慢拉动绳的中点O,如图所示。

用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小【解析】对O点受力分析如图所示,F与T的变化情况如图,由图可知在O点向左移动的过程中,F逐渐变大,T逐渐变大,故选项A正确。

【答案A】【变式1】如图所示,质量相同分布均匀的两个圆柱体a、b靠在一起,表面光滑,重力均为G,其中b的下一半刚好固定在水平面MN的下方,上边露出另一半,a静止在平面上.现过a的轴心施以水平作用力F,可缓慢地将a拉离水平面且一直滑到b的顶端,对该过程进行分析,应有()A.拉力F先增大后减小,最大值是GB.开始时拉力F最大为3G,以后逐渐减小为0C.a、b间弹力由0逐渐增大,最大为GD.a、b间的弹力开始时最大为2G,而后逐渐减小到G【解析】对圆柱体a受力分析可知,a受重力、b的弹力和拉力F三个力的作用,拉力F方向不变,始终沿水平方向,重力大小、方向均不变,b的弹力始终沿两轴心的连线,画出力的矢量三角形分析易得b的弹力N=Gsinθ,拉力F=Gtanθ,由于θ逐渐增大,所以b的弹力和拉力F均逐渐减小,开始时的最大值分别为2G和3G,而后逐渐减小,至θ=90°时,最小值分别为G和0.故选项B、D正确.【答案】BD类型二:运用正弦定理解决动态平衡问题【例题2】图所示,置于地面的矩形框架中用两细绳拴住质量为m的小球,绳B水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2.如图所示,一定质量的物块用两根 轻绳悬在空中,其中绳OA固定不动,绳 OB在竖直平面内由水平方向向上转动, 则在绳OB由水平转至竖直的过程中,绳 OB的张力大小将( D ) A.一直变大 B.一直变小 C.先变大后变小 D.先变小后变大
[方法三:相似三角形法]
在三力平衡问题中,如果有一个力是恒力,另外两个力方向 都变化,且题目给出了空间几何关系,多数情况下力的矢量三角 形与空间几何三角形相似, 可利用相似三角形对应边成比例进行 计算。
A.地面对人的摩ห้องสมุดไป่ตู้力减小
B.地面对人的摩擦力增大
C.人对地面的压力增大
D.人对地面的压力减小
[方法二:图解法]
通过做研究对象的受力图,根据合成分解的示意 图由图中线段长度变化来讨论力大小的变化。
此法常用于求解三力平衡且有一个力是恒力、另有一个 力方向不变的问题。一般按照以下流程解题。
受力 化“动”为“静” 画不同状态 “静”中求“动” 确定力 ―――――――→ ――――――――→ 分析 下的平衡图 的变化
例 3.如图所示, 固定在竖直平面内的光滑圆环 的最高点有一个光滑的小孔。 质量为 m 的小球套在 圆环上。一根细线的下端系着小球,上端穿过小孔 用手拉住。现拉动细线,使小球沿圆环缓慢上移, 在移动过程中手对线的拉力 F 和轨道对小球的弹力 FN 的大小变化 情况是 (
C)
B.F 不变,FN 减小 D.F 增大,FN 减小
A.F 不变,FN 增大 C.F 减小,FN 不变
共点力作用下的 动态平衡问题
[方法一:解析法] [方法二:图解法] [方法三:相似三角形法]
共点力作用下的 动态平衡问题
[方法一:解析法]
对研究对象进行受力分析,先画出受力示意图,再根据 物体的平衡条件列式求解,得到因变量与自变量的一般函数 表达式,最后根据自变量的变化确定因变量的变化。
例1.(多选)如图所示,某人通过定滑轮拉住一重物
,当人向右跨出一步后,人与物仍保持静止,则
( BC )
相关文档
最新文档