Mathematica表达式及其运算规则解读

合集下载

Mathematica 教程03mathematica基本符号运算

Mathematica 教程03mathematica基本符号运算
合并。
注意:上例中表明,当第2个参数有多个变量时,答案 与第2个参数中变量的次序有关。
/sdssxwfd ◄ Up
► Down ◙ Main
表达式的展开
将表达式展开的函数有: Expand[expr] ExpandAll[expr] 这两个函数都可用于乘积的展开,也可以展开分式。后
注意:可以看到,乘法和除法其实什么也没做,需 要用前面介绍的化简函数将结果再化简。
/sdssxwfd ◄ Up
► Down ◙ Main
介绍四个常用函数: PolynomialQuotient[pl, p2,x] 求x的多项式p1被p2除的商。 PolynomialRemainder[pl, p2,x] 求x的多项式p1被p2除的余。 PolynomialGCD[p1,p2,…] 求多个多项式的最大公因式。 PolynomialLCM[pl,p2,…] 求多个多项式的最小公倍式。
/sdssxwfd ◄ Up
► Down ◙ Main
三角函数式的化简
三角函数专用的分解、展开、化简函数 TrigExpand[expr] 将三角函数式展开。 TrigFactor[expr] 将三角函数式因式分解。 TrigReduce[expr] 用倍角化简三角函数式。 TrigToExp[expr] 将三角函数式转换成指数形。 ExpToTrig[expr] 前一个函数的逆变换。
► Down ◙ Main
NSolve[eqns,vars] 求代数方程(组)的全部数值解。
FindRoot[eqns,{x,x0},{y,y0},…] 从(x0,y0,…,)出发找 方程(组)的一个解。
注意:上例中In[1]说明,如果方程中出现小数,则Solve 也求近似解. 还有求多项式根的函数Roots,通常可用 Solve代替,这里就不介绍了。

mathematica逻辑运算

mathematica逻辑运算

mathematica逻辑运算Mathematica是一种强大的计算机代数系统,可以进行各种数学运算和逻辑推理。

它不仅可以进行简单的算术运算,还可以处理复杂的逻辑问题。

在本文中,我们将探讨一些常见的逻辑运算及其在Mathematica中的应用。

我们来介绍一下Mathematica中的逻辑运算符。

Mathematica支持以下逻辑运算符:与(&&)、或(||)、非(!)、等于(==)、不等于(!=)、大于(>)、小于(<)、大于等于(>=)和小于等于(<=)。

这些运算符可以用于对布尔值进行逻辑运算,也可以用于比较数字和表达式的大小关系。

逻辑运算符的使用非常简单。

例如,我们可以使用与运算符(&&)来判断两个条件是否同时成立。

如果两个条件都为真,则结果为真;否则结果为假。

类似地,使用或运算符(||)可以判断两个条件中是否至少有一个为真。

非运算符(!)用于取反,将真变为假,将假变为真。

除了基本的逻辑运算符,Mathematica还提供了一些更高级的逻辑函数,如And、Or和Not。

这些函数可以用于对多个条件进行逻辑运算。

例如,And函数可以判断多个条件是否同时成立,如果所有条件都为真,则结果为真;否则结果为假。

类似地,Or函数可以判断多个条件中是否至少有一个为真。

Not函数用于取反,将真变为假,将假变为真。

在Mathematica中,我们可以使用逻辑运算符和逻辑函数来解决各种逻辑问题。

例如,我们可以使用逻辑运算符来判断一个数是否为偶数。

首先,我们可以使用求余(%)运算符来判断一个数除以2的余数是否为0。

如果余数为0,则该数为偶数;否则该数为奇数。

另一个常见的逻辑问题是判断一个年份是否为闰年。

根据闰年的定义,如果一个年份能够被4整除,但不能被100整除,或者能够被400整除,那么该年份就是闰年。

在Mathematica中,我们可以使用逻辑运算符和条件语句来判断一个年份是否为闰年。

mathematica教程之2.5表达式

mathematica教程之2.5表达式

1表达式的含义M athematica 能处理数学公式,表以及图形等多多种数据形式。

尽管他们从形式上看起来不一样,但在Mathematica内部都被看成同种类型,即都把他们当作表达式的形式。

Mathematica 中的表达式是由常量、变量、函数、命令、运算符和括号等组成,他最典型的形式是f[x,y] 2.表达式的表示形式在显示表达式时,由于需要的不同,有时我们需要表达式的展开形式,有时又需要其因子乘积的形式。

在我们计算过程中可能得到很复杂的表达式,这时我们又需要对它们进行化简。

常用的处理这种情况的函数。

变换表达式表示形式函数表达式(x+y)^4(x+y^2)展开:还原上面的表达式为因子乘积的形式:多项式表达式的项数较多,比较复杂,在显示时显得比较杂乱,而且在计算过程中没有必要知道全部的内容;或表达式的项很有规律,没有必要打印全部的表达式的结果,Mathematica提供了一些命令,可将它缩短输出或不输出将表达式(1+x)^30展开,并仅显示一行有代表项的式子:将上式分成三行的形式展开:把代数表达式变换到你所需要的形式没有一种固定的模式,一般情况下,最好的办法是进行多次实验,尝试不同的变换并观察其结果,再挑出你满意的表示形式。

3.关系表达式与逻辑表达式我们已经知道“=”表示给变量赋值。

现在我们来学习一些其它的逻辑与关系算子。

关系表达式是最简单的逻辑表达式,我们常用关系表达式表示一个判别条件。

例如:x>0,y=0。

关系表达式的一般形式是:表达式+关系算子+表达式。

其中表达式可为数字表达式、字符表达式或意义更广泛的表达式,如一个图形表达式等。

在我们实际运用中,这儿的表达式常常是数字表达式或字符表达式。

下面出Mathematica中的各种关系算子。

给变量x,y赋值,输出后以变量的值,如:下面是比较两个表达式的大小用一个关系式只能表示一个判定条件,要表示几个判定条件胡组合,必须用逻辑运算符将关系表达式组织在一起,我们称表示判定条件的表达式为逻辑表达式。

mathematica中表达式运算的结合次序

mathematica中表达式运算的结合次序

mathematica中表达式运算的结合次序
Mathematica是一种强大的数学计算软件,它能够处理各种复杂的数值计算和符号计算任务。

在Mathematica中,表达式的运算是按照一定的结合次序进行的,这是确保计算的正确性
的重要因素。

在Mathematica中,运算的结合次序遵循通常的数学规则。

具体来说,Mathematica按照以下次序进行运算:
1. 指数运算:Mathematica首先计算指数运算,即计算表达式中的幂。

2. 乘法和除法:Mathematica接下来计算乘法和除法运算,按照表达式中出现的顺序进行计算。

3. 加法和减法:Mathematica最后计算加法和减法运算,同样按照表达式中出现的顺序进行计算。

需要注意的是,Mathematica会自动识别和处理括号和其他运算符。

如果表达式中使用了括号,则括号中的计算会优先进行。

此外,Mathematica还提供了控制运算次序的特殊符号和函数。

例如,可以使用符号“!”表示
阶乘运算,在计算过程中优先进行。

另外,可以使用函数Table、Sum和Product等来计算针对特定变量的迭代运算。

为了进一步控制运算次序,Mathematica还提供了不同级别的规则函数,例如:优先级运算规则、结合性运算规则和替换运算规则。

这些规则函数可以帮助用户自定义算法和优化运算过程。

总之,在Mathematica中,表达式的运算按照指数运算、乘法和除法运算,以及加法和减法运
算的顺序进行。

用户可以通过括号、特殊符号和函数,以及规则函数等来进一步控制运算次序,以满足复杂计算任务的需求。

Mathematica用法简介

Mathematica用法简介

Mathematica 软件使用简介Mathematica 是一个功能强大的常用数学软件, 它是由美国物理学家Stephen Wolfram领导的Wolfram Research公司用C语言开发的数学系统软件。

不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。

这里介绍的命令可以适用于Windows操作系统的Mathematica2.2以上版本运行。

一、Mathematica 的进入/退出如果你的计算机已经安装了Mathematica 软件, 系统会在Windows【开始】菜单的【程序】子菜单中加入启动Mathematica命令的图标:图1.1 启动Mathematica用鼠标单击它就可以启动Mathematica系统进入Mathematica系统工作界面:图1.2 Mathematica2.2工作界面图图1.3 Mathematica4.0工作界面图Mathematica系统工作界面是基于Windows 环境下的Mathematica 函数或程序运行与结果显示的图形用户接口, 是Mathematica的工作屏幕。

界面上方的主菜单和工具条的功能类似于Windows中的Word软件。

其中的空白位置称为Notebook用户区, 在这里可以输入文本、实际的Mathematica命令和程序等来达到使用Mathematica的目的。

在用户区输入的内容被 Mathematica用一个具有扩展名为“.ma” (Mathematica2.2)或“.mb”(Mathematica4.0)在的文件名来纪录,该文件名是退出Mathematica时保存在用户区输入内容的默认文件名,一般是文件名:“Newnb-1.ma”或“Newnb-1.mb”。

退出Mathematica系统像关闭一个Word文件一样, 只要用鼠标点击Mathematica系统集成界面右上角的关闭按钮即可。

关闭前, 屏幕会出现一个对话框, 询问是否保存用户区的内容, 如果单击对话框的“否(N)”按钮, 则关闭Notebook窗口, 退出Mathematica系统; 如果单击对话框的“是(Y)”按钮, 则先提示你用一个具有扩展名为 .ma或.mb的文件名来保存用户区内的内容, 再退出Mathematica系统。

Mathematical用法 大全 实用版

Mathematical用法 大全 实用版
11.求和:In[1]:=NSum[Sin[n]/n^3,{n,1,Infinity}](求级数 的和)
12.求极小值:In[1]:=FindMinimum[Sin[x]*Cos[x],{x,0.5}](求函数在0.5附近的极小值);
In[2]:=FindMinimum[Sin[x*y]*Exp[x^2],{x,0.2}, {y,0.3}](求多元函数极小值)
(* 这是一个例题 每行后按回车键 用半角标点符号*)
Print["请回答3个题目"]
For[i=1,i<=3,i=i+1,
a=Random[Integer,{1,100}];
b=Random[Integer,{1,100}];
In[4]:=%2+4,Out[4]= 12;
In[5]:=1/3-1/4,Out[5]= ;In[6]:=N[%],Out[6]= 0.0833333;
In[7]:=N[%5+12,10],Out[7]= 12.08333333(注意字母的大小写)
3.变量赋值:变量=表达式,“x=.”或Clear[x] 表示清除对x的赋值。
Mathematica for Windows用法
一、Mathematica的主要功能
Mathematica是美国Wolfram公司开发的一个功能强大的计算机数学系统,提供了范围广泛的数学计算功能,主要包括三个方面:符号演算、数值计算、图形。例如:多项式的四则运算、展开、因式分解,有理式的各种计算,有理方程、超越方程的解,向量和矩阵的各种计算,求极限、导数、极值、不定积分、定积分、幂级数展开式,求解微分方程,作一元、二元函数的图形等等。
8.幂级数展开:In[1]:=Series[Exp[x],{x,0,4}](在x=0处展开到x的四次幂)

mathematica对数运算

mathematica对数运算摘要:1.Mathematica 简介2.对数运算的定义与性质3.Mathematica 中的对数运算函数4.Mathematica 中对数运算的实例5.总结正文:【1.Mathematica 简介】Mathematica 是一款功能强大的数学软件,广泛应用于科学研究、工程设计以及教育等领域。

它具有丰富的函数库和强大的计算能力,可以方便地处理各种复杂的数学问题。

【2.对数运算的定义与性质】对数运算是数学中一种重要的运算方式,主要包括自然对数、常用对数和余对数等。

对数运算具有如下性质:1) 幂与对数的互反性:a^log_a(x) = x,其中a 为底数,x 为指数;2) 对数的乘法法则:log_a(x*y) = log_a(x) + log_a(y),其中a 为底数,x 和y 为指数;3) 对数的除法法则:log_a(x/y) = log_a(x) - log_a(y),其中a 为底数,x 和y 为指数;4) 对数的幂运算法则:log_a(x^n) = n*log_a(x),其中a 为底数,x 为指数,n 为整数。

【3.Mathematica 中的对数运算函数】在Mathematica 中,对数运算主要通过以下函数实现:1) 自然对数函数:Log[x],表示以自然常数e 为底,x 的对数;2) 常用对数函数:Log10[x],表示以10 为底,x 的对数;3) 余对数函数:LogMod[x, y],表示x 除以y 的余数,其中x 和y 均为正整数。

【4.Mathematica 中对数运算的实例】以下是Mathematica 中对数运算的一些实例:1) 计算自然对数:Log[27] = 3,表示27 的自然对数为3;2) 计算常用对数:Log10[1000] = 3,表示1000 的常用对数为3;3) 计算余对数:LogMod[13, 4] = 1,表示13 除以4 的余数为1;4) 对数运算法则的验证:Log[2^3] = 3*Log[2],表示对数的乘法法则成立;Log[6] - Log[3] = Log[2],表示对数的除法法则成立。

mathmatica符号运算

Mathematica是一种强大的数学符号计算系统,它可以进行符号运算、数值计算、绘图和数据分析等多种数学操作。

作为一种专业的数学软件,Mathematica在科学研究、工程设计和教育教学中被广泛应用,它为用户提供了丰富的功能和简洁的操作界面。

本文将介绍Mathematica中的符号运算功能,包括基本运算、方程求解、微积分计算、矩阵运算等内容,帮助读者更好地了解和使用这一强大的数学工具。

一、基本运算在Mathematica中,可以使用基本的运算符号进行加减乘除等计算。

输入表达式"a + b",Mathematica会自动进行加法运算并给出结果。

除了基本的四则运算外,Mathematica还支持幂运算、取余运算等操作,可以满足用户在数学计算中的各种需求。

二、方程求解Mathematica能够对各种类型的方程进行求解,包括线性方程、二次方程、多项式方程、常微分方程等。

用户可以通过输入方程表达式,使用Solve或NSolve等函数进行求解,得到方程的解析解或数值解。

Mathematica还支持对方程组进行求解,可以解决多元方程的求解问题。

三、微积分计算微积分是数学中重要的内容,Mathematica提供了丰富的微积分计算功能,包括求导、积分、极限、级数等操作。

用户可以通过输入函数表达式,使用D、Integrate、Limit等函数进行微积分计算,得到函数的导数、不定积分、定积分等结果。

这些功能在科学研究和工程设计中具有重要的应用价值。

四、矩阵运算矩阵运算是数学中常见的运算方式,Mathematica为用户提供了丰富的矩阵运算功能,包括矩阵乘法、转置、逆矩阵、特征值等操作。

用户可以通过输入矩阵表达式,使用Dot、Transpose、Inverse、Eigenvalues等函数进行矩阵运算,得到矩阵的乘积、转置矩阵、逆矩阵、特征值等结果。

这些功能上线性代数和数值分析中具有重要的应用价值。

数学软件Mathematica详解教程


23
自定义函数
Mathematica 允许用户自定义函数,一般格式为
函数名[自变量名1_, 自变量名2_, ...]:= 表达式
这里函数名与变量名的规定相同 方括号中的每个自变量名后都要有一个下划线 “_” 中间的 “:=” 为定义号 注意符号表达式与函数的区别

f[x_]:=2*x-3
② 大多数函数名与数学中的名称相同 ③ 当函数名分为几段时,每一段的头一个字母大写,后面 的用小写字母,如:ArcSin[x]
寻求帮助: ??函数名
In[1]:= ?? Sign[x] Power[x,y] Sqrt[x] Exp[x] Log[x], Log[b,x] 绝对值 符号函数 幂函数 x y 平方根 以 e 为底的指数函数 以 e 和 b 为底的对数函数
m 除以 n 的整数商 三角函数 反三角函数 双曲函数
ArcSinh, ArcCosh, ...
Prime[k] PrimeQ[n] Binomial[n,m]
反双曲函数
第 k 个素数 判断 n 是否为素数 m Cn 二项式系数
20
随机函数
Random[]
Random[Real, a] Random[Real, {a,b}]
定义一个一元函数
f[x_,y_]:=Log[x/y]-Power[x,y]
Clear[f]

定义一个二元函数
清除自定义的函数
自定义函数前,最好先清除自变量的值,否则可能会 出现意想不到的错误
24
自定义函数
In[1]:= f=2*x+y In[2]:= g[x_,y_]:=2*x+y In[3]:= f[2,3] (* 符号表达式 *) (* 函数 *)

mathematica符号运算[指南]

第3章符号运算求解析解(公式解)的主要工具是符号运算,所谓符号运算是指运算的主要对象是符号、文字或变量。所进行的运算自然是指精确解公式中所需要的各种运算了。比如二次方程求根,被运算的主要对象是文字a、b、c,而不是具体的数值1、2、3,所进行的运算是加、减、乘、除、平方、开平方等。在符号运算中,表达式的变换是最基本的也是最常见的运算,例如对多项式进行展开、分解、集项或者化简等。

3.1 表达式的变换这里的表达式主要是指多项式与有理式(分式多项式),有时也可以是三角多项式等。

化简Simplify[表达式] 设法化简表达式,寻求等价的最简形式化简FullSimplify[表达式] 使用更广泛的变换化简表达式展开Expand[表达式] 展开分子,每项除以分母展开ExpandAll[表达式] 分子与分母完全展开分解Factor[表达式] 将表达式分解因式,表示为最简因式的乘积通分Together[表达式] 用于通分,把所有的项放在同一分母上,并化简约分Cancel[表达式] 用于约分,消去分式中分子和分母的公因式分项Apart[表达式] 将有理分式分解为一些最简分式之和集项Collect[表达式,某一个(或某几个)变量] 将表达式按照某一个(或某几个)变量的幂次进行集项【例1】化简下面各表达式。3.2 函数的极限求函数的极限需分为两种情况,一种是当x→a(a为一有限实数)时,函数f(x)→?,另一种是当x→∞(∞为无穷大记号,包括+∞与-∞)时f(x)→?,在数学里记为lim x→a f(x)=?与lim x→∞f(x)=?,而在Mathematica里记为Limit[f(x),x→a]与Limit[f(x),x →Infinity]。【例1】【例2】【例3】Note:(1)对某些函数,极限虽然存在,但利用Mathematica系统不一定能够求出来。(2)对某些函数,利用Mathematica系统虽然求出了极限,但却不能保证所得结果的正确性。3.3 导函数与偏导数3.3.1求导函数D[f(x),x]D[f(x),{x,n}]上面第一式是将f(x)对x求一阶导数,而第二式是将f(x)对x求n阶导数,式中的D是求导符号。3.3.2求偏导数D[f(x,y),x,y] 将f(x,y)先对x求导,再对y求导。D[f(x,y),{x,m},{y,n}] 将f(x,y)先对x求m 阶导数,再对y求n阶导数。3.4不定积分与定积分3.4.1不定积分求不定积分在数学里的符号是∫f(x)dx=F(x)+c在Mathematica系统中的符号是Integrate[f(x),x]=F(x) ( 将常数c略去不写 )式中Integrate是求不定积分的符号,f(x)为被积函数,x为积分变量。Note:在初等函数范围内,不定积分有时是不存在的,亦即当f(x)为初等函数,而∫f(x)dx却不一定是初等函数.Zhou er3.4.2 定积分Integrate[f(x),{x,a,b}]3.5 将函数展开为幂级数Series[f(x),{x,x0,n}]式中f(x)为给定的函数,x0为展开点的坐标,n为展开的项数Note: Normal[Expr] 去掉余项3.6 求和与求积求和 Sum[u n,{n,n1,n2}]求积 Product[u n,{n,n1,n2}]式中u n为通项,n为通项的项数,n1为起始项,n2为终止项,n2可以取有限数,也可以取Infinity(即+∞)。3.7 方程求根在Mathematica系统中为我们提供了求解各类代数方程精确解的求解函数Solve,它的调用格式如下Solve[代数方程(或方程组),未知量]3.8 常微分方程求解在Mathematica系统中,利用符号运算求解常微分方程的调用函数是DSolve,它的求解对象自然也是以线性常微分方程,特别是常系数线性常微分方程为主。利用DSolve函数求解微分方程的调用格式如下:求通解 DSolve[微分方程或方程组,未知函数,自变量]求特解 DSolve[{微分方程,初始条件},未知函数,自变量]3.9 偏微分方程求解(略)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Solve x ^3 - 2 x^ 2 + 3 x - 6 0, x
x ® 2 , x ® -ä 3 , x® ä 3
@ D 9 8< 9 = 9 =
上面的行列式|A|的计算结果,系统给出的是一 个分数值,在Mathematica中,不同类型的数进行运 算,其结果是高一级的数,如有理数与实数运算的 结果是实数,复数与实数的运算结果是复数,依此 类推。由于整数与有理数的运算级别最低,
•Union[list]合并集合list中的重复元素
•Union[list1,list2,…]这是数学意义下的求集合的并集 命令 下面是有关集合方面的一些运算:
上页 下页 退出
s = Table i ^2 + 1, i, 0, 7
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
Print "length s=", th s , "
355 113
@D @ D
上页 下页 退出
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
Mathematica中的变量以字母开头,变量中不能 含有空格及下划线,因此,上面的2I表示2*I(I为虚 数),乘号可用空格代替,在很多情况下,乘号可以 省略,如(1+I)(1+2I)中的两个乘号。如果某个表达式 的结果为复数,Mathematica就会给出复数的结果。 对下面的3次方程
•Delete[list,i]删除集合list的第i个元素
•Flatten[list]展开集合list中的各个子集,形成一个一 维表
上页 下页 退出
•FlattenAt[list,n]展开集合list中的第n级子集
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
•Insert[list,element,{i,j}]插入第i个子集合的第j 个元素 处 •Insert[list,element,i]在list第i个元素的前面插入 element •Intersection[list1,list2,…]这是数学意义下的求交集命 令 •Join[list1,list2,…]将集合首尾相连,形成一个新的集 合
上页 下页 退出
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
另外,在刚开始使用Mathematica时,一般对 有关数学运算命令及数学公式的输入都不是太熟悉, 这时可以通过菜单File→Palettes的各个下级子菜单 输入相关命令及公式,不过这种输入方法效率不高, 建议还是少用为好。
8 < 8 < 8 < @ D 8 < 8 < 8 <
5, 1, 2 , 1, 2, 6 , 1, 2, 7
1 3 , 2 9 , 1 9 , 11 3 ,28 9
; Inverse A
,-
, 0, - 1, 1
B :=
5.0, 1, 2 , 1, 2, 6 , 1, 2, 7
; Inverse B
上页 下页 退出
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
因此,在进行数学计算中,如果可能的话,就尽量 用精确数,即整数或有理数。另外,“==”称为逻 辑等号,定义一个等式要用逻辑等号。
8 < 8 < 8 < @ D : > : > 8< >
A :=
2 9
其中Inverse[]是求逆矩阵命令。在Mathematica中, 一行中可以输入多个命令,各命令间用分号分隔。另 外,分号还有一个作用是通知Mathematica,只在内 存中计算以分号结尾的命令,但不输出此命令的计 算结果。
2+ I
3 5
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
-
-
1 + 2 I ^2 4ä
5
2 - 11 I
其中//N表示取表达式的数值解,默认精度为16 位,它等价于N[expr],一般形式为N[expr,n],即取表 达式n位精度的数值解。如
2.12669006510607072000158763622 ´ 10-37
上页 下页 退出
作为集合,有下面的各种集合运算。
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
•Append[list,element]在集合list的末尾加入元素 element •Apply[Plus,list]将集合list中的所有元素加在一起 •Apply[Times,list]将集合list中的所有元素乘在一起 •Complement[list1,list2]求在list1中而不在list2中元素 集合 •Delete[list,{i,j}]删除集合第i,j处的元素
N p , 50 3.1415926535897932384626433832795028841971693993751
N Det A , 30
@@ DD
使用Rationalize[expr,error]命令可将表达式转 换为有理数,其中error表示转换后误差的控制范围。 例如
Rationalize 3.1415926, 10^ - 5
上页 下页 退出
2、 表达式与表结构
哈 工 程 大 学 数 • 值 计 算 软 件 电 子 教 案
Mathematica能够处理多种类型的数据形式:数 学公式、集合、图形等等,Mathematica将它们都称 为表达式。使用函数及运算符(+, -, *, /,^等)可组成各 种表达式。
FullForm a * b + c
•Inverse[M] 求方阵M的逆矩阵
•LinearSolve[A,b] 求线性方程组AX=b的解
•NullSpace[A] 求满足方程AX=0的基本向量组,即零 解空间
•RowReduce[A] 将矩阵A进行行变换 •QRDecomposition[M] 矩阵M的QR分解 •SchurDecomposition[M] 矩阵M的Schur分解
•P*A+q*B 矩阵与数的乘法运算
•A*B A与B的对应元素相乘
•M^2 将矩阵M中的每个元素平方
•P.Q 矩阵乘法运算,其中P为m×k阶矩阵,Q为k×n 阶矩阵
上页 下页 退出
•Det[M] 求方阵M的行列式
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
•MatrixForm[A] 以矩阵的形式显示A •MatrixPower[M,n] 矩阵M的n次幂 •Transpose[A] 矩阵A的转置矩阵 •Eigenvalues[M] 求矩阵M的特征值
上页 下页 退出
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
•Table[f,{i,imin,imax},{j,jmin,jmax}]建立二维表或矩 阵
•Table[f,{i,imin,imax}]建立一个一维表或向量 •Take[list,{m,n}] 给出list中从m到n之间的所有元素 •Take[list,n] 给出前n个,Take[list,-n] 给出后n个
•Eigenvectors[M] 求矩阵M的特征向量
•Eigensystem[M] 求矩阵M的特征值与特征向量
•IdentityMatrix[n] 建立一个n×n的单位阵
•DiagonalMatrix[list] 建立一个对角阵,其对角线 元素为表list
上页 下页 退出
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
Mathematica表达式及其运算规则
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
在本节中,我们将主要介绍Mathematica进行数 学运算的基本工作原理及特殊符号的输入方式。 1、 西腊字母及命令的直观输入 在Notebook中,有两种输入西腊字母的方法,一 种是调用File→Palettes→BasicInput、BaiscTypesetting 或CompleteCharacters→Letters→Greek菜单,此时 会弹出一个含有西腊字母的数学工具面板,单击此 面板的符号即可;另一种是直接通过键盘输入西腊 字母所代表的标准名称,其格式为\[Greek_name], 例如,在Notebook中输入\[Beta]后(注意大小写),将 会显示β,下面是一些常用西腊字母的标准名称表。
@ 8 < D 8@ @ < @ D @ D @ D D D @ @ D D 9 = 9 = 9 = 9 = @ D
1, 2, 5, 10, 17, 26, 37, 50
s 4
=", s 4
length s=8
1, 2 ,
s
4
=10
s1 = Partition Sqrt s , 2
0.222222, - 0.333333, 0.222222 ,
Plus Times a, b , c FullForm 1, 2, 3, 4 List 1, 2, 3, 4 Head Sin x Sin
@ D @ @ D D @ 8 < D @ D @@ D
FullForm[]可显示出表达式在系统内部 存贮的标准格式,而Head[]可得到某个 表达式的头部,这对我们确定表达式的 类型很有用处。 上面的{1,2,3,4}称为表(List),表是 Mathematica中非常有用的结构。首先, 表可以理解成数学意义下的集合,例如 对集合{1,{2,3},4,{5,6,7},8,9},它是含有6 个元素的子集合,其中{2,3}及{5,6,7}此集 合的子集合。
Intersection s, s3
8<
1, 17
10 ,
17 ,
26 ,
37 , 5
2
上页 下页 退出
哈 工 程 大 学 数 值 计 算 软 件 电 子 教 案
相关文档
最新文档