甾体化合物的生物转化

合集下载

第十四章 甾体激素的微生物转化工艺

第十四章 甾体激素的微生物转化工艺

甾体微生物转化方式
进行微生物转化反应可以利用不同形式的微生物细胞。 ?菌体培养物(单菌体或混合菌体培养液) ?静止细胞悬液(使菌体充分生长发育后,用过滤或 离心法进行分离,将收集到的菌体悬浮在水或适当的 缓冲液中,再将甾类化合物加入进去。) ?孢子悬液 ?干细胞 ?固定化细胞或固定化酶等。
氢化可的松的制备
氢化可的松(Hydrocortisone)又称为皮质醇,化学 名称为11β,17α,21-三羟基孕甾-4-烯-1,20-二酮。其结 构式为
氢化可的松为白色或几乎白色的结晶性粉末, 无臭,初无味,随后有持续的苦味,遇光逐 渐变质,略溶于乙醇或丙酮,微溶于氯仿, 在乙醚中几乎不溶,不溶于水。熔点为 212~222℃。
药物,在医学上应用非常广泛,特别是甾体激素类药物,应
用在风湿性关节炎,控制炎症,避孕,利尿等各方面的治疗
上,对机体起着非常重要的调节作用。甾类激素根据其生理
活性可分为肾上腺皮质激素,性激素和蛋白同化激素三大类。
甾体化合物的基本结构如下:
甾类激素药物的生产, 目前一般采用化学合成 和微生物转化两种方法 相结合的生产工艺。
甾体母核及边链的选择性降解机理
具有生理活性甾体类药物的基本母核目前都是从高 等动植物中获得的,首先必须有选择性地对其边链进行 降解。
甾醇边链降解机理与脂肪酸的 β氧化途径相似。胆 甾醇的边链降解从 C27羟基化开始,再氧化成 C27羧醇, 继后 β氧化先失去丙酸、醋酸,最后再失去丙酸,形成 C17酮化合物,最后一步转化为脱氢,加水和开裂。
2
1
A
11
12 13 17
CD
10 9
B
8 14
16 15
3 甾体化合物的基本结构

【微生物学期末考试题库】经典题目简答题2

【微生物学期末考试题库】经典题目简答题2

2020届微生物学期末考试经典题目题库整理1指出下列培养基各成分的作用,并指出是用来培养哪种类型的微生答案:该培养基中,甘露醇是碳源和能源物质,KH2PO、Mg2SO4 • 7H2O、NaCl、CaSO4 • 2H2O主要提供无机盐离子,CaCO3主要用于调节微生物培养过程中培养基pH值的降低,这一培养基用来培养化能异养微生物。

2、举例说明霉菌与工农业生产、医药实践、环境保护等方面的密切关系。

答案:霉菌对工农业生产、医疗实践、环境保护等有着密切的关系,例如,工业上的大量发酵产物都是通过霉菌来实现的,柠檬酸、葡萄糖酸等有机酸;淀粉酶、蛋白酶等酶制剂;青霉素、头孢霉素、灰黄霉素等抗生素;核黄素等维生素。

利用梨头霉等对甾体化合物的生物转化以生产甾体激素类似药物;以及利用霉菌在生物防治、污水处理和生物测定等方面的应用等。

在食品制造方面,霉菌可以进行酱油的酿造和干酪的制造等。

在基础理论研究方面,霉菌是良好的实验材料,如Neurospora crassa(粗糙脉孢霉)和Aspergillus nidulans(构巢曲霉)是微生物遗传研究中的常用实验材料。

大量真菌可引起工农业霉变,如食品、纺织品、皮革、木材、纸张等。

也是植物最主要的病原菌,却马铃薯晚疫病、稻瘟病和小麦锈病等。

少量的霉菌也可引起动物和人体传染病,如皮肤藓症等。

3、什么是烈性噬菌体?简述其裂解性生活史。

答案:凡是在短时间内能连续完成吸附→侵入→增殖→成熟(装配)→裂解(释放)这五个阶段而实现其繁殖的噬菌体,称之为烈性噬菌体。

裂解性生活史①吸附当噬菌体与其相应的特异宿主在水环境中发生偶尔碰撞后,如果尾丝尖端与宿主细胞表面特异性受体接触就可以触发须把卷紧的尾丝散开,随即就附着在受体上,从而把刺突、基板固着于细胞表面。

①侵入吸附后尾丝收缩,基板从尾丝中获得一个构象刺激,使尾鞘中的144个蛋白质亚基发生复杂的移位,并紧缩成原长的一半,由此把尾丝推出并插入细胞壁和膜中。

江南大学科技成果——甾体类化合物的生物转化技术

江南大学科技成果——甾体类化合物的生物转化技术

江南大学科技成果——甾体类化合物的生物转化技术
成果简介
主要针对我国甾体药物原料来源单一、初加工污染严重、甾体药物合成路线长等问题,重点开展薯蓣皂苷元清洁生产、植物甾醇生物转化以及屈螺酮重要中间体三羟基雄甾烯酮化学合成路线的生物替代等技术研究,旨在大幅度降低原料、能耗及生产成本。

创新要点
利用有高效转化能力的菌种,建立甾体的一步发酵或半合成技术,开发绿色的产物萃取技术及原位随程提取新工艺。

效益分析
建立植物甾醇生物化工生产线,转化合成4-AD、9-OH-AD等产品,投入建设资金3000-5000万元,预计年产值在2.0亿元以上。

推广情况天津药业集团有限公司、浙江仙居君业药业有限公司、河南利伟生物科技有限公司。

授权专利
一株高效转化黄姜中皂苷生产薯蓣皂苷元的菌株及其应用,201210167132.4;
一株高效转化去氢表雄酮菌株及其应用,201110438752.2;
一种利用亚麻刺盘孢霉羟化去氢表雄酮的方法,201210416740.6;
一种基于酶法辅提和微波酸解的黄姜薯蓣皂苷元清洁生产工艺,201110285328.9;
一株高效转化黄姜皂苷的菌株及其应用,201310040600.6。

甾类激素药物的生产

甾类激素药物的生产
黑根霉
CH3 C O HO
Rhizopus Nigricans ATCC 62276
O
O

新月弯孢霉(Curvularoa lunata)能将 Reichstein S化合物(简称化合物S, Compound S)一步转化成氢化可的松
CH2OH C O
CH2OH HO
新月弯孢霉
C O OH
O
化合物S
工业上通过生物技术来控制微生物选择性地 降解甾体边链以获得甾类药物的前体物。
生物技术控制途径
① 通过底物-甾体结构的修饰; ② 在微生物降解过程中加酶抑制剂; ③ 通过诱变技术获得生化阻断突变菌株。
甾体激素 的生产工艺过程

甾体的微生物转化和一般的氨基酸、抗生 素的生产不同 发酵的产物不是目的产物,而只是利用微 生物的酶对甾体底物的某一部位进行特定 的化学反应来获得一定的产物。

发酵:将玉米浆、酵母膏、硫酸铵、葡萄 糖及水投入发酵罐中搅拌,用氢氧化钠溶 液调整物料pH值到5.7~6.3,加入0.03%豆 油,灭菌温度120℃,通入无菌空气,降温 至27~28℃,接入犁头霉孢子悬浮液,维 持罐压0.6kg/cm2,控制排气量,通气搅拌 发酵28~32小时。用氢氧化钠溶液调pH值 到5.5~6.0

甾体上羟化对化学合成而言是非常困难的, 除了C17位上通过化学方法能导入羟基外, 其它位置很难导入。
通过微生物羟化酶能非常专一地选择某个 碳位置上将某空间位置上的氢取代氧化成 原来空间构型的羟基。


如孕酮的转化中,利用黑根霉在温度不超 过320C时成功地实现了C11α羟基化反应。
CH3 C O
适宜的发酵条件主要包括



(1)搅拌 搅拌可增加传质和传热,可以增加培 养基的氧气供给,使氧气均匀分散而提高转化率。 (2)通气 可直接增加氧气的供给。有研究表明, 溶解氧量对诱导酶产生非常重要。 (3)前体半连续的加入 可以降低由于一次大量 加入所引起的毒性,也可减少由于发泡所引起前 体的损失。

甾体类化合物生物转化的研究进展

甾体类化合物生物转化的研究进展
s u mm a r i z e d t o 5 t yp e s ,hy d r ox yl a t i o n, c a r bo ny l a t i on, hy dr o g e na t i o n, d e hy d r og e n a t i o n,Ba e y e r — Vi l l i g e r o xi d a t i on a nd br o mi na t i o n.Re l e v a n t e x a mpl e s a n d r e s e a r c h p r og r e s s of hi o t r a n s f or ma t i on a r e e l a b or a t e d,whi c h p l a y s a n i mp or t a nt r o l e i n s t r uc t ur a l mod i f i c a t i o n o f s t e r oi ds a nd p r o vi d s
Thi s r e v i e w ma i nl y f o c us e s o n bi o t r a ns f o r ma t i on o f s t e r oi d s i n t he pa s t 5 y e a r s . On t he ba s i s of
第4 3卷 第 5期 2 0 1 5年 1 O月
浙 江 工 业 大 学 学 报
j oURNAL OF Z HE J I ANG UNI VE RS I TY OF TE CHNOLOGY
Vo 1 . 43 No .5
0c t .2 O1 5
甾体类 化合 物生 物 转 化 的研 究 进 展
e nz y me s s ys t e ms i n o r g a n i s m a n d a c c o m pl i s h s om e r e a c t i o ns t ha t o r g a n i c s y nt h e s i s c a n no t

难点突破-药物结构与第Ⅰ相生物转化的规律

难点突破-药物结构与第Ⅰ相生物转化的规律

难点突破| 药物结构与第Ⅰ相生物转化的规律药物代谢是通过生物转化将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排泄至体外的过程;生物转化是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。

因此研究药物在体内的生物转化,更能阐明药理作用的特点、作用时程,结构的转变以及产生毒副作用的原因。

药物的生物转化通常分为二相:第Ⅰ相生物转化(Phase Ⅰ),也称为药物的官能团化反应,是体内的酶对药物分子进行的氧化、还原、水解、羟基化等反应,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基、氨基等。

第Ⅱ相生物结合(Phase Ⅱ),是将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物。

但是也有药物经第Ⅰ相反应后,无需进行第Ⅱ相的结合反应,即排出体外。

其中第Ⅰ相生物转化反应对药物在体内的活性影响最大。

一、药物结构与第Ⅰ相生物转化的规律1.含芳环、烯烃、炔烃类、饱和烃类药物第Ⅰ相生物转化的规律(1)含芳环的药物①含芳环的药物主要发生氧化代谢:在体内肝脏CYP 450酶系催化下,首先将芳香化合物氧化成环氧化合物,然后在质子的催化下会发生重排生成酚,或被环氧化物水解酶水解生成二羟基化合物。

②含芳环药物的氧化代谢是以生成酚的代谢产物为主:如果药物分子中含有两个芳环时,一般只有一个芳环发生氧化代谢。

如苯妥英在体内代谢后生成羟基苯妥英失去生物活性。

而保泰松在体内经代谢后生成羟布宗,抗炎作用比保泰松强而毒副作用比保泰松低,这是药物经代谢后活化的例子。

含强吸电子取代基的芳环药物则不发生芳环的氧化代谢。

(2)烯烃和炔烃的药物烯烃类药物经代谢生成环氧化合物后,可以被转化为二羟基化合物,或者是和体内生物大分子如蛋白质、核酸等反应进行烷基化,而产生毒性,导致组织坏死和致癌作用。

例如抗惊厥药物卡马西平炔烃类反应活性比烯烃大,被酶催化氧化速度也比烯烃快。

第七章----甾体化合物

第七章----甾体化合物

第 七 章 甾体类化合物甾体——化学结构中都具有甾体母核----环戊烷骈多氢菲。

甾体类在结构中都具有环戊烷骈多氢菲的甾核。

甾类是通过甲戊二羟酸的生物合成途径转化而来。

天然甾类化合物的分类 C 21甾: 是含有21个碳的甾体衍生物。

以孕甾烷或其异构体为基本骨架。

C 5、C 6——多具双键C 17——多为α-构型,少为β-构型 C 20——可有>C=O 、-OHC 11——可有α-OHC-3、8、12、14、17、20——可能有β-OH 强心苷 : 是存在于植物中具有强心作用的甾体苷类化合物,由强心苷元和糖缩合而产生的一类苷。

海洋甾体化合物 :不少海洋甾体化合物具有显著的抗肿瘤活性。

海洋甾体化合物具有活性强、结构复杂的特点。

第一节 强心苷(考点;结构类型,甲乙型) 强心苷是存在于植物中具有强心作用的甾体苷类化合物,由强心苷元和糖缩合而产生的一类苷。

强心苷是治疗室率过快心房颤动的首选药和慢性心功能不全的主要药物。

第一节、 结构和分类1.基本结构:强心苷是由强心苷元与糖二部分构成。

一.强心苷元部分:强心苷元是由甾体母核与C 17取代的不饱和内酯环组成 。

(1)苷元母核 : 苷元母核A 、B 、C 、D 四个环的稠合构象对强心苷的理化及生理活性有一定影响。

2.结构类型:根据C 17位侧链的不饱和内酯环不同分为:甲型:C 17位侧链为五元环的△αβ-γ内酯 (五元不饱和内酯环); 乙型:C 17位侧链为六元环的△αβ-γδ -γ内酯(六元不饱和内酯环) 这两类大都是β-构型,个别为α-构型,α-型无强心作用。

二、糖部分 根据C 2位上有无-OH 分为α-OH (2-OH )糖及α-去氧糖(2-去氧糖)两类。

后者主要见于强心苷。

强心苷中,多数是几种糖结合成低聚糖形式再与苷元的C 3-OH 结合成苷,少数为双糖苷或单糖苷。

糖和苷的连接方式有三种: Ⅰ型:苷元-(2,6-去氧糖)X -(D-葡萄糖)Y Ⅱ型:苷元-(6-去氧糖)X -(D-葡萄糖)Y Ⅲ型:苷元-(D-葡萄糖)Y X=1-3; Y=1-2 一般初生苷其末端多为葡萄糖。

甾体的生物转化

甾体的生物转化

甾体的生物转化
甾体是一类含有四个环的有机化合物,包含胆固醇、类固醇等,广泛存在于生物体内。

甾体的生物转化是生物化学领域中非常重要的一个主题。

它能够帮助我们深入了解生物体内多种生理过程。

甾体主要的生物转化有以下几个步骤:
1. 羟化反应
甾体在生物体内最初的代谢反应是羟化反应。

该反应是由内质网中的酶催化完成的。

具体来说,细胞通过合成一定数量的酶,将甾体中的一部分甙类化合物(如甾醇)转化为对应的羟化物(如羟胆固醇)。

羟化反应是甾体合成的重要反应,在细胞内广泛应用。

2. 氧化反应
在羟化反应完成后,甾体进一步参与氧化反应。

氧化反应由内质网中的酶催化完成。

通过一系列复杂的反应步骤,甾体中的碳、氢等原子重新排列,形成新的分子结构。

这些新分子结构可以帮助细胞进行生理过程。

3. 质子化反应
质子化反应是甾体生物转化的最后一步。

在质子化反应中,甾体分子的化学结构发生变化,多个质子被甾体分子吸收,原子间化学键发生变化。

这些变化使得甾体分子具有更加复杂的分子结构和生理功能。

甾体的生物转化对生物体的生长和发育中起着重要作用。

通过对甾体的生物转化过程的研究,人们可以更好地理解某些生物体内生理现象的发生机制,更好地把握生物发育规律,推动生物医学等领域的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甾体化合物的生物酶法结构改造
O
O
孕酮
根霉菌
O HO
O
11-羟基孕酮
O
HO
OH
O
皮质醇
O OH
O
OH
O
皮质酮
内容
1、概述 2、酶催化和微生物催化的反应类型 3、甾体生物转化的主要反应 4、代表性实例 5、结束语
1、 概述
生物转化(Biotransformation)是指利用生物体系以及它们所 产 生 的 酶 对 外 源 化 合 物 ( exogenous substrate, foreign substrate, xenobiotics compound)进行结构修饰而获得有价 值产物的生理生化反应,其本质是利用生物体系本身所产生的酶对 外源化合物进行酶促催化反应。生物转化具有反应选择性强(位置 选择性 regio-selectivity 和立体选择性 stereo-selectivity)、 高效率、反应条件温和、副产物少、不造成环境污染、后处理简单 等优点 。迄今,在生物转化研究领域已取得了很大的进展。生物 转化不仅应用于有机合成的研究中,而且还应用于植物次生代谢产 物的结构修饰、活性先导化合物的寻找及药物构效关系的探索等研 究中,被称为“绿色化学,green chemistry”,用于药物开发、 环境净化等科学领域,有着重要的理论意义及实际应用价值。
COOH O -呋喃甲酸
(4)
OH
O
C
C
H
乙酸杆菌属
OH
O
环戊酮
(5)
CH3
CHO
CH3 假单孢菌
CHO
OH
OH
4-羟 基苯 甲 醛
(6)
CH3
COOH
CH3 珊瑚红诺卡氏菌
COOH
N . corallina
Cl
Clห้องสมุดไป่ตู้
对氯苯甲酸
(7)
O
CH3
C
O 棒状杆菌属
香芹酮
2.1.2 羟基化
(1) CH3
总之,生物转化反应是生物合成 药物学中的重要基础。半合成药物 中的生物合成、生物活性化合物的 光学不对称合成、消旋体药物的光 学拆分以及天然药物结构的修饰都 要应用生物转化技术。
2、酶催化和微生物催化 的反应类型
2.1. 氧化反应 2.2. 还原反应 2.3. 水解反应 2.4. 缩合反应 2.5. 胺化反应 2.6. 酰基化反应 2.7. 降解反应 2.8. 脱水反应
2.1. 氧化反应
微生物能转化许多类型的化学反应,氧化反应是其中最常见反应 之一
2.1.1 单一氧化反应
(1) CH2OH
CHO
CH2OH
1. 产黄青霉Q176 2. 假单孢菌PL
CHO
(2)
CH2OH
COOH
牛结核分枝杆菌 CH2OH N
COOH N
烟酸
(3)
CHO
COOH
CHO O
乙酸杆菌属
C OH
HO OH CC
OH N HO N
棒状杆菌 分子杆菌
OH OH
N
HO N 巴比妥酸
2.1.3 环氧化
(1)
CC
HH
O
H2C
C H
CH2 O
食油假单孢菌
H H2C C
O
CH2 O
S-3-苯氧基-1,2-环丙烷
该反应产率很高,且光学纯度为100%,产物是生产铁电液晶 的重要中间体
环氧化(2)
H2 H2
CC
O
土壤细菌JOB 5
O
氧环己烷
2.1.4 氨-杂基团氧化
NH2
NO2
H 2N
H H2 CH C C OH
链 霉 菌 SP3022a
O H N H C C H C l2 O
H H2
O 2N
CH C C OH
O H N H C C H C l2
氯霉素 O
2.1.5 硫-杂基团的氧化
S
O S
黑 曲 霉 NNR
S
CH3
O
S
CH3
(-)-4-甲 基 二 苯 亚 砜
2.1.6 b-氧化
许多种微生物都能将脂肪酸b-氧化产生3-羟基脂肪酸。例如 毛霉(Mucor sp.)能将碳链长6~12碳的反二烯酸(Trans-2alkenoic acid)b-氧化生成3-羟基烯酸。用微生物转化法产生羟 基脂肪酸及脂肪酸的烯醇衍生物是利用微生物转化方法能在饱和 脂肪酸中引进功能团的工具,在合成上很重要。
H2 H2 H2 R C C C COOH
H2 H2 RC C 脂肪酸b-氧化
H C COOH OH
(1)
2.1.7 脱氢
H2 H2
CC
CC
HH
N H2 H2 CC
N H
COOH
荧光假单孢菌
N C C COOH
N HH H
咪唑丙烯酸(利尿酸)
(2)
H2 CH C
CC H
分节孢子杆菌属 N
N
N
CH3
CH2OH
CH3 荧光假单孢菌
CH2OH
COOH
COOH O-羟甲基苯酸
(2)
H2 C
O C
少根根霉
OH C H
O C
HO
O H
O H
11-羟基,5-孕甾-3,20双酮
甾体母核上诸亚甲基中选择性引入11-,11b-和16-等位羟 基呈现强力生理活性;在甾体激素药物合成上非常重要。
(3)
CH
HH CC
N
CH3
'-脱氢尼可汀
2.2. 还原反应
多种醛类化合物,不论是脂肪族或芳香族, 饱和或不饱和的羟基取代或卤素取代的都能被 微生物还原成相应的醇。各种酮的化合物不论 是单酮、双酮、三酮,或者另含有羟基、卤素 取代的都能被微生物还原。应用微生物转化进 行还原时有个非常重要的优点,得到的仲醇都 是光学活性;引入一个手性中心,在手性药物 合成中对光学不对称合成是非常重要的。
里程碑式事件
霉菌(Rhizopus arrhius)转化孕酮(progesterone) 生成11-羟基孕酮(11-hydroxyprogesterone)
O
根霉菌
O
孕酮
HO
O OH
O HO
O
11-羟基孕酮
O OH
O
OH
O
皮质醇
O
皮质酮
1952年,Perterson等报道了根霉菌(Rhizopus arrhius) 能 够 将 孕 酮 (progesterone) 转 化 为 11- 羟 基 孕 酮 (11hydroxyprogesterone) 。 11- 羟 基 孕 酮 是 皮 质 酮 (cortisone)合成的一种中间体(上图)。这种微生物羟 基化作用简化并极大地改进了多步化学合成皮质甾类激 素及其衍生物的效率。尽管德国人Merck提出的由脱氧 胆酸进行化学合成的方法也是可行的,但是这种方法既 复杂又不经济,必须经过31步才能从615公斤脱氧胆酸 中获取1克乙酸皮质酮。孕酮的11-羟基化作用使皮质 酮的价格从200美元/克很快降到6美元/克。由于工艺的 进一步发展,它目前的价格已经低于1美元/克。这一范 例有力地揭示了天然产物的生物转化在药物研究与开发 中所发挥的巨大作用。
相关文档
最新文档