信号与系统 阶跃响应与冲激响应
信号与系统2-2冲激响应与阶跃响应课件

8
举例
已知线性非时变系统的冲激响应 h(t) et (t),激励信号为
f (t) (t) 。试求系统的零状态响应。
解:系统零状态响应为:yzs (t) h(t) f (t) et (t) (t)
h( )
f ( )
1
0
t
0
将f(t)反折,再扫描可
yzs (t)
t e d
0
e
t 0
1
3t f1( ) f2 (t )d
1 1 1d 1 (4 t)
3t 2
2
即为重叠部分的面积。
当 3 t 1 即 t 4时:
f2 (t ) 和 f1( )没有公共的重叠部分, 故卷积 f (t) f1(t) f2 (t) 0
7
例 2.7
f1( )
A
2t 0 t1 f1( )
A
2 t0 1 t f1( )
(1 et ) (t)
确定积分上下限。
9
课堂练习题
自测题2.3 自测题2.4 自测题2.5
10
几条结论
f (t) f1(t) f2 (t)
f(t)的开始时间等于f1(t)和f2(t)的开始时间之和; f(t)的结束 时间等于f1(t)和f2(t)的结束时间之和。 f(t)的持续时间等于 f1(t)和f2(t)的持续时间之和。
h(t) 2e2t (t) (t)
计算机例题C2.3
已知系统的冲激响应为h(t) 3 (t) e2t (t),求阶跃响应。
h=sym('3*Dirac(t)-exp(-2*t)*Heaviside(t)'); g=int(h); g=simple(g)
g=1/2*Heaviside(t)*(5+exp(-2*t)) 阶跃响应为
说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系:
1.零状态响应:
零状态响应是系统在没有初始储能(即系统处于零状态)下,由外部激励引起的系统响应。
它可以通过系统的传递函数或冲激响应来描述。
在零状态响应中,系统的储能不随时间变化,只与外部激励有关。
2.冲激响应:
冲激响应是系统在单位冲激函数激励下的响应,它是系统的传递函数的冲激函数形式。
冲激响应描述了系统对单位冲激函数的响应,可以看作是时间域上的积分运算的结果。
冲激响应是系统固有的特性,与外部激励无关。
3.阶跃响应:
阶跃响应是系统在单位阶跃函数激励下的响应。
阶跃响应描述了系统在阶跃信号作用下随时间变化的动态过程,包括上升、稳定和下降等阶段。
阶跃响应可以通过系统的传递函数或冲激响应来求解。
三者之间的联系:
零状态响应、冲激响应和阶跃响应之间存在密切的联系。
对于线性时不变系统,零状态响应可以通过冲激响应和阶跃响应来描述。
具体来说,系统的零状态响应等于冲激响应和阶跃响应的卷积,即y(t)=h(t)*u(t),其中y(t)表示零状态响应,h(t)表示冲激响应,u(t)表示阶跃响应。
这个公式表明,系统的零状态响应可以通过冲激响应和阶跃响应的卷积运算来获得。
第二章第2讲_冲激响应与阶跃响应

2
将r(t)=h(t)及e(t)=(t)代入给定微分方程
(k1 k2 ) (t ) (3k1 k2 ) (t ) (t ) 2 (t )
k1 k2 1 3k1 k 2 2
将h(t)、h’(t)和(t)代入微分方程两端
ke (t ) ke u(t ) ke u(t ) (t )
k e (t ) (t )
t
t
duc (t ) uc (t ) e(t ) dt
t
t
h (t ) e u (t ) rzs (t ) uczs (t ) e(t ) h(t )
d h (t ) t 3t t 3t ( k1e k2e ) (t ) (k1e 9k2e )u(t ) 2 dt t 3t ( k1e 3k2e ) (t )
(k1 k2 ) (t ) ( k1 3k2 ) (t ) (k1et 9k2e3t )u(t )
当n=m时, h ( t )
ki e
i 1
i t
u (t ) kn 1 (t )
当n<m时,h(t)中还应包含(t)的导数
信号与系统 同济大学汽车学院 魏学哲 weixzh@
三、确定h(t)中的系数ki 将h(t)及其各阶导数代入系统方程左端,(t)及其各 级导数代入 方程右端,令对应项系数相等。
k 0
n
2、系统的零状态响应
( t ) h ( t )
对于线性时不变系 统 n
k (t t0 ) kh(t t0 )
rzs (t )
k 0
e ( k t ) t h ( t k t )
阶跃响应与冲激响应实验报告

阶跃响应与冲激响应实验报告一、实验目的。
本实验旨在通过对阶跃信号和冲激信号的响应进行实验,了解系统对不同输入信号的响应特性,掌握系统的阶跃响应和冲激响应的测试方法及实验步骤。
二、实验原理。
1. 阶跃响应。
阶跃信号是一种特殊的输入信号,其数学表达式为:\[f(t)=\begin{cases}。
0, & t<0 \\。
1, & t\geq0。
\end{cases}\]在实际系统中,当系统受到阶跃信号的刺激时,系统的输出响应即为系统的阶跃响应。
2. 冲激响应。
冲激信号是另一种特殊的输入信号,其数学表达式为:\[f(t)=\delta(t)\]其中,\(\delta(t)\)为狄拉克函数,其在t=0时取无穷大,其余时刻均为0。
在实际系统中,当系统受到冲激信号的刺激时,系统的输出响应即为系统的冲激响应。
三、实验内容。
1. 阶跃响应实验。
(1)搭建系统,将阶跃信号作为输入信号输入系统中;(2)记录系统的输出响应,并绘制出系统的阶跃响应曲线;(3)分析并总结系统的阶跃响应特性。
2. 冲激响应实验。
(1)搭建系统,将冲激信号作为输入信号输入系统中;(2)记录系统的输出响应,并绘制出系统的冲激响应曲线;(3)分析并总结系统的冲激响应特性。
四、实验步骤。
1. 阶跃响应实验步骤。
(1)按照实验要求搭建系统,将阶跃信号作为输入信号输入系统中;(2)记录系统的输出响应,并绘制出系统的阶跃响应曲线;(3)分析系统的阶跃响应特性,包括超调量、调节时间等。
2. 冲激响应实验步骤。
(1)按照实验要求搭建系统,将冲激信号作为输入信号输入系统中;(2)记录系统的输出响应,并绘制出系统的冲激响应曲线;(3)分析系统的冲激响应特性,包括零状态响应、零输入响应等。
五、实验结果与分析。
1. 阶跃响应实验结果与分析。
经过实验测试,我们得到了系统的阶跃响应曲线,并对其特性进行了分析。
通过分析,我们发现系统的超调量较小,调节时间较短,表明系统的动态响应特性较好。
信号与系统§2.2 冲激响应和阶跃响应

T
f (t -T)
(b) 延时器h(t) =δ(t-T) f (t)
d dt
d f (t) dt
∫
∫
t 微分器h(t) =δ'(t)
(d) 微分器h(t) =ε(t)
▲
■
第 5页
∫-∞ ,对因果系统:∫0
t
−
▲
■
第 6页
举例
②与n, m相对大小有关 相对大小有关 h •当n > m时, (t )不含 (t )及其各阶导数; δ 及其各阶导数;
h •当n = m时, (t )中应包含 (t ); δ h •当n < m时, (t )应包含 (t )及其各阶导数。 δ 及其各阶导数。
▲
■
第 4页
3. 基本单元的冲激响应
dm f (t) dt m
+ bm−1
dm−1 f (t) dt m−1
n
令 f(t)=δ(t) 则 y(t)=h(t)
m
= bmδ (m) (t) + bm−1δ (m−1) (t) +L+ b1δ (1) (t) + b0δ (t)
▲ ■ 第 3页
h(n) (t) + an−1h(n−1) (t) +L+ a1h(1) (t) + a0h(t)
§2.2 冲激响应和阶跃响应
• 冲激响应 • 阶跃响应
■
第 1页
一、冲激响应
1.定义
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 所引起的零状态响应称为单位冲 由单位冲激函数 所引起的零状态响应称为 激响应,简称冲激响应 记为h(t)。 冲激响应, 激响应,简称冲激响应,记为 。 h(t)=T[{0},δ(t)]
阶跃响应和冲激响应实验报告总结

阶跃响应和冲激响应实验报告总结一、实验目的本次实验的主要目的是通过对阶跃响应和冲激响应的测试,来了解系统的动态特性和时域响应特性,并掌握信号处理中常用的阶跃响应和冲激响应测试方法。
二、实验原理1. 阶跃响应阶跃响应是指在输入信号为单位阶跃函数时,系统输出的时间响应。
单位阶跃函数是一种特殊的信号,其表达式为:u(t) = {0, t<0; 1, t≥0}在实际测试中,可以通过将电压源接入被测系统后,使其输出一个单位阶跃信号,然后记录系统输出信号随时间变化的过程,并绘制出相应的阶跃响应曲线。
2. 冲激响应冲激响应是指在输入信号为单位冲击函数时,系统输出的时间响应。
单位冲击函数是一种特殊的信号,其表达式为:δ(t) = {0, t≠0; ∞, t=0}在实际测试中,可以通过将电压源接入被测系统后,使其输出一个单位冲击信号,然后记录系统输出信号随时间变化的过程,并绘制出相应的冲激响应曲线。
三、实验步骤1. 阶跃响应测试(1)将电压源连接到被测系统的输入端口。
(2)调节电压源输出为一个单位阶跃信号。
(3)记录系统输出信号随时间变化的过程,并绘制出相应的阶跃响应曲线。
2. 冲激响应测试(1)将电压源连接到被测系统的输入端口。
(2)调节电压源输出为一个单位冲击信号。
(3)记录系统输出信号随时间变化的过程,并绘制出相应的冲激响应曲线。
四、实验结果与分析1. 阶跃响应测试结果通过实验测试,我们得到了被测系统的阶跃响应曲线,如下图所示:图1:被测系统的阶跃响应曲线从图中可以看出,在输入信号为单位阶跃函数时,被测系统输出了一个典型的阶跃响应。
可以看到,在初始状态下,输出信号为0;当输入信号达到0时刻后,输出信号迅速上升并逐渐趋于稳定状态。
这种现象说明了被测系统具有较好的动态特性和稳态特性。
2. 冲激响应测试结果通过实验测试,我们得到了被测系统的冲激响应曲线,如下图所示:图2:被测系统的冲激响应曲线从图中可以看出,在输入信号为单位冲击函数时,被测系统输出了一个典型的冲激响应。
信号与系统冲激响应和阶跃响应

r t
t2
t
t
a t a t
b
bu
t t
c
u
t
rt aut
h 0 1 ,h '0 2
代入h(t),得
hh'00A A113AA2212
h(t)1ete3t u(t)
A A121212
2
X
12
第
用奇异函数项相平衡法求待定系数 页
h ( t ) A 1 e t A 2 e 3 tu ( t )
RC (t)A (t)
1 RCA1 A
RC
X
波形
htvC(t)R 1C eR 1C tu(t)
vC (t) h(t) 1 RC
iC(t)
CdvC(t) dt
O
注意!
iC (t)
R12CeR1Ctu(t)
1 (t)
R
1
O R
电容器的电流在
t =0时有一冲激, 这就是电容电压突
1 R 2C
变的原因 。
•当nm时 , ht中 应 包 t含 ;
•当nm时 , ht应 包含 t及 其 各 阶 导 数 。 X
10
第
例2-5-2 页
求系统 d d 2r t(2 t)4d d r(tt)3 r(t)的 冲d d e 激(tt响) 应2 e 。(t) 解:
将e(t)→(t), r(t)→h(t)
d 2 d h t( 2 t) 4d d h (tt)3 h (t)d d ( tt)2 (t)
CtR1CeR1Ctut
X
6
方法2:奇异函数项相平衡原理
第 页
已知方程 冲激响应 求导 代入原方程
RC dvdCt(t)vC(t)(t) t vC(t)Ae RCu(t)
冲激响应和阶跃响应实验报告

冲激响应和阶跃响应实验报告一、实验目的本次实验旨在深入理解和掌握线性时不变系统(LTI)的冲激响应和阶跃响应的概念、特性以及求解方法。
通过实际的实验操作和数据测量,观察和分析系统在冲激和阶跃输入信号作用下的输出响应,进一步认识系统的时域特性,为后续的系统分析和设计打下坚实的基础。
二、实验原理(一)冲激响应冲激响应是指线性时不变系统在单位冲激信号δ(t) 作用下的零状态响应,记为 h(t)。
对于连续时间 LTI 系统,其冲激响应满足卷积积分的关系:y(t) = x(t) h(t)其中,x(t) 为输入信号,y(t) 为输出信号。
单位冲激信号δ(t) 的定义为:δ(t) = 0 (t ≠ 0)∫(∞,+∞)δ(t) dt = 1(二)阶跃响应阶跃响应是指线性时不变系统在单位阶跃信号 u(t) 作用下的零状态响应,记为 g(t)。
单位阶跃信号 u(t) 的定义为:u(t) = 0 (t < 0)u(t) = 1 (t ≥ 0)三、实验设备与软件1、示波器2、函数信号发生器3、实验电路板4、计算机及相关软件四、实验内容与步骤(一)冲激响应的测量1、按照实验电路图搭建实验电路,选择合适的电阻、电容等元件。
2、利用函数信号发生器产生单位冲激信号,并将其输入到实验电路中。
3、使用示波器观察并记录输出信号的波形,测量其幅度、上升时间、下降时间等参数。
(二)阶跃响应的测量1、重新调整实验电路,使其适用于阶跃响应的测量。
2、由函数信号发生器产生单位阶跃信号,并输入到实验电路中。
3、通过示波器观察并记录输出信号的阶跃响应波形,测量其稳态值、上升时间等参数。
五、实验数据与分析(一)冲激响应数据记录了不同实验条件下冲激响应的波形和相关参数,如下表所示:|实验条件|幅度|上升时间|下降时间|||||||条件 1|_____|_____|_____||条件 2|_____|_____|_____|通过对数据的分析,可以发现冲激响应的幅度与电路中的元件参数有关,上升时间和下降时间则反映了系统的响应速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 实验目的
1.观察和测量RLC 串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;
2.掌握有关信号时域的测量方法。
二、实验设备
1.双踪示波器 1台
2.信号系统实验箱 1台
三、实验原理
实验如图1-1所示为RLC 串联电路的阶跃响应与冲激响应的电路连接图,图1-1(a )为阶跃响应电路连接示意图;图1-1(b )为冲激响应电路连接示意图。
图1-1 (a) 阶跃响应电路连接示意图
图1-1 (b) 冲激响应电路连接示意图
其响应有以下三种状态:
(1) 当电阻R >2 L
C
时,称过阻尼状态; (2) 当电阻R = 2 L
C
时,称临界状态; (3) 当电阻R <2
L
C
时,称欠阻尼状态。
现将阶跃响应的动态指标定义如下:
上升时间t r :y(t)从0到第一次达到稳态值y (∞)所需的时间。
0.1μ
C2
C2 0.1μ
峰值时间t p:y(t)从0上升到y max所需的时间。
±%误差范围所需的时间。
调节时间t s:y(t)的振荡包络线进入到稳态值的5
路后得到的尖顶脉冲代替冲激信号。
四、实验内容
1.阶跃响应波形观察与参数测量
设激励信号为方波,其幅度为1.5V,频率为500Hz。
实验电路连接图如图1-1(a)所示。
①连接P702与P914, P702与P101。
(P101为毫伏表信号输入插孔).
② J702置于“脉冲”,拨动开关K701选择“脉冲”;
③按动S701按钮,使频率f=500Hz,调节W701幅度旋钮,使信号幅度为1.5V。
(注意:实
验中,在调整信号源的输出信号的参数时,需连接上负载后调节)
④示波器CH1接于TP906,调整W902,使电路分别工作于欠阻尼、临界和过阻尼三种状态,
并记录实验数据
⑤ TP702为输入信号波形的测量点,可把示波器的CH2接于TP702上,便于波形比较。
在欠阻尼状态下的波形如下:在临界状态下的波形如下:在过阻尼状态下的波形如下:
2.冲激响应的波形观察
冲激信号是由阶跃信号经过微分电路而得到。
实验电路如图1—1(b)所示。
①连接P702与P912, P702与P101;(频率与幅度不变)
②将示波器的CH1接于TP913,观察经微分后响应波形(等效为冲激激励信号);
③连接P913与P914;
④将示波器的CH2接于TP906,调整W902,使电路分别工作于欠阻尼、临界和过阻尼三种状态;
⑤观察TP906端三种状态波形
在欠阻尼状态下的波形如下:
在临界状态下的波形如下:
在过阻尼状态下的波形如下:
五、实验结果
实验中可以发现当时间常数小,图像较陡,到达稳定状态的时间短;当时间常数大,图像平缓,到达稳定状态的时间长。
不同结构的系统,将具有不同的冲激响应。
因此,系统的冲激响应可以表征系统本身的特性。
系统的单位冲激响应为在系统的初始状态全部为零,仅仅由单位冲激信号输入系统产生的输出响应,把系统的单位冲激响应简称为系统的冲激响应。
单位阶跃响应是指系统在单位阶跃信号的作用下所产生的响应.阶跃响应信号通过微分电路后得到即是冲激响应信号。